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Introduction

Numbers rule the universe.

—Pythagoras

EVERYONE CAN DO MATHEMATICS  n

Human beings are born with some remarkable capabilities. One is lan-
guage. In just a few years after birth, toddlers are carrying on running 
conversations without the benefit of direct instruction. Over the next few 
years, their sentences become more complex and their vocabulary grows 
exponentially. By the age of 10, they understand about 10,000 words and 
speak their native language with 95 percent accuracy.

Another innate talent is number sense—the ability to determine the num-
ber of objects in a small collection, to count, and to perform simple addition 
and subtraction, also without direct instruction. Yet by the age of 10, some 
of these children are already saying, “I can’t do math!” But you never hear 
them saying, “I can’t do language!” Why this difference?

One reason is that spoken language and number 
sense are survival skills; abstract mathematics is not. In 
elementary schools we present complicated notions and 
procedures to a brain that was first designed for survival 
in the African savanna. Human culture and society have 
changed a lot in the past 5,000 years, but the human brain 
has not. So how does the brain cope when faced with a 
task, such as multiplying a pair of two-digit numbers, for which it was 
not prepared? Thanks to modern imaging devices that can look inside the 
living brain, we can see which cerebral circuits are called into play when 
the brain tackles a task for which it has limited innate capabilities. That 
the human brain can rise to this challenge is testimony to its remarkable 
ability to assess its environment and make calculations that can safely land 
humans on the moon and send a space probe into orbit around a planet 
hundreds of millions of miles away.

WHAT IS MATHEMATICS?  n

To most people, mathematics is about calculating numbers. Some may 
even expand the definition to include the study of quantity (arithmetic), 

Children often say, “I can’t do 
math!” But you never hear them 
say, “I can’t do language!” Why 
this difference?
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space (plane and solid geometry), and change (calculus). But even this 
definition does not encompass the many areas where mathematics and 
mathematicians are found. A broader definition of mathematics comes 
from W. W. Sawyer (1982). In the 1950s, he described mathematics as the 
“classification and study of all possible patterns” (p. 12). He explained that 
pattern was meant “to cover almost any kind of regularity that can be rec-
ognized by the mind” (p. 12).

Other mathematicians who share Sawyer’s view have shortened the 
definition even further: Mathematics is the science of patterns. Devlin 
(2000) not only agrees with this definition but has used it as the title of 
one of his books. He explains that patterns include order, structure, and 
logical relationships, and go beyond the visual patterns found in tiles and 
wallpaper to those that occur everywhere in nature. For example, patterns 
can be found in the orbits of the planets, the symmetry of flowers, how 
people vote, the spots on a leopard, the outcomes of games of chance, the 
relationship between the words that make up a sentence, and the sequence 
of sounds we recognize as music. Some patterns are numerical and can be 
described with numbers, such as voting patterns of a nation or the odds 
of winning the lottery. Other patterns, such as a leopard’s spots, are visual 
designs not connected to numbers at all.

Devlin (2000) further points out that mathematics can 
help make the invisible visible. Two-thousand years ago, 
the Greek mathematician Eratosthenes was able to calcu-
late the diameter of Earth with considerable accuracy 
and without ever stepping foot off the planet. The equa-

tions developed by 18th-century mathematician Daniel Bernoulli explain 
how a jet plane flying overhead stays aloft. Thanks to Isaac Newton, we 
can calculate the effects of the unseen force of gravity. More recently, lin-
guist Noam Chomsky has used mathematics to explain the invisible and 
abstract patterns of words that we recognize as a grammatical sentence.

If mathematics is the science of patterns and if visible and invisible 
patterns exist all around us, then mathematics is not just about numbers 
but about the world we live in. If that is the case, then why are so many 
students turned off by mathematics before they leave high school? What 
happens in those classrooms that gives students the impression that mathe-
matics is a sterile subject filled with meaningless abstract symbols? Clearly, 
educators have to work harder at planning a mathematics curriculum that 
is exciting and relevant and at designing lessons that carry this excitement 
into every day’s instruction.

I will leave the discussion of what content to include in a preK–12 math-
ematics curriculum to experts in that area, especially now that the Common 
Core State Standards for Mathematics (National Governors Association 
Center for Best Practices & Council of Chief State School Officers, 2010) 
have been released and adopted by many states. My purpose here is to 
suggest how the research in cognitive neuroscience can be used to plan les-
sons in mathematics that are more likely to result in learning and retention.

Why Is Learning Mathematics So Hard?
Succeeding in high school mathematics is still no easy feat. Take a look 

at Table I.1. The results of the 2013 National Assessment of Educational 

Mathematics can be defined simply 
as the science of patterns.
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Table I.1   Proficiency Levels for Grades 4, 8, and 12 in Mathematics on NAEP, 2005–2013

Year

Grade 4 Grade 8 Grade 12

Below  
Basic

At  
Basic Proficient Advanced

Below  
Basic

At  
Basic Proficient Advanced

Below  
Basic

At 
Basic Proficient Advanced

2013 17 41 34 8 26 38 27 9 35 39 23 3

2011 18 42 34 7 27 39 26 8 — — — —

2009 18 43 33 6 27 39 26 8 36 38 23 3

2007 18 43 34 6 29 39 25 7 — — — —

2005 20 44 31 5 31 39 24 6 39 38 21 2

SOurCE: NAEP (2013).

Progress (NAEP) mathematics tests of twelfth-grade students revealed that 
23 percent were considered proficient in mathematics skills. This was the 
same percentage found in the 2009 assessment. No educator or parent can 
feel reassured by results showing such a low percentage of high school 
seniors performing at this proficiency level in mathematics. For fourth 
graders, 34 percent were proficient, compared with 33 percent for 2009 and 
34 percent for 2011. As for the eighth graders, 27 percent scored proficient 
in 2013, compared with 26 percent for both the 2009 and 2011 assessments. 
The improvement was not significant (NAEP, 2013). Despite all the atten-
tion and high-stakes testing focused on mathematics instruction in recent 
years, achievement results have barely moved.

Explanations for this lackluster performance abound. Some say that 
learning mathematics is difficult because it is so abstract and requires 
more logical and ordered thinking. Others say that the various sym-
bols used in mathematics make it similar to tackling a foreign language. 
Education critics maintain that only a few students are really develop-
mentally incapable of handling mathematics and that the poor perfor-
mance stems mainly from inadequate instruction. They cite the so-called 
“math wars” as hindering major progress in mathematics curriculum 
development, similar to what the “reading wars” did to reading instruc-
tion during the 1990s.

Impact of Teacher Preparation

Another potential factor affecting students’ success in mathematics is 
the content knowledge of their teachers. Numerous studies have shown 
that middle and high school students learn more when their teachers have 
certifications or degrees in mathematics (e.g., Wayne & Youngs, 2003). 
Although states have been increasing the course requirements for individu-
als to be licensed to teach mathematics in secondary schools, problems per-
sist. A recent study of 115 prospective middle school mathematics teachers 
at a large u.S. public university revealed that a substantial number of them 
had a limited knowledge of algebra for teaching (Huang & Kulm, 2012). 
The students made numerous mistakes when solving quadratic equations 
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and in algebraic reasoning and manipulation. They also had difficulties 
with connecting algebraic and graphical representations.

A survey by the u.S. Department of Education showed that only 63 
percent of the nation’s nearly 144,000 high school mathematics teachers 
have both a college major and certification in mathematics (Hill, 2011). 
Nearly 26 percent have only a major or only certification in mathematics, 
and about 11 percent have neither a major nor certification in mathematics. 
This last group is referred to as out-of-field teachers. Other surveys find that 
out-of-field teachers are more likely to be found in high-poverty schools or 
in schools where they are assigned to the most challenging students (e.g., 
Kalogrides, Loeb, & Betelle, 2011).

Responses From Mathematics Educators
The National Council of Teachers of Mathematics (NCTM) published 

the Principles and Standards for School Mathematics in 2000, proposing five 
process standards and five content standards for preK–12 mathematics 
instruction. Since then, interpretation of the standards in the elementary 
and middle school grades became so broad that NCTM decided to refocus 
the curriculum at those grade levels.

In 2006, NCTM released Curriculum Focal Points for Mathematics in 
Prekindergarten Through Grade 8, which identified three important math-
ematical topics at each level, described as “cohesive clusters of related 
knowledge, skills, and concepts” that form the necessary foundation for 
understanding concepts in higher-level mathematics. The publication was 
intended to bring more coherence to the very diverse mathematics curric-
ula currently in use. It provided a framework for states and districts to 
design more focused curricular expectations and assessments for preK–8 
mathematics curriculum development. Shortly thereafter, the National 
Mathematics Advisory Panel (2008) published its final report, making rec-
ommendations for curriculum changes, teacher education, instructional 
practices and materials, and assessment. In the meantime, the National 
Governors Association and the Council of Chief State School Officers 
launched an effort to develop standards in mathematics and English/
language arts. They were finally published in 2010 as the Common Core 
State Standards for Mathematics, and have been adopted by most of the 
states. We will discuss these standards further in Chapters 4 and 5.

Whether this new effort will succeed in improving student achieve-
ment in mathematics remains to be seen. In the meantime, teachers enter 
classrooms every day prepared to help their students feel confident enough 
to master mathematics principles and operations. One thing seems certain: 
Students who are poor in mathematics in their early years remain poor in 
mathematics in their later years.

n  ABOUT THIS BOOK

I am often asked to give specific examples of how the fruits of scientific 
research have made an impact on educational practice. That question is a 
lot easier to answer now than it was 20 years ago because recent discover-
ies in cognitive neuroscience have given us a deeper understanding of the 
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brain. Thanks to brain-scanning technology we now have more knowl-
edge about our short-term and long-term memory systems, the impact of 
emotions on learning, how we acquire language and motor skills, and how 
the brain learns to read. But only more recently have researchers begun to 
examine closely the neural mechanisms involved in processing arithmetic 
and mathematical operations.

Questions This Book Will Answer
This book will answer questions such as these:

•• What innate number capabilities are we born with?
•• How much number manipulation and basic arithmetic can young 

children learn without direct instruction?
•• Why are native speakers of Asian languages able to learn counting 

sooner and faster than are English-speaking children?
•• What kind of number word system could help English-speaking 

children learn to count easier and faster?
•• Why is learning mathematics so difficult for so many students?
•• For everyday classroom practice, what are the implications of the 

current research on how we learn to calculate?
•• How do the mind-sets of teachers and students affect mathematics 

instruction and learning?
•• How does the brain manage to deal with abstract mathematics 

concepts?
•• How is the omnipresent technology affecting students’ attention 

and memory systems?
•• What strategies are effective in teaching students with reading diffi-

culties to learn mathematics?
•• How can we tell if a student’s difficulties in mathematics are the 

result of environmental factors or developmental deficits?
•• What strategies should teachers of mathematics consider when 

planning lessons?
•• What have brain-imaging studies revealed about the nature of 

dyscalculia?
•• How can elementary and secondary school teachers successfully 

detect mathematics difficulties?
•• What instructional strategies work best with students who have 

difficulties in mathematics?
•• What instructional strategies are successful with English language 

learners who are having difficulties in mathematics?
•• How can teachers use research on how the brain learns mathematics 

to design an instructional model for teaching preK–12 mathematics?
•• How can integrating the arts into mathematics lessons improve 

instruction and learning?

Chapter Contents
Chapter 1—Developing Number Sense. Children’s ability to deter-

mine quantities begins soon after birth. This chapter examines the compo-
nents of this innate number sense and how it leads to counting and basic 
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arithmetic operations. It looks at the regions of the brain that work together 
and manipulate numbers and the ways language affects how quickly and 
easily children learn to count.

Chapter 2—Learning to Calculate. Because counting large numbers is 
not a survival skill, the brain must learn mathematical concepts and pro-
cedures. This chapter explores the various developmental stages the brain 
must go through to understand number relationships and manipulations, 
such as in multiplication. It discusses why the brain views learning to mul-
tiply as an unnatural act, and it suggests some other ways to look at teach-
ing multiplication that may be easier for students to learn.

Chapter 3—Reviewing the Elements of Learning. This chapter  
presents some of the recent findings from cognitive neuroscience, includ-
ing discoveries about the power of feedback, memory systems and how 
technology affects them, the nature and value of practice and rehearsal, 
lesson timing, formative assessments, and the benefits of writing in 
mathematics classes. Gender differences and fixed and growth mind-
sets in mathematics, as well as learning and teaching styles, are also dis-
cussed. The chapter concludes with a section on strategies to motivate 
students in mathematics.

Chapter 4—Teaching Mathematics to the Preschool and Kindergarten 
Brain. Although young children have an innate number sense, certain 
instructional strategies can enhance those capabilities and prepare children 
to be more successful in learning arithmetic operations. This chapter sug-
gests some of those strategies.

Chapter 5—Teaching Mathematics to the Preadolescent Brain. Here 
we look at the development and characteristics of the preadolescent brain 
and how they affect the individual’s emotional and rational behavior. The 
chapter offers suggestions on how lesson plans can be modified, from the 
primary grades up through middle school, to take into account the nature 
of this developing brain so more of these students will be successful in 
learning mathematics. Also included is a discussion of how the Common 
Core State Standards for Mathematics were developed and what they mean 
for mathematics instruction.

Chapter 6—Teaching Mathematics to the Adolescent Brain. Similar 
to the previous chapter, we review the nature of the adolescent brain and 
suggest what considerations need to be made to adapt lessons to meet these 
students’ needs. Included here are discussions of mathematical reasoning 
and instructional choices—such as layering the curriculum, the flipped 
classroom, and graphic organizers—that can be very effective strategies 
for making mathematics relevant and interesting to today’s students.

Chapter 7—Recognizing and Addressing Mathematics Difficulties. 
Numerous suggestions are offered in this chapter to enable teachers to 
identify and help students experiencing difficulties in learning mathemat-
ics, including math anxiety. This chapter discusses the major differences 
between the environmental and developmental factors that contribute to 
mathematics difficulties. It presents some tested strategies that teachers 
of all grade levels can use with students who are poor in mathematics 
to help them understand number operations and gain a more accurate 
and deeper understanding of mathematical concepts. A new section dis-
cusses strategies for English language learners who are having difficulties 
in mathematics.
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Chapter 8—Putting It All Together: Planning Lessons in PreK–12 
Mathematics. How do we use in daily practice the important find-
ings discussed in the previous chapters? This chapter suggests ways to 
incorporate this research into the planning of mathematics lessons and  
presents a four-step instructional model for teaching preK–12 mathe-
matics. It also discusses the positive impact that integrating the arts can 
have on mathematics instruction and student motivation, creativity, and 
achievement.

Other Helpful Tools
At the end of each chapter, you will find a section called Questions and 

Reflections, an organizing tool for helping you remember important ideas, 
strategies, and resources you may wish to consider later. The information 
here would be useful in professional development and book study activi-
ties that are using this book as a guide.

I have included some information on the history of mathematics that 
I thought might be interesting and attach a human aspect to this topic. As 
in all my books, I have referred to the original scientific 
research and listed those citations whenever possible.

Look for the . Most of the chapters contain sug-
gestions for translating the research on learning mathe-
matics into instructional practice. These suggestions are 
indicated with a checkmark (). Any time you see this 
symbol it means: “Here is a strategy to consider!”

At the back of the book is an extensive listing of 
Internet Resources that offer a wide range of activities 
for teachers and students at all grade levels.

Who Should Use This Book?
Classroom teachers who teach mathematics at any grade level will 

find this book useful because it presents a research-based rationale for why 
and when certain instructional strategies should be considered. It focuses 
on the brain as the organ of thinking and learning, and it assumes that the 
more teachers know about how the brain learns mathematics, the greater 
the number of instructional options will be available to them. Increasing 
the options increases the likelihood that successful learning will occur.

Professional developers continually need to update their own knowl-
edge bases to include research and research-based strategies and support 
systems as part of their repertoires. Professional developers will find sug-
gestions throughout the book that should help them design and imple-
ment meaningful coaching in mathematics instruction.

Principals and head teachers should find here a substantial source of 
topics for discussion in faculty and department meetings. In raising these 
topics, they will support the attitude that professional growth for teach-
ing mathematics is an ongoing school responsibility and not an occasional 
event. More important, being familiar with what brain research says about 
learning mathematics enhances the principal’s credibility as the school’s 
instructional leader and promotes the notion that the school is a learning 
organization for all its occupants.

This is not a book of activities in 
mathematics. Rather, this book is 
designed to help teachers decide 
which books, resources, and 
activities are likely to be effective in 
light of current research on how 
the brain learns mathematics.
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College and university instructors should also find merit in the 
research and applications presented here, both as suggestions to improve 
their own teaching and as information to pass on to prospective elemen-
tary and mathematics teachers.

Parents will also find some of the information in this book useful, espe-
cially since parents are, after all, their children’s first teachers.

Indeed, the ideas in this book provide the research support for a 
variety of initiatives, such as cooperative learning groups, differenti-
ated instruction, integrated thematic units, and the interdisciplinary 
approach to curriculum. This book is not meant to be a sourcebook for 
preK–12 mathematics activities. rather, it is meant to suggest instruc-
tional approaches that are compatible with what cognitive neuroscience 
is telling us about how the brain deals with numbers and mathematical 
relationships. Of course, some suggested activities represent my view of 
how these research findings can be translated into effective classroom 
practice, but these are meant to suggest the type of activity rather than 
to be the definitive activity. There are hundreds of books and computer 
programs on the market, as well as Internet resources, loaded with math-
ematics activities, games, and worksheets. This book is designed to help 
the teacher decide which of those books and activities are likely to be 
effective in light of current research.

The information presented here was current at the time of publication. 
However, as scientists continue to explore the inner workings of the brain, 
they will likely discover more about the cerebral mechanisms involved in 
learning mathematics. These discoveries should help parents and educators 
understand more about the nature of mathematics, mathematics difficulties, 
and effective mathematics instruction. Stay tuned!

n  ASSESSING YOUR CURRENT KNOWLEDGE
 OF HOW WE LEARN MATHEMATICS

The value of this book can be measured in part by how much it enhances 
your knowledge of how humans learn mathematics. This might be a good 
time for you to take the following true/false test and assess your current 
understanding of some concepts related to mathematics and mathematics 
instruction. Decide whether the statements are generally true or false, and 
circle T or F. Explanations for the answers are found throughout the book 
in special boxes.

1. T F  Children do not understand that number words are differ-
ent from those that describe the size, shape, or color of 
objects.

2. T F  The brain’s ability to detect patterns and make associations 
is often referred to as dissociative memory.

3. T F  Teachers should assume that students who have difficulty 
with language processing will definitely encounter difficulties 
in arithmetic computation.
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 4. T F  Working memory can deal with unlimited items for an 
unlimited amount of time.

 5. T F  Taking notes on a laptop will allow for greater learning 
and a better review of that learning at a later date.

 6. T F  A young child’s social and emotional functioning will 
have no impact on the development of mathematical 
competence.

 7. T F  Emotional attention comes after cognitive recognition.

 8. T F  using technology for routine calculations leads to greater 
understanding and achievement in mathematics.

 9. T F  Students without cognitive deficits do not display difficul-
ties with arithmetic and mathematical operations.

10. T F Mathematics and the arts are not related.

WHAT’S COMING?  n

What innate number capabilities are we born with? Are schools taking 
advantage of these capabilities when teaching arithmetic operations? How 
does our native language affect our ability to learn to count? The answers 
to these intriguing questions are found in the next chapter.
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1
Developing 

Number Sense

Wherever there is a number, there is beauty.

—Proclus (AD 410–485)

BABIES CAN COUNT  n

In 1980, Prentice Starkey persuaded 72 mothers to bring their young 
babies to his laboratory at the University of Pennsylvania for a novel 
experiment (Starkey & Cooper, 1980). While seated on his or her mother’s 
lap, each baby, aged between 16 and 30 weeks, observed slides projected 
onto a screen. The slides contained two or three large black dots spread out 
horizontally. Starkey varied the spacing between the dots so that neither 
the total length of the line nor the density of the dots could be used to dis-
criminate their number. After numerous trials, Starkey noticed that the 
average fixation time of 1.9 seconds for a two-dot slide jumped to an aver-
age of 2.5 seconds (a 32 percent increase) for a three-dot slide. Thus, the 
babies detected the change from two to three dots.

In a follow-up experiment, Strauss and Curtis (1981) at the University 
of Pittsburgh repeated this format but used colored photographs of com-
mon objects instead of dots. The objects varied in size and alignment so that 
the only constant was their number. The babies continued to notice the dif-
ference between slides of two and three objects (Figure 1.1). Similar exper-
iments with infants have been conducted by various researchers (Berger, 
Tzur, & Posner, 2006; Brez, Colombo, & Cohen, 2012; vanMarle, 2013). They 
all yield the same finding: In the first few months of life, babies notice the 
constancy of objects and detect differences in their numerical quantities. 
Babies, of course, do not have a sophisticated concept of counting, but they 
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do have a conception of quantity, or what sci-
entists call numerosity.

Is numerosity innate, or is it something 
the babies were able to learn in their first few 
months? Newborns can distinguish two objects 
from three, and perhaps three from four. Their 
ears notice the difference between two sounds 
and three. It seems unlikely that newborns could 
gather enough information from the environ-
ment to learn the numbers 1, 2, and 3 in just the 
few months after birth. Thus, this ability seems 
to have a strong genetic component.

More support for the notion that numer-
osity is prewired in the brain comes from case 
studies of patients who have lost or never had 
a sense of numbers. Butterworth (1999), for 
example, describes a patient who had a stroke 
that left her language and reasoning abilities 
intact but destroyed her ability to estimate or 
determine the number of objects in any collec-
tion. After another patient had an operation to 
remove a tumor from the left side of her brain, 

numbers had no meaning for her. Once again, this patient’s language 
ability and general intelligence were unaffected, but she could not even 
be taught finger addition. The multiplication tables were just a nonsense 
poem to her. Butterworth also describes a man who apparently never had 
number sense, although he earned a college degree in psychology. He 
had to use his fingers for simple arithmetic and resorted to a calculator 
for other computations, but the answer had no meaning for him. He was 
unable to tell the larger of two numbers or quickly count just three items 
in a collection.

Dehaene (1997) examined how one’s sense of numbers can be disrupted 
after a stroke. One patient counted about half the items in a collection and 
then stopped counting because she thought she had counted them all. 
Another patient would count the same items over and over again, insisting 
there were 12 items when there were only 4. Here, too, language ability and 
general intelligence were not affected. These are just a few examples from 
a large collection of case studies that lead to one conclusion: We are born 
with a built-in number sense!

What Is Number Sense?
Tobias Danzig (1967) introduced the term number sense in 1954, describ-

ing it as a person’s ability to recognize that something has changed in a 
small collection when, without that person’s knowledge, an object has been 
added or removed from the collection. We have number sense because 
numbers have meaning for us, just like words and music. And as in the case 
of learning words, we were born with number sense or, at the very least, 
the ability to acquire it at a very young age without effort. Mathematician 
Keith Devlin (2000, 2010) refined the definition by suggesting that number 
sense consists of two important components: the ability to compare the 

Figure 1.1  Researchers used slides similar to 
these to prove that infants can discriminate 
between the numerosities of 2 and 3. The slides 
with dots are similar to those used by Starkey 
and Cooper (1980), and the slides with objects 
are representative of the experiments 
conducted by Strauss and Curtis (1981).
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sizes of two collections shown simultaneously and the 
ability to remember numbers of objects presented succes-
sively in time.

That we are born with number sense does not nec-
essarily mean we all can become great mathematicians, 
but it does mean that most of us have the potential to be 
a lot better at arithmetic and mathematics than we think. 
If this is true, then why do so many students and adults say they “can’t do 
math”? We will answer this fascinating question later.

Animals Also Have Number Sense
The discovery that infants have number sense came as no surprise to 

researchers who work with animals. For more than 50 years, experiments 
have shown that birds (Koehler, 1951; Roberts, 2010), rats (Mechner & 
guevrekian, 1962), lions (McComb, Packer, & Pusey, 1994), and chimpan-
zees (Beran, McIntyre, garland, & evans, 2013; Woodruff & Premack, 1981) 
possess both of the number sense abilities described by Devlin.

Of course, different species of animals exhibit their number sense at 
varying levels of sophistication. Many birds, for example, display a sense 
of numerosity in the number of times they repeat a particular note in their 
song. even members of the same species will learn the number of repeti-
tions common to their location, which may be six repetitions in one wood-
land area and seven in another.

Rats and lions seem to have the ability to estimate and compare num-
bers. The ability of animals to compare the numbers of objects in different 
collections has an obvious survival advantage. It would help a group of 
animals know whether to defend their territory if the defenders outnum-
ber the attackers, or to retreat if there are more attackers. Note that I am 
referring to the animals as “estimating” and “comparing” numbers, not 
“counting.” No one believes that animals actually count by number, as in 
1–2–3 or 11–12–13. Rather, most researchers accept that many animals rec-
ognize the difference between one and two objects; after that, it is probably 
just “more than two.”

Rhesus monkeys display the ability to tally across different senses—
that is, match a sequence of shapes or sounds (Jordan, Maclean, & 
Brannon, 2008)—and they can choose the lesser of two sets of objects, 
even when their shape, size, and color are changed (Cantlon & Brannon, 
2007). Curiously, in the latter experiment, the monkeys were only slightly 
less accurate than college students performing the same task, but the 
monkeys reacted faster. Why was that? The researchers suggested that 
the monkeys did not mind making an occasional mistake and moved on 
to the next task. The college students, however, hesitated and worried 
over guessing wrong. What about chimpanzees, our closest relatives on 
the evolutionary tree? experiments show that chimpanzees can do basic 
arithmetic. For instance, in a classic experiment using chocolate bars, 
chimpanzees recognized that 3 bars + 4 bars = 7 bars and 5 bars + 1 bar = 
6 bars. They also recognized that 6 is less than 7. Again, the chimpanzees 
were not actually counting to 6 or 7 but most likely were comparing visual 
scans to recognize that one sum was greater than the other (Woodruff & 
Premack, 1981).

Because we are born with number 
sense, most of us have the 
potential to be a lot better at 
arithmetic and mathematics than 
we think.
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The numerical estimating ability shown in rats and chimpanzees 
resembles the innate number sense of human infants. Animals can count 
in that they can increase an internal counter each time an external stimulus 
occurs—for example, a rat pressing a lever to get food. But their represen-
tation of numbers is fuzzy. Humans can do much more. After just a few 
months of age, toddlers discover numbers and number words in a precise 
sequence, and they quickly begin to extend their innate ability to the point 
where they can eventually measure exact quantities, even into the billions.

Why Do We Have Number Sense?
Number sense became an innate ability in humans and other animals 

most likely because it contributed to their survival. Animals in the wild 
must constantly assess dangers and opportunities in their environment. 
To do so, they need cerebral systems that can rapidly compute the mag-
nitude of any challenge. As primitive humans went searching for food, 
they also had to determine quickly whether the number of animals they 

spotted represented an opportunity or a danger, whether 
they were moving too fast, were too big to capture, or 
were just too far away. A mistake in these calculations 
could be fatal. Consequently, individuals who were good 
at determining these magnitudes survived and contrib-
uted to strengthening their species’ genetic capabilities 
in number sense.

n  LEARNING TO COUNT

Although infants are born with the same rudimentary number sense 
observed in rats and chimpanzees, they possess two arithmetic capabilities 
that quickly separate them from other animals: One is the ability to count; the 
other is to use and manipulate symbols that represent numeric quantities.

Recognizing the number of objects in a small collection is part of innate 
number sense. It requires no counting, because the numerosity is identi-
fied in an instant. Researchers call this process subitizing (from the latin 
for “sudden”). But when the number in a collection exceeds the limits of 
subitizing, counting becomes necessary.

Subitizing
Our innate visual processing system allows us to comprehend the 

numerosity of a collection. It works instantly and accurately to quantify 
groups of four or fewer objects without actually counting them. But subsi-
dization loses accuracy as the number in the collection increases. With more 
objects, the process slows down as we abandon subitizing and resort to 
counting or estimation based on visual patterns we discern in the collection. 
Why is that? It is likely that subitizing is a primitive cerebral process while 
counting involves more sophisticated operations.

Indeed, recent studies using PeT (positron emission tomography) 
scans seem to indicate just that. When participants in the studies were 

Humans and other animals 
developed an innate number sense 
because it contributed to their 
survival.
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subitizing one to four items, areas in the visual cortex were activated and 
areas involving attention were quiet. While participants were counting 
five to eight items, however, numerous brain networks were recruited, 
including those involved in visual attention in the top area of the brain and 
cognitive processing in the front regions of the brain. These results sug-
gest that subitizing is a low-key subconscious (neuroscientists call it pre-
attentive) operation, while counting provokes significant cerebral activity 
(Piazza, Mechelli, Butterworth, & Price, 2002; Sathian et al., 1999; vuokko, 
Niemivirta, & Helenius, 2013).

Figure 1.2 shows the difference between subitizing and counting. 
look at Boxes A and B. The eyes can immediately detect the difference 
between two and three items in these boxes without counting. How 
many dots are there in Box C? And how many in Box D? Chances are 
you had to resort to counting to determine the number of dots in each 
box. This, along with research studies (e.g., Kroesbergen, van luit, van 
lieshout, van loosbroek, & van de Rijt, 2009), suggests that subitizing 
may well be the developmental prerequisite skill for learning to count. 
If that is the case, then we should examine subitizing more closely and 
determine if reinforcing this skill in children will help them learn counting  
more easily.

Types of Subitizing

Clements (1999) describes two types of subitizing: perceptual and con-
ceptual. Perceptual subitizing involves recognizing a number without using 
other mathematical processes, just as you did when looking at Boxes A and 
B in Figure 1.2. This innate cerebral mechanism is very likely the same used 
by animals and accounts for some of the surprising capabilities of infants 
described earlier in this chapter. Perceptual subitizing also helps children 
separate collections of objects into single units 
and connect each unit with only one number 
word, thus developing the process of counting.

Conceptual subitizing allows one to know 
the number of a collection by recognizing a 
familiar pattern, such as the spatial arrange-
ment of dots on the faces of dice or on domino 
tiles. Other patterns may be kinesthetic, such 
as using finger patterns to figure out addition 
problems, or rhythmic patterns, such as gestur-
ing out one “beat” with each count. Creating 
and using conceptual subitizing patterns help 
young children develop the abstract num-
ber and arithmetic strategies they will need 
to master counting (Clements, 1999; Steffe & 
Cobb, 1988). Those children who cannot con-
ceptually subitize are likely to have problems 
learning basic arithmetic processes. Can this 
innate ability of subitizing be strengthened 
through practice? The answer is yes. You will 
find suggestions for how to teach subitizing in 
Chapter 4.

Figure 1.2  We can easily perceive the difference 
between two and three items through subitizing. 
But as the number of items increases, we resort 
to counting to arrive at an accurate total.

Box A Box B

Box C Box D
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Counting

Origins of Counting

No one knows when and how humans first devel-
oped the idea of counting beyond the innate sequence 
of “one, two, and many.” Perhaps they began the way 
young children do today: using their fingers. (This sys-

tem is so reliable that many adults also do arithmetic with their fingers.) 
Our base-10 number system suggests that counting began as finger enu-
meration. The latin word digit is used to mean both numeral and finger. even 
evidence from brain scans lends further support to this number-to-finger  
connection.

When a person is performing basic arithmetic, the greatest brain activ-
ity is in the left parietal lobe and in the region of the motor cortex that 
controls the fingers (Dehaene, Molko, Cohen, & Wilson, 2004). Figure 1.3 
shows the four major lobes of the brain and the motor cortex. The area 
within the dotted oval is highly activated when a person is doing arithme-
tic. This area includes both a part of the parietal lobe and the section of the 
motor cortex that controls finger movement.

This raises an interesting question: Is 
it just a coincidence that the region of the 
brain we use for counting includes the 
same portion that controls our fingers? 
Or is it possible that counting began with 
our fingers and the brain later learned to 
do counting without manipulating them? 
Some researchers speculate that if our 
human ancestors’ first experience with 
numbers involved using their fingers, then 
the region of the brain that controls the fin-
gers would be the area where more abstract 
mental arithmetic would be located in 
their descendants (Devlin, 2000).

Assuming fingers were our first count-
ing tools, we obviously ran into a problem 
when counting collections of more than 10 
objects. Some cultures resorted to using 
other body parts to increase the total. even 
today, the natives of the Torres Straits 
Islands in New guinea denote numbers 
up to 33 by pointing to different parts 
of their bodies, including fingers, arms, 
shoulders, chest, legs, and toes. Naming 

the body part evokes the corresponding number. Thus, the word six is lit-
erally “wrist,” and nine is “left breast.” They use sticks for numbers larger 
than 33 (Ifrah, 1985). But this process is hopeless for numbers beyond 30 
or so. eventually, some cultures used a physical tally system, such as mak-
ing notches on a bone or stick. Notched bones that date back about 40,000 
years have been discovered. According to the fossil record, this is about 
the same time that humans started to use symbolic representations in rock 
carvings and cave paintings (Devlin, 2000).

Creating and using conceptual 
subitizing patterns help young 
children develop the abstract 
number and arithmetic strategies 
they will need to master counting.

Figure 1.3  This view of the left side of the brain 
shows the four lobes and the motor cortex. The area 
within the oval is highly activated when a person is 
doing arithmetic. This area includes part of the 
parietal lobe and the section of the motor cortex that 
controls the fingers.

Occipital lobe

Temporal lobe

Frontal lobe

Motor cortex

Parietal lobe
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Finger counting and physical tallies show that these cultures under-
stood the concept of numerosity, but that does not imply they understood 
the abstract concept of number. Archeologists, such as Denise Schmandt-
Besserat (1985), suspect that abstract counting numbers, as opposed to 
markings, appeared around 8000 BC and were used by the highly advanced 
Sumerian society that flourished in the Fertile Crescent of what is now Iraq 
and Syria. They used tokens of different shapes to represent the specific 
quantity of a trade item, such as a jar of oil or loaf of bread. They used 
symbolic markings on clay tablets to keep running totals of items in com-
merce. It was not really a separate number system, but it was the first use 
of a symbol system that set the stage for the functional, abstract numbers 
we use today.

Our present numbering system was developed more than 2,000 years 
ago by the Hindus and attained its present form in about the 6th century. 
In the 7th century, it was introduced to europe by Persian mathematicians 
and thus became known as the “Arabic system.” This ingenious invention 
is now accepted worldwide for several reasons:

•• each number has its own word, and the number words can be read 
aloud. Saying a number, such as 1,776 (one thousand, seven hundred 
and seventy-six), clearly reveals the numeric structure of units—tens, 
hundreds, and thousands.

•• The numerical system is not just symbols but also a language, thereby 
allowing humans to use their innate language fluency to handle 
numbers.

•• It is concise and easily learned.
•• We can use it to represent numbers of unlimited magnitude and 

apply them to measurements and collections of all types.
•• It reduces computation with numbers to the routine manipulation of 

symbols on a page.

In fairness, I should mention that the original idea of denoting num-
bers by stringing together a small collection of basic symbols to form num-
ber words came from the Babylonians around 2000 BC. But the system was 
cumbersome to use because it was built on the base 60; thus, it did not gain 
wide acceptance. Nonetheless, we still use it in our measurements of time 
(60 seconds make 1 minute, etc.) and geography (60 seconds make 1 
degree of latitude and longitude).

Beginning to Count

Wynn (1990) was among the first researchers to examine how young 
children conceptualize the how and why of counting. She discovered that 
by the age of 30 months, most children have seen someone counting on 
numerous occasions. They also demonstrate the ability to count different 
types of sounds on a videotape. So, quite early on and without explicit 
teaching, they understand that counting is an abstract procedure that 
applies to all kinds of visual and auditory objects.

By the age of 3, most children recognize that there are separate words 
to describe the quantity of something; that is, they answer the question of 
“how many.” Children also know that number words are different from 
those that describe the size, shape, or color of objects and that they hold a 
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specific place in the sequence of describing words. They learn to say “three 
big dogs” but never “big three dogs.” At this stage, they know that “three” 
is a number, but they may not know the precise value it represents. That 
will come to them later with experience and practice.

For the young mind, counting is a complex process that uses a one-
to-one principle. It involves saying number words in the correct sequence 
while systematically assigning a number word to each object being 
counted. eventually, children recognize that the last number in the count-
ing sequence tells them the total number of objects in the collection, a con-
cept known as the cardinal principle. Students who do not attain the cardinal 

principle will be delayed in their ability to add and sub-
tract with meaning. As a result, these students always 
recount each item when adding. They recognize addi-
tion as an increase in number but do not start from the 
last number counted. In Chapter 4, you will find some 
suggestions on how to help children learn to count.

How Language Affects Counting

Cultural Variations in Working-Memory Capacity

every time the results of international test scores in mathematics are 
released, the performance of children from the United States is usually 
dismal compared with children from other nations, particularly Asia. 
Differences in classroom instruction and curriculum may be partly to 
blame, but cultural differences in computational ability may have their 
roots in the words that different cultures use to represent numbers.

Read the following list of numbers aloud: 7, 5, 9, 11, 8, 3, 7, 2. Cover 
the list and take about 20 seconds to try to memorize it. Now recite the 
numbers again without looking at the list. Did you get them all correct? If 
your native language is english, you might have gotten only about four 
or five numbers in the correct order. But if you are Chinese, you may have 
gotten all of them correct. Why is that? When you try to remember a list 
of numbers by saying them aloud, you are using a verbal memory loop, 
a part of immediate memory that can hold information for only about 
2 seconds. This forces you to rehearse the words to refresh them in the 
loop. As a result, your memory span is limited by how many number 
words you can say in less than 2 seconds. That time span is too short for 
most people to say aloud the 12 syllables contained in the eight numbers 
you were trying to remember. Of course, if you can recite faster, you will 
remember more.

Chinese numbers are very brief. Most of them can be recited in less 
than one fourth of a second. Pronouncing their english equivalents takes 
about one third of a second. This difference might seem trivial to you, but 
it is significant to researchers. Studies of languages as diverse as english, 
Hebrew, Arabic, Chinese, and Welsh show a correlation between the time 
required to pronounce numbers in a given language and the memory span 
of numbers in its speakers. People in Hong Kong, where the Cantonese 
dialect of Chinese is spoken, have a number memory span of about 10 
digits, as opposed to 7 digits for speakers of english and other Western 
languages.

Answer to Question 1. False: 
Children know that number words 
are different from words describing 
the size, shape, or color of objects.
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One factor contributing to this difference is the finding from brain- 
imaging studies that native Chinese speakers process arithmetic manipu-
lation in areas of the brain different from those of native english speakers. 
Researchers speculate that the biological encoding of numbers may dif-
fer in the two cultures because their languages are written so differently, 
resulting in vastly dissimilar visual reading experiences (Tang et al., 2006). 
Other characteristics of the Chinese language and culture allow children to 
acquire and practice concepts relating to numbers more easily and logically 
than in other languages. For example, the days of the week and months 
are named by their number—Weekday Number 1, Weekday Number 2, 
Month Number 1, Month Number 2, and so on. (The names of the week-
days and months in english, on the other hand, are derived mainly from 
the names of ancient Roman gods.) The consistencies in numerical pat-
terns in different aspects of Chinese culture facilitate the child’s learning 
of numerical concepts.

Surprisingly, the magical number of seven items, long considered the 
fixed span of working memory, is just the standard span for a special pop-
ulation of humans—namely, Western adults on whom about 90 percent of 
psychological studies have been focused. No doubt, there is a biological 
limit to the capacity of working memory, but that limit also appears to be 
affected by culture and training. The cultural variations in memory span 
suggest that Asian numerical notations, such as in Chinese and Japanese, 
are more easily memorized than our Western notations because they are 
more compact (Miller, Smith, Zhu, & Zhang, 1995).

There are some tricks that adults can use to increase digit memory span. 
These tricks can also be taught to young students at the appropriate age.

•9 Memorize numbers by saying them aloud and using the shortest 
words possible. The number 76,391 is easier to remember as “seven-
six-three-nine-one” (6 syllables) rather than “seventy-six thousand, 
three hundred and ninety-one” (13 syllables).
•9 Chunking numbers into groups is another useful strategy. Ten-digit 
telephone numbers are easier to remember when they are divided 
into the three-digit area code, followed by two groups of three and 
four digits.
•9 look for ways to tie parts of the number you are memorizing to 
other numbers that are familiar to you, such as your area code, 
postal zip code, address, or Social Security number.

English Words Make Learning Arithmetic Harder

Although the base-10 system has taken over most languages, how 
we say numbers in different languages runs the gamut from simple to 
complex. english has many inconsistencies in its number words. Ten has 
three forms: ten, -teen, and -ty. Eleven and twelve fit no pattern, and the 
ones are stated before the tens in the numbers 13 through 19. Chinese and 
Japanese hold the prize for simplicity. Not only is their number syntax 
easy to learn and remember, but it perfectly reflects the decimal structure. 
english syntax does not. As a result, Asian children learn to count ear-
lier and higher than their American and Western peers and can do sim-
ple addition and subtraction sooner as well. By age 4, Chinese children 
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can generally count up to 40, while American children 
of the same age can barely get to 15, and it takes them 
another year to get to 40.

How do we know the difference is due to language? 
Because children in the two countries show no age differ-
ences in their ability to count from 1 to 12. Take a look at 
Figure 1.4. The curves represent the percentage of chil-

dren who could correctly count up to a certain number. Note the marked 
separation of the counting curves just past the number 12. Differences 
appear only when english-speaking children encounter the special rules 
for forming number words.

Here’s why: In Chinese, for example, the nine short names for the num-
bers 1 through 9 respectively are yi, èr, san, si, wu, liù, qi, ba, and jiu. The four 
multipliers are 10 (shi), 100 (bai), 1,000 (qian), and 10,000 (wàn). Composing 
a number past 10 is simple: 11 is ten one (shi yi), 12 is ten two (shi èr), 13 is 

ten three (shi san), and so on up to 20, which is 
two ten (èr shi). This logical system continues: 
21 is two ten one (èr shi yi), 22 is two ten two (èr 
shi èr), 30 is three ten (san shi), and 40 is four 
ten (si shi). For numbers past 12, Chinese chil-
dren just keep applying the simple rules that 
worked for 1 through 12. (Japanese has an 
almost identical counting system.) Chinese 
needs only 11 words to count from 1 to 100, 
but english requires 28.

American children often try to apply log-
ical number rules but find that after correctly 
reciting twenty-eight and twenty-nine, they 
have made a mistake when they continue 
with words like twenty-ten and twenty-eleven. 
These types of grammatical errors in num-
ber syntax are almost nonexistent in Asian 
countries.

The number word differences affect the 
experiences that Asian and American chil-
dren will have with arithmetic in their early 
school years. Because the system of spoken 
Chinese numerals directly parallels the struc-
ture of written Arabic numerals, Chinese 
children have much less difficulty than their 
American peers in learning the principles of 
place value notation in base 10. For instance, 

when asked to form the number 25 with unit cubes and bars of 10, Chinese 
children readily select two bars of 10 and five units. American children, 
however, laboriously count out 25 units, and fail to take advantage of the 
shortcut provided by groups of 10. If given a bar of 20 units, they use it 
more frequently than two bars of 10. This indicates that they seem to give 
attention to the surface meaning of 25, while Chinese children are exhibit-
ing a deeper understanding of the base-10 structure (Dehaene, 1997; Ng &  
Rao, 2010).

Because of language differences, 
Asian children learn to count 
earlier and higher than their 
Western peers.

Figure 1.4  The chart shows the percentage of 
American and Chinese children reciting numbers 
as far as they could. More Chinese children could 
count much further than their American peers. 
(Adapted from Miller et al., 1995, with permission 
of the publisher and author)
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I should also note that the French and german languages have their 
own peculiarities. For instance, 70 in French is soixante-dix (sixty-ten), and 
97 is an awkward quatre-vingt-dix-sept (four-twenty-ten-seven). german 
has its unique reversal of decades and units in its number words. The 
number 542 is said as funf hundert zwei und vierzig (five hundred two  
and forty).

To summarize, the Western language systems for saying numbers pose 
more problems for children learning to count than do Asian languages. 
The Western systems are harder to keep in temporary memory, make the 
acquisition of counting and the conception of base 10 more difficult, and 
slow down calculation. Unfortunately, no one realistically expects that 
Western counting systems will be modified to resemble the Asian model. 
But educators should at least be aware of these significant language prob-
lems, especially when comparing the test results in mathematics of Asian 
and english-speaking elementary students.

The Mental Number Line
During the past 40 years or so, numerous experimenters have made 

some intriguing discoveries when they have asked people to compare 
numbers. One of the earliest experiments consisted of measuring the time it 
took for adults to decide which was the larger 
of two Arabic digits. When two digits were 
far apart in value, such as 2 and 9, the adults 
responded quickly and almost without error. 
But when the digits were closer in value, 
such as 5 and 6, the response time increased 
significantly and the error rate rose dramat-
ically. Furthermore, responses for an equal 
distance between numbers slowed down as 
the number pairs became increasingly larger. 
That is, the response time was greater when 
comparing digits 3 and 4 than for digits 2 and 
3, and greater still for digits 8 and 9 (Moyer 
& landauer, 1967). Subsequent experiments 
have consistently yielded similar results (see 
Figure 1.5).

Another experiment measured the time 
it took adults to decide whether a two-digit 
numeral was larger or smaller than 65. Once 
again, the response time grew longer as the 
numerals got closer in value to 65 (e.g., “Is 
71 larger or smaller than 65?”) and, con-
versely, became progressively shorter as the 
value of the numerals became more distant from 65 (e.g., “Is 43 larger or 
smaller than 65?”) (Dehaene, Dupoux, & Mehler, 1990). Similar results 
were found in other studies in which response times were measured for 
number comparisons among kindergartners (Temple & Posner, 1998), 
second graders (Nuerk, Kaufmann, Zoppoth, & Willmes, 2004), and 
adults (Brannon, 2003).

Figure 1.5  This qualitative chart illustrates how 
the average response time increases for adults 
deciding which is the larger of the two digits in 
each pair as the value of the digits increases.
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These experiments led to two conclusions:

•• The speed with which we compare two numbers depends not just 
on the distance between them but on their size as well. It takes far 
longer to decide that 9 is larger than 8 than to decide that 2 is larger 
than 1. For numbers of equal distance apart, larger numbers are 
more difficult to compare than smaller ones.

••  It takes much longer to decide on the larger of two numbers that are 
a small distance apart than to decide on the larger of two numbers 
that are a greater distance apart. It is easier to recognize that 74 is 
larger than 37 than to decide that 74 is larger than 73.

What can explain these findings? Researchers suggest that the brain 
comprehends each numeral and transforms it quickly into an internal 
quantity, ignoring the digit symbols representing that quantity. How eas-
ily the brain distinguishes two numbers depends not so much on their 
absolute numerical distance as on their distance relative to their size. In 
other words, it appears that humans possess a mental number line, where 
we envision numbers as points on a line, with 1 on the left, 2 to its right, 
then 3, and so on. When we have to decide which of two numbers is 
larger, we mentally view them on our internal line and determine which 
one is on the right.

The mental number line is similar to the standard one we learn in ele-
mentary school but with one important difference. On our mental number 
line, the numbers are not spaced out evenly as they are on the standard 
number line. Instead, the farther we go along the mental number line, the 
closer together the numbers appear to be. This explains the results of the 
number-comparison experiments described earlier. The increasing com-
pression of numbers makes it more difficult to distinguish the larger of a 
pair of numbers as their values grow. We can decide which is the larger of 
6 and 5 much faster than for the pair 65 and 64. Although both pairs have 
the same numerical difference of 1, the larger pair appear closer together 
on our mental number line than do the smaller pair. As a result, the speed 
and accuracy with which we carry out calculations decrease as the num-
bers get larger. Figure 1.6 illustrates this phenomenon. (Incidentally, 
experiments with people whose native language is read from right to left, 
such as Arabic and Hebrew, possess mental number lines that also run 
from right to left. Apparently, our mental number line generally runs in 
the same direction as our reading.)

Why are these findings important? The internal number line offers us a 
limited degree of intuition about numbers. It deals with only positive inte-

gers and their quantitative relationship to 
each other (there were no negative num-
bers in our ancestral environment). This 
probably explains why we have no intu-
ition regarding other numbers that mod-
ern mathematicians use, such as negative 
integers, fractions, and irrational num-
bers. Yet all these entities posed significant 
challenges to the mathematicians of the 
past and still present great difficulties to 

Figure 1.6  This illustration of the mental number 
line shows why the brain can decide that 10 is 
larger than 1 faster than it can decide that 80 is 
larger than 70.

1 10 20 30 40 50 60 70 80 90



23DevelOPINg NUMBeR SeNSe

the students of today. They remain difficult for the average person because 
they do not correspond to any natural category in our brain. Small posi-
tive integers make such sense to our innate sense of numerosity that even 
4-year-olds can comprehend them. But the other entities make no such nat-
ural connection. To understand them, we have to construct mental mod-
els that provide understanding. Teachers do this when they discuss these 
topics. For example, when introducing negative numbers, teachers resort 
to metaphors such as money borrowed from a bank, temperatures below 
zero, or simply an extension of the number line to the left of zero.

Number Symbols Are Different From Number Words

One fascinating discovery about numerical symbols and number words 
is that the brain processes them in different locations. Brain-imaging exper-
iments and clinical case studies have convinced researchers that number 
symbols are hardwired in our intuitive number module in the left parietal 
lobe. Ordinary-language number words, however, are stored in Broca’s 
area, located in the left frontal lobe (Figure 1.7). Broca’s area is where our 
language vocabulary is processed. Of course, these two regions communi-
cate with each other during numerical operations (lachmair, Dudschig, de 
la vega, & Kaup, 2014).

Clinical studies describe people who are unable to read words due 
to damage in Broca’s area but can read aloud single or multidigit num-
bers presented to them using numerals. Other patients with severe lan-
guage impairments can hardly read or write but do just fine on a standard 
arithmetic test if the questions are presented in a purely numerical form 
(Butterworth, 1999).

Our number system may indeed 
be a language, but it is a very spe-
cial one that is handled in a differ-
ent region of the brain from normal 
language. Devlin (2000, 2010) sug-
gests that this separation of number 
symbols from number words is just 
what would be expected if our num-
ber symbols were derived from the 
use of our fingers (a parietal lobe 
process) and number words from 
ordinary language (a frontal lobe 
process).

The major implication here 
is that the human brain compre-
hends numerals first as a quantity, 
not as words. Automatically and 
unconsciously, numerical symbols 
are converted almost instantly to 
an internal quantity. Moreover, the 
conversion includes an automatic 
orientation of numbers in space—small ones to the left and large ones to the 
right. Comprehending numbers, then, is a reflex action that is deeply rooted 
in our brains, resulting in an immediate attribution of meaning to numbers.

Figure 1.7  Broca’s area in the left frontal lobe 
processes our language vocabulary, including number 
words. Number symbols, however, are hardwired in 
the number module located in the left parietal lobe.
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Expanded Notions of Number Sense
Mathematics educators have a much broader view of number sense 

than do cognitive neuroscientists. We have already noted that cognitive 
neuroscientists view number sense as a biologically based innate quality 
that is limited to simple intuitions about quantity, including the rapid and 
accurate perception of small numerosities (subitizing) and the ability to 
count, compare numerical magnitudes, and comprehend simple arithme-
tic operations. Dehaene (2001) is a major proponent of a single number 
sense—namely, the basic representation of quantity—rather than a patch-
work of representations and abilities. He does suggest, however, that this 
core number sense becomes connected to other cognitive systems as a con-
sequence of both cognitive development and education.

When Berch (2005) reviewed the literature in cognitive development, 
mathematics cognition, and mathematics education, he found that math-
ematics educators consider number sense to be much more complex and 
multifaceted in nature. They expand this concept to include skill sets that 
develop as a result of involvement with learning activities in mathematics. 
According to Berch, these abilities include the following:

•• Recognizing something has changed in a small collection when, 
without direct knowledge, an object has been removed or added to 
the collection

•• elementary abilities or intuitions about numbers and arithmetic
•• A mental number line on which analog representations of numerical 

quantities can be manipulated
•• An innate capacity to process approximate numerosities
•• Making numerical magnitude comparisons
•• Decomposing numbers naturally
•• Developing useful strategies for solving complex problems
•• Using the relationships among arithmetic operations to understand 

the base-10 number system
•• Using numbers and quantitative methods to communicate, process, 

and interpret information
•• Awareness of levels of accuracy and sensitivity for the reasonable-

ness of calculations
•• Desire to make sense of numerical situations by looking for links 

between new information and previously acquired knowledge
•• Knowledge of the effects of operations on numbers
•• Fluency and flexibility with numbers and understanding of number 

meanings
•• Recognition of gross numerical errors
•• Understanding of numbers as tools to measure things in the real world
•• Inventing procedures for conducting numerical operations
•• Thinking or talking in a sensible way about the general properties 

of a numerical problem or expression, without doing any precise 
computation

Portions of this more expansive view of number sense already appear

•• in the Common Core State Standards in Mathematics,
•• in contemporary mathematics textbooks, and
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•• as a distinct set of test items included in the mathematics portions of 
the National Assessment of educational Progress, the Trends in 
International Mathematics and Science Study, and the Program for 
International Student Assessment.

Can We Teach Number Sense?
Those who view number sense as an intrinsic ability will argue that 

the elementary components are genetically programmed, have a long 
evolutionary history, and develop spontaneously without explicit instruc-
tion as a young human interacts with the environment. However, most of 
these researchers do not view number sense as a fixed or immutable entity. 
Rather, they suggest that the neurocognitive systems supporting these ele-
mentary numerical abilities provide just the foundational structure needed 
for acquiring the expanded abilities cited by mathematics educators. And 
they recognize that both formal and informal instruction can enhance num-
ber sense development prior to entering school.

Berch (2005) notes that the abilities and skills associated with the 
expanded view of number sense cannot be isolated into special textbook 
chapters or instructional units, and that their development does not result 
from a set of activities designed specifically for this purpose. He agrees 
with those mathematics educators who contend that number sense con-
stitutes a way of thinking that should permeate all aspects of mathematics 
teaching and learning. It may be more beneficial to view 
number sense as a by-product of other learning than as a 
specific goal of direct instruction.

gersten and Chard (1999) suggest that the innate quali-
ties of number sense may be similar to phonemic awareness 
in reading development, especially for early experiences in 
arithmetic. Just as phonemic awareness is a prerequisite 
for learning phonics and becoming a successful reader, 
developing number sense is a prerequisite for succeeding 
in mathematics. They further propose that number sense is the missing com-
ponent in the learning of early arithmetic facts and explain why rote drill and 
practice do not lead to significant improvement in mathematics ability.

Because gersten and Chard (1999) believe that number sense is so 
critical to success in learning mathematics, they have identified five 
stepping-stones that allow teachers to assess a child’s understanding of 
number sense:

• Level 1. Children have not yet developed number sense beyond 
their innate notions of numerosity. They have no sense of relative 
quantity and may not know the difference between “less than” and 
“more than” or “fewer” and “greater.”

• Level 2. Children are starting to acquire number sense. They can 
understand terms such as “lots of,” “six,” and “nine,” and are begin-
ning to understand the concepts of “less than” and “more than.” 
They also understand lesser or greater amounts but do not yet have 
basic computation skills.

• Level 3. Children fully understand “less than” and “more than.” 
They have a concept of computation and may use their fingers or 

Just as phonemic awareness is a 
prerequisite for learning phonics 
and becoming a successful reader, 
developing number sense is a 
prerequisite for succeeding in 
mathematics.
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objects to apply the “count up from one” strategy to solve problems. 
errors occur when children are calculating numbers higher than 5, 
because this requires using the fingers of both hands.

• Level 4. Children are now relying on the “count up” or “counting 
on” process instead of the “counting all” process they used at the 
previous level. They understand the conceptual reality of numbers 
in that they do not have to count to 5 to know that 5 exists. Assuming 
they can count accurately, children at this level are able to solve any 
digit problem.

• Level 5. Children demonstrate retrieval strategies for solving prob-
lems. They have already automated addition facts and are acquiring 
basic subtraction facts.

Teaching Number Sense at All Grade Levels

gurganus (2004) agrees that number sense is analogous to phonemic 
awareness. However, she takes a broader view and notes that, unlike pho-
nemic awareness, number sense develops throughout a student’s mathe-
matics education and applies to a wide range of concepts. Here are her 
suggestions to teachers for promoting number sense across the grade levels:

•9 Pair numbers with meaningful objects. To help young students 
view numbers as values rather than labels, associate numbers with 
concrete objects. For example, there are two wheels on a bicycle, 
three wheels on a tricycle, and four wheels on a car.
•9 Use language to gradually match numbers with objects and sym-
bols. Model using talk to create sentences about number activities so 
that students can use self-talk to describe these relationships. For 
instance, “Two blocks and three more blocks give us five blocks.”
•9 Incorporate counting activities. Ask younger students to count to 
10 and back. Challenge older students to count by 2s, 5s, or 10s, and 
even 3s, 4s, or 7s. Counting up and back builds understanding of 
number relationships and magnitudes. Have students challenge 
each other to guess a counting pattern. For example: “500, 525, 550, 
575—What is my pattern?”
•9 Provide experiences with number lines. Create a large number line 
across the classroom floor using colored tape (Figure 1.8). Have 
students move from number to number to show counting, opera-
tions, or even rounding. Draw number lines using whole numbers, 
integers, or decimals.
•9 Plan meaningful estimation experiences. Students need to recog-
nize that many things cannot and need not be measured precisely. 
Provide lots of practice with estimation. Stress that estimation is not 
guessing but that there should be a reasonable range for the estima-
tion based on experience. For example, “How many students do you 
think ate in the cafeteria today?”
•9 Measure and then make measurement estimates. Have students 
use measurement tools to measure length, area, volume, mass, tem-
perature, and other attributes of meaningful things in their environ-
ment. Young students can start with measuring the teacher’s desk or 
distances on the classroom floor. After some practice, ask students to 
estimate before they measure. This builds a stronger sense of mea-
surement units and what they represent.
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•9 Use number charts. Charts in different arrangements (e.g., 1–100) 
offer many opportunities for students to explore number patterns. 
Cover up specific numbers on the charts and challenge students to 
discover the underlying relationships of difficult concepts such as 
factors and primes.
•9 Introduce materials that involve numbers or number representa-
tions. Ask students to examine items such as dice, dominoes, play-
ing cards, coins, clocks, and rulers. Ask them to search for ways they 
can adapt these items for counting, pattern making, number opera-
tions, and number comparisons.
•9 Read literature that involves numbers. Books such as The Mud Flat 
Olympics, by James Stevenson (1994), or Anno’s Counting Book, by 
Anno Mitsumasa (1977), provide a different way to take a mathe-
matical journey.
•9 Create magic number squares. Show students how to determine the 
missing numbers, and have them create new squares to challenge 
their classmates (Figure 1.9).
•9 Manipulate different representations of the same quantity. Model 
moving back and forth between decimals, fractions, and percentages 
(e.g., 0.25 = 1/4 = 25%). Point out the same length in millimeters, 
centimeters, and meters (e.g., 35 mm = 3.5 cm = 0.035 m).
•9 Explore very large numbers and their representations. Students 
love the sound of large numbers, such as billion and trillion, but 
often have difficulty conceptualizing them. Use calculators to inves-
tigate the effects of squaring and other exponents. Where appropri-
ate, express large numbers with scientific notation (e.g., 500,000 can 
be written as 5 × 105).
•9 Collect and chart data. At every grade level, students can collect 
meaningful data. Ask the students to use concrete objects whenever 
possible, such as counting each type of bean in a mixture or the num-
ber of marbles of each color in a collection. Also ask the students to 
examine the data using graphs, formulas, and other comparisons.

Figure 1.8  Different number lines placed on the floor of the classroom with 
tape can help students understand number relationships.
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Figure 1.9  Number squares come in many different configurations and are 
enjoyable ways to learn addition. In these examples, rows, columns, and 
diagonals must add up to 34.
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•9 Compare number representations in other cultures. Students can 
gain insights into number relationships by exploring how other cul-
tures count, use symbols for numbers, and solve algorithms. 
Students often find these activities fascinating. They can read about 
gesture counting and the various symbols and systems that different 
cultures have used to represent numbers (see Zaslavsky, 2001).
•9 Set up spreadsheets. Commercial spreadsheets are a great tool for 
teaching students how to encode formulas for cells that will com-
pute and compare values within other cells. Ask “what if” questions 
and manipulate values within the spreadsheet.
•9 Solve problems and consider the reasonableness of the solution. 
Remind students that the last step in problem solving should be 
to ask, “Does this answer make sense?” Have them practice select-
ing solutions by estimation without actually working out the 
problems.
•9 Find everyday, functional uses of numbers. explore every opportu-
nity for students to see the practical applications of mathematics. 
For example, they could follow their favorite sports team’s averages, 
track a company on the stock market, look for sales at the depart-
ment store, or determine distances on a road map for the school field 
trip. Whenever possible, ask the students to graph, compare, pre-
dict, and discuss their data and measurements.
•9 Explore unusual numbers. Older students might find adventure in 
special numbers with intriguing patterns. examples are Fibonacci 
and the golden ratio; abundant, perfect, and weird numbers; and 
number patterns that form palindromes.
•9 Model the enjoyment of numbers and number patterns. Research 
studies repeatedly show that the teacher is the most critical factor in 
establishing a climate for curiosity and enjoyment of mathematics. 
Keep learning and searching for new ways to have fun with num-
bers. The Internet is a valuable resource for number games. See the 
Resources section of this book for some ideas.

More suggestions for teaching number sense to students in the pri-
mary grades are provided in Chapter 5.

Quantities to Words to Symbols
In an effort to describe how number sense emerges, researcher Sharon 

griffin (2002) created a model showing that the development of number 
sense goes through three major phases. First, the visual processing system 
recognizes objects in a collection. For small collections, the numerosity can 
be determined quickly and without counting through our innate capacity 
to subitize. As the quantity of objects in a collection grows larger, we move 
to the second phase and create number words to communicate to others an 
exact count in our native language.

The third phase emerges when we realize that writing number words 
for large quantities is tedious and that they do not lend themselves to 
mathematical manipulation. Therefore, we create numerical symbols and 
operational signs. At the beginning, the flow from one stage to the next 
is linear. But with practice, all three phases interact whenever the brain 
performs mathematical operations (Figure 1.10). griffin’s model has been 
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supported by other cognitive neuroscien-
tists using brain-imaging methods (e.g., 
Dehaene, Piazza, Pinel, & Cohen, 2003; 
Holloway, Price, & Ansari, 2010).

Gardner’s Logical/Mathematical 
Intelligence

Many readers may be familiar with 
the theory proposed in 1983 by Howard 
gardner of Harvard University that 
humans are born with a variety of capa-
bilities that allow them to succeed in their 
environment. His idea—known as the the-
ory of multiple intelligences—was that we 
possess at least seven (now up to 10) differ-
ent intelligences. The original seven intel-
ligences he proposed are musical, logical/
mathematical, spatial, bodily/kinesthetic, 
linguistic, interpersonal, and intraper-
sonal. Soon after, he added naturalist, and 
several years later, spiritualist and emo-
tionalist. gardner defined intelligence as 
an individual’s ability to use a learned 
skill, create products, or solve problems in 
a way that is valued by the society of that 
individual. This novel approach expanded 
our understanding of intelligence to include divergent thinking and inter-
personal expertise. He further differentiated between the terms intelligence 
and creativity, and suggested that in everyday life people can display intel-
ligent originality in any of the intelligences (gardner, 1993).

This theory suggests that at the core of each intelligence is an informa-
tion-processing system unique to that intelligence. The intelligence of an 
athlete is different from that of a musician or physicist. gardner also sug-
gests that each intelligence is a continuum and semiautonomous. A per-
son who has abilities in athletics but does poorly in music has enhanced 
athletic intelligence. The presence or absence of musical capabilities exists 
separately from the individual’s athletic prowess.

Is Logical/Mathematical Intelligence  
the Same as Number Sense?

According to gardner, the logical/mathematical intelligence uses 
numbers, sequencing, and patterns to solve problems (Figure 1.11). Thus, 
it deals with the ability to think logically, systematically, inductively, and to 
some degree deductively. It also includes the ability to recognize both geo-
metric and numerical patterns, and to see and work with abstract concepts. 
Students strong in this intelligence

••  can easily compute numbers mentally,
•• like to be organized,
•• are very precise,

Figure 1.10  Researcher Sharon griffin created a 
model that shows the development of number sense 
from recognizing real-world quantities to creating 
number words to describe those quantities and, 
finally, creating symbols and operational signs to 
represent and manipulate quantities. With practice, 
all three interact when the brain processes 
mathematical operations. (Adapted with permission 
from griffin, 2002)
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••  have a systematic approach to 
problem solving,

••  recognize numerical and geometric  
patterns,

•• like computer games and puzzles,
••  like to explore and experiment in a 

logical way,
••  are able to move easily from the 

concrete to the abstract, and
•• think conceptually.

gardner made clear that intelligence 
is not just how a person thinks but also 
includes the materials and values of the 
situation where and when the thinking 
occurs. The availability of appropriate 
materials and the values of any particular 
culture will thus have a significant impact 
on the degree to which specific intelli-
gences are activated, developed, or dis-
couraged. A person’s combined intellectual 
capability, then, is the result of innate ten-
dencies (the genetic contribution) and the 
society in which that individual develops 
(the environmental contribution).

Are there genes that enhance mathematical ability? very likely. Studies 
of identical twins (they share the same genes) and fraternal twins (they 
share half of their genes) suggest how much a certain trait is inherited. 
Several studies over the past decades have found that identical twins usu-
ally exhibit similar levels of mathematical performance. In fraternal twins, 
however, one may be an excellent performer in mathematics while the 
other is just mediocre (Alarcón, Knopik, & DeFries, 2000).

Number sense, then, can be considered the innate beginnings of math-
ematical intelligence. But the extent to which it becomes an individual’s 
major talent still rests with the type and strength of the genetic input and 
the environment in which the individual grows and learns.

We will discuss more about gardner’s theory and its application to 
classroom instruction in Chapters 3 and 7.

n  WHAT’S COMING?

Number sense provides students with a limited ability to subitize and 
determine the numerosity of small groups of objects. As the number of 
objects increases, the brain must resort to a more exact system of enumer-
ation that we call counting. Simultaneously, the skills necessary to do exact 
addition and subtraction emerge. But as students need to manipulate 
larger and larger numbers, addition is no longer an efficient process. They 
must now learn to calculate through multiplication. Why is learning mul-
tiplication so difficult, even for adults? Are we teaching multiplication in 
the most effective way? Do we really even need to learn the multiplication 
tables? The answers to these and other interesting questions about how we 
learn to calculate are found in the next chapter.

Figure 1.11  This chart shows 8 of gardner’s 10 
intelligences (gardner, 1993). Is it possible that the 
logical/mathematical intelligence is the same as 
number sense?
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Chapter 1—Developing 
Number Sense

QUESTIONS AND REfLECTIONS  n

Respond to the following questions, and jot down on this page key points, 
ideas, strategies, and resources you want to consider later. This sheet is 
your personal journal summary and will help jog your memory.

What is meant by number sense? ____________________________________

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

How does our native language affect our ability to learn to count? 

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

How does learning to count in some Asian languages differ from learning 
to count in english? _______________________________________________

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

What are some ways to teach number sense at various grade levels? 

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________
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2
Learning to 
Calculate

Mathematics possesses not only truth, but some supreme beauty—a 
beauty cold and austere, like that of sculpture.

—Bertrand Russell

Counting up to small quantities comes naturally to children. Either 
spontaneously or by imitating their peers, they begin to solve simple 

arithmetic problems based on counting, with or without words. Their first 
excursion into calculation occurs when they add two sets by counting them 
both on their fingers. Gradually, they learn to add without using their fin-
gers and, by the age of 5, demonstrate an understanding of commutativity 
of addition (the rule that a + b is always equal to b + a). But as calculations 
become more difficult, errors abound, even for adults. One thing is cer-
tain: the human brain has serious problems with calculations. Nothing in 
its evolution prepared it for the task of memorizing dozens of multiplica-
tion facts or for carrying out the multistep operations required for two-
digit subtraction. Our ability to approximate numerical quantities may be 
embedded in our genes, but dealing with exact symbolic calculation can be 
an error-prone ordeal.

DEVELOPMENT OF CONCEPTUAL STRUCTURES  n

Conceptual structures about numbers develop early and allow children to 
experiment with calculations in their preschool years. They quickly master 
many addition and subtraction strategies, carefully selecting those that are 
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best suited to a particular problem. As they apply their 
algorithms, they mentally determine how much time it 
took them to make the calculation and the likelihood that 
the result is correct. Siegler and Jenkins (1989) studied 
children using these strategies and concluded that they 
compile detailed statistics on their success rate with each 
algorithm. Gradually, they revise their collection of strat-
egies and retain those that are most appropriate for each 

numerical problem.
Here is a simple example: Ask a young boy to solve 9−3. You may hear 

him say, “Nine . . . eight is one . . . seven is two . . . six is three . . . six!” In 
this instance, he counts backward starting from the larger number. Now 
ask him to calculate 9−6. Chances are that rather than counting backward 
as he did in the first problem, he will find a more efficient solution. He 
might count the number of steps it takes to go from the smaller number to 
the larger: “Six . . . seven is one . . . eight is two . . . nine is three . . . three!” 
But how did the child know this? With practice, the child recognizes that 
if the number to be subtracted is not very close in value to the starting 
number, then it is more efficient to count backward from the larger num-
ber. Conversely, if the number to be subtracted is close in value to the 
starting number, then it is faster to count up from the smaller number. 
By spontaneously discovering and applying this strategy, the child real-
izes that it takes him the same number of steps (three) to calculate 9−3  
and 9−6.

Exposure at home to activities involving arithmetic no doubt plays an 
important role in this process by offering children new algorithms and 
providing them with a variety of rules for choosing the best strategy. In 
any case, the dynamic process of creating, refining, and selecting algo-
rithms for basic arithmetic is established in most children before they reach 
kindergarten.

Exactly how number structures develop in young children is not com-
pletely understood. However, in recent years, research in cognitive neu-

roscience has yielded sufficient clues about brain 
development, to the point that researchers have devised 
a timeline of how number structures evolve in the brain 
in the early years. Sharon Griffin (2002) and her col-
leagues reviewed the research and developed tests that 
assessed large groups of children between the ages of 3 
and 11 in their knowledge of numbers, units of time, 
and money denominations. As a result of the students’ 

performance on these tests, they made some generalizations about the 
development of conceptual structures related to numbers in children 
within this age range (see also Purpura & Lonigan, 2013). Their work is 
centered on several core assumptions about how the development of con-
ceptual structures progresses. Three assumptions of particular relevance 
are as follows:

1. Major reorganization in children’s thinking occurs around the age 
of 5, when cognitive structures that were created in earlier years are 
integrated into a hierarchy.

Our ability to approximate 
numerical quantities may be 
embedded in our genes, but 
dealing with exact symbolic 
calculation can be an error-prone 
ordeal.

The dynamic process of creating, 
refining, and selecting algorithms 
for basic arithmetic is established 
in most children before they reach 
kindergarten.
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2. Important changes in cognitive structures occur about every 2 years 
during the development period. The ages of 4, 6, 8, and 10 are used 
in this model because they represent the midpoint of the develop-
ment phases (ages 3–5, 5–7, 7–9, and 9–11).

3. This developmental progression is typical for about 60 percent of 
children in a modern, developed culture. Thus, about 20 percent of 
children will develop at a faster rate, while about 20 percent will 
progress at a slower rate.

Structures in 4-Year-Olds
The innate capabilities of young children to subitize and do some sim-

ple finger counting enables them by the age of 4 to create two conceptual 
structures, one for global quantity differences and one for the initial counting 
of objects (Figure 2.1). Looking for global 
quantity, they can tell which of two 
stacks of chips is more or less, which of 
two time units is shorter or longer, and 
which of two monetary units is worth 
more or less. On a balance scale, they can 
tell which side is heavier and/or lighter 
and which side of the beam will go 
down. Children at this age are still rely-
ing more on subitizing than counting, 
but they do know that a set of objects 
will get bigger if one or more objects are 
added or smaller if one or more objects 
are removed.

Counting skills are also develop-
ing. They know that each number word 
occurs in a fixed sequence and can be 
assigned to only one object in a collec-
tion. They also know that the last num-
ber word said indicates the size of the collection. Most can count to 5, and 
some can count to 10. Yet, despite these counting capabilities, these chil-
dren still rely more on subitizing to make quantity determinations. This 
may be because the global quantity structure is stored in a different part of 
the brain from the counting structure and because these two regions have 
not yet made strong neural connections with each other.

Structures in 6-Year-Olds
Children around 6 years of age have integrated their global quantity 

and initial counting models into a larger structure representing the mental 
number line we discussed in Chapter 1. Because this advancement gives 
children a major tool for making sense of quantities in the real world, it is 
referred to as the central conceptual structure for whole numbers. using this 
higher-order structure, children recognize that numbers higher up in the 
counting sequence indicate quantities that are larger than numbers lower 
down (Figure 2.2). Moreover, they realize that numbers themselves have 

Figure 2.1  At the age of 4, children have developed 
two major structures: one for global quantity that  
relies on subitizing and one for counting a small 
number of objects, mainly through one-to-one 
correspondence with fingers. (Adapted with 
permission from Griffin, 2002)

Conceptual Structures in Four-Year-Olds

Less than

Global Quantity
Schema

Initial Counting
Schema

More than

1 2 3 4 5
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magnitude—that is, that 7 is bigger than 
5. The number line also allows them 
to do simple addition and subtraction 
without an actual set of objects just by 
counting forward or backward along the 
line. This developmental stage is a major 
turning point because children come to 
understand that mathematics is not just 
something that occurs out in the envi-
ronment but can also occur inside their 
own heads.

Now children begin using their 
counting skills in a broad range of new contexts. They realize that counting 
numbers can help them read the hour hand on a clock, determine which 
identical-sized money bill is worth the most, and know that a dime is worth 
more than a nickel even though it is smaller in size. unlike 4-year-olds, 
they rely more now on counting than on global quantity in determining 
the number of objects, such as chips in a stack and weights on a balance.

Structures in 8-Year-Olds
Children at the age of 8 have differentiated their complex conceptual 

structure into a double mental counting line schema that allows them 
to represent two quantitative variables in a loosely coordinated fashion 
(Figure 2.3). Now they understand place value and can mentally solve 
double-digit addition problems and know which of two double-digit 

numbers is smaller or larger. The dou-
ble number line structure also permits 
them to read the hours and minutes on 
a clock, to solve money problems that 
involve two monetary dimensions such 
as dollars and cents, and to solve bal-
ance-beam problems in which distance 
from the fulcrum as well as number of 
weights must be computed.

Structures in 10-Year-Olds
By the age of 10, children have 

expanded the double number line 
structure to handle two quantities in a 
well-coordinated fashion or to include a 

third quantitative variable (Figure 2.4). They now acquire a deeper under-
standing of the whole number system. Thus, they can perform mental com-
putations with double-digit numbers that involve borrowing and carrying, 
and can solve problems involving triple-digit numbers. In effect, they can 
make compensations along one quantitative variable to allow for changes 
along the other variable. This new structure also allows them to translate 
from hours to minutes and determine which of two times—say, 3 hours or 
150 minutes—is longer. They find it easy to translate from one monetary 

Figure 2.2  At the age of 6 years, children have 
developed a mental number line that gives them a 
central conceptual structure for whole numbers. 
(Adapted with permission from Griffin, 2002)

Conceptual Structures in Six-Year-Olds

Basic Number Line

1 2 3 4 5

a little a lot

6 7 8 9 10

Figure 2.3  By the age of 8, children can manipulate 
numbers along two number lines that are loosely 
coordinated. (Adapted with permission from Griffin, 
2002)
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dimension to another, such as from quarters to nickels and dimes, to deter-
mine who has more money, and also to solve balance-beam problems where 
the distance from the fulcrum and number of weights both vary.

DEALING WITH MULTIPLICATION  n

up to this point, we have been exploring 
how young children manipulate num-
bers using simple addition and subtrac-
tion. In school, they eventually encounter 
a process called multiplication, some-
times described by teachers as succes-
sive addition. However, the mental 
processes required to perform multipli-
cation are more involved and somewhat 
different from the innate processes used 
for addition and subtraction. Imaging 
studies show that the brain recruits more 
neural networks during multiplication 
than during subtraction (Ischebeck et al., 
2006; Rosenberg-Lee, Chang, Young, 
Wu, & Menon, 2011). This should come 
as no surprise because addition and subtraction were sufficient to allow 
our ancestors to survive. As a result, humans need to devise learning tools 
to help them conquer multiplication.

Why Are Multiplication Tables Difficult to Learn?
Do you remember your first encounters with the multiplication tables 

as a primary student? Did you have an easy or difficult time memorizing 
them? How well do you know them today? Despite years of practice, most 
people have great difficulty with the multiplication tables. Ordinary adults 
of average intelligence make mistakes about 10 percent of the time. Even 
some of the single-digit multiplications, such as 8 × 7 and 9 × 7, can take up 
to 2 seconds and have an error rate of 25 percent (Devlin, 2000). Why do we 
have such difficulty? Several factors contribute to our troubles with num-
bers. They include associative memory, pattern recognition, and language. 
Oddly enough, these are three of the most powerful and useful features of 
the human brain.

Multiplication and Memory
until the late 1970s, psychologists thought that simple addition and 

multiplication problems were solved by a counting process carried out pri-
marily by working memory. In 1978, Ashcraft (1995) and his colleagues 
began a series of experiments to test this notion with young adults. He 
found that most adults take about the same time to add or multiply two 
digits. However, it took increasingly longer to do these calculations as the 
digits got larger, even though the time remained the same for adding or 

Figure 2.4  By the age of 10, children can manipulate 
numbers along two mental number lines that are well 
coordinated and thus can perform mental 
computations with double-digit numbers. (Adapted 
with permission from Griffin, 2002)
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multiplying. It took less than a second to determine the results of 2 + 3 
or 2 × 3, but about 1.3 seconds to solve 8 + 7 or 8 × 7. If multiplication is 
being processed in working memory, shouldn’t it take longer to multiply 
two digits than to add them, since more counting is involved? After many 
experiments, Ashcraft proposed the only reasonable conclusion that was 
consistent with the experimental data: solutions to the calculation prob-
lems were being retrieved from a memorized table stored in long-term 
memory. No counting or processing was occurring in working memory.

This effect is not that surprising for three reasons. First, we already 
noted in Chapter 1 that the accuracy of our mental representation of 
numerosity drops quickly with increasing number size. Second, the order 
in which we acquired arithmetic skills plays a role, because we tend to 
remember best that which comes first in a learning episode. When we 
began learning our arithmetic facts, we started with simple problems con-
taining small digits, and the difficult problems with large digits came later. 
Third, because smaller digits appear more frequently in problems than 
larger ones, we most likely received much less practice with multiplication 
problems involving larger numbers.

Now, you may be saying: “So what’s the big deal? We are using what 
we memorized in the early grades to solve arithmetic problems today. Isn’t 
that normal?” It may be normal, but it is not natural. Preschool children 
use their innate but limited notions of numerosity to develop intuitive 
counting strategies that will help them understand and measure larger 
quantities. But they never get to continue following this intuitive process. 
When these children enter the primary grades, they encounter a sudden 
shift from their intuitive understanding of numerical quantities and count-

ing strategies to the rote learning of arithmetic. Suddenly, 
progressing with calculations now means acquiring and 
storing in memory a large database of numerical knowl-
edge, which may or may not have meaning. They also 
discover that some of the words they use in conversation 
take on different meanings when doing arithmetic (e.g., 
“goes into,” “difference,” and “product”). Many chil-
dren persevere with this major upheaval in their mental 
arithmetic and language systems despite the difficulties. 
unfortunately, most children also lose their intuition 
about arithmetic in the process.

Is the Way We Teach the Multiplication Tables Intuitive?
Not really. Through hours of practice, young children expend enor-

mous amounts of neural energy laboring over memorizing the multipli-
cation tables, encountering high rates of error and frustration. Yet this is 
happening at the same time when they can effortlessly acquire the pro-
nunciation, meaning, and spelling of 10 new vocabulary words every day. 
They certainly do not have to recite vocabulary words and their meanings 
over and over the way they do their multiplication tables. Furthermore, 
they remember the names of their friends, addresses, phone numbers, and 
book titles with hardly any trouble. Obviously, nothing is wrong with their 
memories, except when it comes to the multiplication tables. Why are they 
so difficult for children and adults to remember?

Children in the primary grades 
encounter a sudden shift from their 
intuitive understanding of 
numerical quantities and counting 
strategies to the rote learning of 
arithmetic facts. Unfortunately, 
most children lose their intuition 
about arithmetic in the process.
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One answer is that the way we most often teach the multiplication tables 
is counterintuitive. usually, we start with the 1 times table and work our 
way up to the 10 times table. Teaching step-by-step in this fashion results 
in 100 (10 × 10) separate facts to be memorized. But is this really the best 
way to teach them? Children have little difficulty remembering the 1 and 
10 times tables because they are consistent with their intuitive numbering 
scheme and base-10 finger manipulation strategy. Now that leaves 64 sep-
arate facts (each of 2, 3, 4, 5, 6, 7, 8, 9, multiplied by each of 2, 3, 4, 5, 6, 7, 8, 
9). But why memorize all 64 separate facts? We noted at the beginning of 
this chapter that children already recognize the commutativity of addition 
by age 5. By simply showing them commutativity in multiplication (3 × 8 
is the same as 8 × 3), we can cut the total number of 64 separate facts nearly 
in half, to just 36 (the number of four pairs of identical numbers—e.g., 2 × 2  
or 5 × 5—cannot be reduced). This is a more manageable number, but it still 
does not solve the problem.

Some critics say that students are just not putting in the effort to mem-
orize their multiplication facts. Others wonder whether this endeavor is 
even necessary, given the prevalence of electronic calculators. But these 
ideas raise a question: Why do our ordinarily good memories have such 
difficulty with this task? There is something to be learned here about the 
nature of memory and the structure of the multiplication tables.

Patterns and Associations

The human brain is a powerful five-star pattern recognizer. Human 
memory recall often works by association; that is, one thought triggers 
another in long-term memory. Someone mentions mother, and the associa-
tive areas in your brain’s temporal lobes generate an image in your mind’s 
eye. Long-term storage sites are activated, and you recall the first time she 
took you to the zoo. The limbic region in the brain sprinkles your memory 
with emotions. You were so excited then because you didn’t realize that 
elephants were so wide or giraffes so tall. More connections are made, and 
you fondly remember the same excitement in your own children on their 
first zoo visit. The brain’s ability to detect patterns and 
make associations is one of its greatest strengths and is 
often referred to as associative memory. In fact, humans 
can recognize individuals without even looking at their 
faces. Through associative memory, they can quickly and 
accurately identify people they know from a distance by 
their walk, posture, voice, and body outline.

Associative memory is a powerful device that allows us to make con-
nections between fragmented data. It permits us to take advantage of 
analogies and apply knowledge learned in one situation to a new set of 
circumstances. unfortunately, associative memory runs into problems in 
areas such as the multiplication tables, where various pieces of information 
must be kept from interfering with one another.

Devlin (2000) points out that when it comes to the multiplication tables, 
associative memory can cause problems. That’s because we remember the 
tables through language, causing different entries to interfere with one 
another. A computer has no problem detecting that 6 × 9 = 54, 7 × 8 = 56, and 
8 × 8 = 64 are separate and distinct entities. On the other hand, the brain’s 

Answer to Question 2. False: The 
brain’s ability to detect patterns 
and make associations is often 
referred to as associative memory.
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strong pattern-seeking ability detects the rhythmic sim-
ilarities of these entities when said aloud, thus making 
it difficult to keep these three expressions separate. As a 
result, the pattern 6 × 9 may activate a series of other pat-
terns, including 45, 54, 56, and 58, and load them all into 
working memory, making it difficult to select the correct 
answer.

Likewise, Dehaene (1997) stresses the problems that 
come with memorizing addition and multiplication 
tables. He notes that arithmetic facts are not arbitrary and 

independent of one another. Rather, they are closely intertwined linguisti-
cally, resulting in misleading rhymes and confusing puns. The following 
example is similar to one Dehaene uses to illustrate how language can 
confuse rather than clarify.

Suppose you had to remember the following three names and addresses:

•• Carl Dennis lives on Allen Brian Avenue.
•• Carl Gary lives on Brian Allen Avenue.
•• Gary Edward lives on Carl Edward Avenue.

Learning these twisted combinations would certainly be a challenge. 
But these expressions are just the multiplication tables in disguise. Let the 
names Allen, Brian, Carl, Dennis, Edward, Frank, and Gary represent the 
digits 1, 2, 3, 4, 5, 6, and 7, respectively, and replace the phrase “lives on” 
with the equal sign. That yields three multiplications:

•• 3 × 4 = 12
•• 3 × 7 = 21
•• 7 × 5 = 35

From this perspective, we can now understand why the multiplication 
tables present such difficulty when children first encounter them. Patterns 
interfere with one another and cause problems. Pattern interference also 
makes it difficult for our memory to keep addition and multiplication 
facts separate. For example, it takes us longer to realize that 2 × 3 = 5 is 
wrong than to realize that 2 × 3 = 7 is false because the first result would 
be correct under addition. Back in 1990, studies were already revealing 
that learning multiplication facts interfered with addition (Miller & 
Paredes, 1990). He discovered that students in third grade took more time 
to perform addition when they started learning the multiplication tables, 
and errors such as 2 + 3 = 6 began to appear. Subsequent studies confirm 
that the consolidation of addition and multiplication facts correctly into 
long-term memory continues to be a major challenge for most children.

Over millions of years, our brain has evolved to equip us with necessary 
survival skills. These skills include recognizing patterns, creating meaning-
ful connections, and making rapid judgments and inferences, even with 
only a smattering of information. Rudimentary counting is easy because 
of our abilities to use language and denote a one-to-one correspondence 
with finger manipulation. But our brains are not equipped to manipulate 
the arithmetic facts needed to do precise calculations such as multiplica-
tion because these operations were not essential to our species’ survival. 

Associative memory is a powerful 
and useful capability. 
Unfortunately, associative memory 
runs into problems in areas such as 
the multiplication tables, where 
various pieces of information must 
be kept from interfering with one 
another.
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Studies of the brain using electroencephalographs (EEGs) 
and other techniques show that simple numerical opera-
tions, such as number comparison, are localized in vari-
ous regions of the brain. But multiplication tasks require 
the coordination of several widespread neural areas, 
indicating that a greater number of cognitive operations 
are in play (Micheloyannis, Sakkalis, Vourkas, Stam, & 
Simos, 2005; Salillas, Semenza, Basso, Vecchi, & Siegal, 
2012). Consequently, to do multiplication and precise calculations, we have 
to recruit mental circuits that developed for quite different reasons.

The Impact of Language on Learning Multiplication
If memorizing arithmetic tables is so difficult, how does our brain even-

tually manage to do it? One of our strongest innate talents is the ability 
to acquire spoken language. We have specific brain regions in the frontal 
and temporal lobes that specialize in handling language. Faced with the 
challenge of memorizing arithmetic facts, our brain responds by recording 
them in verbal memory, a sizable and durable part of our language pro-
cessing system. Most of us can still recall items in our verbal memory, such 
as poems and songs, that we learned many years ago.

Teachers have long recognized the power of language and verbal 
memory. They encourage students to memorize items such as rhymes and 
the multiplication tables by reciting them aloud. As a result, calculation 
becomes linked to the language in which it is learned. This is such a power-
ful connection that people who learn a second language generally continue 
to do arithmetic in their first language. No matter how fluent they are in 
the second language, switching back to their first language is much easier 
than relearning arithmetic from scratch in their second language.

Brain imaging studies carried out by Dehaene and his colleagues pro-
vided further proof that we use our language capabilities to do arithmetic 
(Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). Their hypothesis was 
that exact arithmetic calculations involved the language regions of the brain 
because they required the verbal representations of numbers. Estimations 
requiring approximate answers, however, would not make use of the lan-
guage facility.

The subjects of the experiments were adult English–Russian bilinguals 
who were taught two-digit addition facts in one of the two languages and 
then tested. When both the teaching and the test question were in the same 
language, the subjects provided an exact answer in 2.5 to 4.5 seconds. If 
the languages were different, however, the subjects took a full second lon-
ger to provide the exact answer. Apparently, the subjects used that extra 
second to translate the question into the language in which the facts had 
been learned. When the question asked for an approximate answer, the 
language of the question did not affect the response time.

During the experiment, the researchers monitored the subjects’ brain 
activity (Figure 2.5). Questions requiring exact answers primarily activated 
the same part of the left frontal lobe where language processing occurs. 
When the subjects responded to questions requiring approximate answers, 
the greatest activity was in the two parietal lobes, the regions that contain 
number sense and support spatial reasoning. Amazingly, these findings 

Our brains are not equipped to 
manipulate the arithmetic facts 
required for precise calculations. To 
do arithmetic, we need to recruit 
mental circuits that developed for 
different reasons.
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reveal that we humans are able to extend 
our intuitive number sense to a capacity 
to perform exact arithmetic by recruiting 
the language areas of our brain.

If you need more personal evidence 
of this connection between language and 
exact arithmetic, try multiplying a pair 
of two-digit numbers while reciting the 
alphabet aloud. You will find that this 
is quite difficult to do because speaking 
demands attention from the same lan-
guage areas required for mental compu-
tation and reasoning.

Yet despite this seeming cooperation 
between the language and mathemati-
cal reasoning areas of the brain, it is still 
important to remember that these two 
cerebral areas are anatomically separate 
and distinct. Further proof of this sepa-
ration comes from case studies showing 
that one area can function normally even 
when the other is damaged (Brannon, 
2005). Teachers, then, should not assume 
that students who have difficulty with 

language processing will necessarily encounter difficulties in arithmetic 
computation, and vice versa.

Do the Multiplication Tables Help or Hinder?
They can do both. Remember that children come to 

primary school with a fairly developed, if somewhat 
limited, sense of number. Thanks to their brain’s capac-
ity to seek out patterns, they can already subitize, and 
they also have learned a pocketful of simple counting 
strategies through trial and error. Too often, as noted 
above, arithmetic instruction in the primary grades pur-
posefully avoids recognizing these intuitive abilities and 
resorts immediately to practicing arithmetic facts.

If the children’s introduction to arithmetic rests pri-
marily on the rote memorization of the addition and mul-

tiplication tables and other arithmetic facts (e.g., step-by-step procedures 
for subtraction), then their intuitive understandings of number relation-
ships are undermined and overwhelmed. In effect, they learn to shift from 
intuitive processing to performing automatic numerical operations without 
caring much about their meaning.

On the other hand, if instruction in beginning arithmetic takes advan-
tage of the children’s number sense, subitizing, and counting strategies 
by making connections to new mathematical operations, then the tables 
become tools leading to a deeper understanding of mathematics, rather 
than an end unto themselves.

Figure 2.5  These composite fMRI (functional 
magnetic resonance imaging) scans show that exact 
calculations (left image) primarily activate language 
areas in the left frontal lobe, where verbal 
representations of numbers are processed. During 
approximate calculations (right image), the greatest 
activation was in the two parietal lobes that house 
number sense and support spatial reasoning (Dehaene 
et al., 1999).

Answer to Question 3. False: 
Because the language and number 
processing areas of the brain are 
separate, teachers should not 
assume that students with 
language problems will necessarily 
encounter difficulties with 
computation, and vice versa.
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Some students may have already practiced the multiplication tables at 
home. My suggestion would be to assess how well each student can already 
multiply single-digit numbers. Then introduce activities using dots or pic-
tures on cards that help students practice successive addition (the underly-
ing concept of multiplication). The idea here is to use the students’ innate 
sense of patterning to build a multiplication network without memorizing 
the tables themselves. Of course, this may not work for every student, and 
for some, memorizing the tables may be the only successful option.

WHAT’S COMING?  n

People are born with a number sense that helps them determine the 
numerosity of small collections of objects and do rudimentary counting, 
addition, and subtraction. How can we take advantage of these intuitive 
skills to help them learn more complex mathematical operations? What is 
current research in cognitive neuroscience telling us about how the brain 
focuses, learns, and remembers? How should we use this information 
when considering effective instruction in mathematics? What are some 
surprising findings about the impact of technology on attention and mem-
ory? These are some of the questions answered in the next chapter.
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Chapter 2—Learning  
to Calculate

n  QUESTIONS AND REFLECTIONS

Respond to the following questions, and jot down on this page key points, 
ideas, strategies, and resources you want to consider later. This sheet is 
your personal journal summary and will help jog your memory.

Why is learning to multiply so difficult, even for adults? 

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

How does language affect learning to multiply? ________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

How do you feel about using the multiplication tables when children are 
learning to multiply? Why?___________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________
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3
Reviewing the 
Elements of 

Learning

A mathematician, like a painter or a poet, is a maker of patterns. If his 
patterns are more permanent than theirs, it is because they are made 
with ideas.

—Godfrey Harold Hardy

In the chapters following this one, we will look at specific ways to 
approach the teaching of mathematics to young children, preadoles-

cents, and adolescents. Before doing that, however, we should review here 
some of the basic elements of learning. Effective teachers are continually 
assessing whether their choices in instructional strategies are consistent 
with what research is revealing about how the brain learns. This chapter 
will explore some recent research findings so that teachers can decide how 
this information compares with what they already know. Suggestions on 
applying this research when planning mathematics lessons are discussed 
in Chapter 8.

LEARNING AND REMEMBERING  n

I have asked teachers all over the world this question: “How long do you 
want your students to remember what you taught them?” Their answer is 
always: “Forever!” But is that what really happens? Hardly. Some critics of 
education have speculated that students in the United States forget more 
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than 80 percent of what they were taught in class within 2 years after they 
graduate from high school. We have no way of knowing if that figure is 
accurate, but most of us would agree that many of the facts presented to 
us in school were never permanently stored.

Because early research studies often used numbers to test the nature of 
memory, scientists have long known that both short-term and long-term 
memory can dramatically affect our mathematical capabilities. We will 
be discussing the effects of memory on calculations here and later in this 
book. If we want lessons to be remembered, this is a good time to briefly 
review how the brain’s memory components work.

Memory Systems
If you studied memory a few decades ago, you were probably taught that 

humans have two major memories: a temporary memory called short-term 
memory and a permanent one called long-term memory. Neuroscientists 
now believe that we have two temporary memories that perform differ-
ent tasks. It is a way of explaining how the brain deals briefly with some 
data but can continue to process other data for extended periods of time, 
even though that information does not get stored permanently. Short-
term memory is the name used by cognitive neuroscientists to include the 
two stages of temporary memory: immediate memory and working memory 
(Cowan, 2009; Squire & Kandel, 1999). Figure 3.1 illustrates the stages of 
our temporary and permanent memories.

Immediate Memory

Immediate memory is one of the two temporary memories and is rep-
resented in Figure 3.1 by a clipboard, a place where we put information 
briefly until we make a quick decision on how to dispose of it. Immediate 
memory operates subconsciously or consciously and holds data for up to 
about 30 seconds. (Note: The numbers used here are averages over time. 

Figure 3.1  The diagram illustrates the theory of temporary and permanent memories. Information 
gathered from our senses lasts only a few seconds in immediate memory. Information in working 
memory usually endures for minutes or hours, but can be retained for days if necessary. The long-
term storage sites (also called permanent memory) store information for years.

Incoming
Information

(From Our Senses)

Immediate Memory
(Seconds)

OUT OUT
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(Minutes to Days)

Long-Term
Storage Sites
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There are always exceptions to these values as a result of human varia-
tions or pathologies.) The individual’s experiences determine the degree 
of the information’s importance. If the information is of little or no impor-
tance within this time frame, it drops out of the temporary memory sys-
tem. For example, when you look up the telephone number of the local 
pizza parlor, you usually can remember it just long enough to make the 
call. after that, the number is of no further importance and drops out of 
immediate memory. The next time you call, you will have to look up the 
number again.

Working Memory

Suppose, on the other hand, you can’t decide whether to call the 
pizza parlor or the Chinese take-out place, and you discuss these options 
with someone else in the room. Because this situation requires more of 
your attention, information is shifted into working memory for full con-
scious processing. In Figure 3.1, working memory is shown as a workta-
ble, a place of limited capacity where we can build, take apart, or rework 
ideas for eventual disposal or storage somewhere else. When something 
is in working memory, it generally captures our focus and demands our 
attention.

Capacity of Working Memory. Working memory can handle only a 
few items at one time (see Table 3.1). This functional capacity changes 
with age. Recent studies suggest that the capacity of working memory in 
younger individuals is decreasing for reasons we do not yet understand 
(Cowan, 2009, 2010). one possible explanation is that the widespread use 
of handheld devices with access to the Internet is inducing the brain to 
remember where to find information, rather than the information itself. 
Remembering location requires less neural capacity than remembering 
numerous bits of data. Because of the brain’s ability to adapt to its envi-
ronment (called neural plasticity), the theory goes, working memory is less 
in need of the larger capacity.

The revised capacities suggest that preschool toddlers can deal with 
one to two items of information at once. Preadolescents can handle three to 
four items. Through adolescence, further cognitive maturation occurs, and 
the capacity increases slightly to a range of three to five. For most people, 
that number will probably remain relatively stable throughout life. (You 
may recall from Chapter 1, however, that working memory’s capacity for 
digits can vary from one culture to another, depending on that culture’s 
linguistic and grammatical system for building number words.)

Age (in years)
Average Capacity and 

Range (in chunks)
Average Time Limit  

(in minutes)

Younger Than 5 1 to 2 No reliable data

Between 5 and 14 3 to 4 5 to 10

14 and older 3 to 5 10 to 20

Table 3.1  Changes in Capacity and Time limits of Working memory With age
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This limited capacity explains why we have to memorize a song or a 
poem in stages. We start with the first group of lines by repeating them 
frequently (a process called rehearsal). Then we memorize the next lines 
and repeat them with the first group, and so on. It is possible to increase 
the number of items within the functional capacity of working memory 
through this process, called chunking. In arithmetic, chunking occurs 
when the young child’s mind quickly recognizes that both 3 + 1 + 1 and 3 
+ 2 equal 5.

The implication of these findings is that teachers should consider these 
limits when deciding on the amount of information they plan to present in 
a lesson. In other words, less is more.

Time Limits of Working Memory. Working memory is temporary 
memory and can deal with items for only a limited time (see Table 3.1). For 

preadolescents, that time is likely to be 5 to 10 minutes, 
and for adolescents and adults, 10 to 20 minutes. These 
are average times, and it is important to understand what 
the numbers mean. an adolescent (or adult) normally can 
process an item in working memory intently for 10 to 20 
minutes before fatigue or boredom with that item occurs 
and the individual’s focus drifts. For focus to continue, 

there must be some change in the way the individual is dealing with the 
item. as an example, the person may switch from listening to an explana-
tion of a concept to physically applying it or talking to someone else about 
it or making connections to other learnings. If something else is not done 
with the item, it is likely to fade from working memory.

of course, some items can remain in working memory for hours or 
even days. Sometimes, we have an item that remains unresolved—a ques-
tion whose answer we seek or a troublesome family or work decision that 
must be made. These items can remain in working memory, continually 

commanding some attention and, if of sufficient impor-
tance, interfering with our accurate processing of other 
information. Eventually, we solve the problem, and it 
clears out of working memory.

The implication here is that teachers should consider 
these working memory time limits when deciding on the 
flow of their lessons. In other words, shorter is better.

Impact of Technology on Attention and Memory
Research studies are now revealing that the widespread use of tech-

nology is having both positive and negative effects on our students’ atten-
tion and memory systems. Because young brains are still developing, their 
frequent exposure to technology is actually wiring their brains differently 
from the brains of children in previous generations. as these so-called 
“digital natives” interact with their environment, they are learning how 
to scan for information efficiently and quickly. Technology allows them to 
be more creative and to access multiple sources of information, practically 
simultaneously. But all this comes at a cost.

learning requires attention. Without it, all other aspects of learning, 
such as reasoning, memory, problem solving, and creativity, are at risk. 

Answer to Question 4. False: 
Working memory is short-term 
memory and can deal with only a 
few items for a limited time.

Working memory has capacity 
limits and time limits that teachers 
should keep in mind when 
planning lessons. Less is more! 
Shorter is better!
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How children develop attention is largely determined by their environ-
ment. modern technology has thrust children into a world where the 
demands for their attention have increased dramatically. Distraction 
has replaced consistent attention, and, as we noted earlier, the capacity 
of working memory appears to be shrinking. Their brains are becoming 
accustomed to, and are rewarded for, constantly switching tasks, at the 
expense of sustainable attention. This constant switching from one task 
to another has a penalty. When students switch their attention, the brain 
has to reorient itself to the new task, further taxing neural resources. and 
because of working memory’s limited capacity, some of the information 
from the first task is lost as new information from the second task moves in. 
Furthermore, the switching causes cognitive overload, a condition where 
the flow of information exceeds the brain’s ability to process and store it. 
Consequently, the students cannot gain a deep understanding of the new 
learning or translate it into conceptual knowledge.

Is It Better to Take Notes on Paper or on a Laptop?

High school and college students are often of the belief that taking 
notes on a laptop enhances their academic performance. after all, lap-
tops allow students to access the Internet, collaborate with other students 
locally and internationally, engage in demonstrations and other activities, 
and, of course, take more notes. Because they have grown up with key-
boards and technology, many students today can type faster than they can 
write. Consequently, students who use laptops in the classroom are likely 
to record more notes on a laptop than they would if they wrote them out 
in longhand on paper. This would seem to indicate that taking notes on a 
laptop allows for greater learning and a better review of that learning at a 
later date—say, during a test. Right? Well, not so fast!

a recent research study that included three different experiments 
found that college students who took notes on a laptop did not learn as 
much as those who wrote their notes on paper (mueller & oppenheimer, 
2014). Students who wrote out their notes had a greater conceptual 
understanding of the material and were more successful in integrating 
and applying it than were those who took laptop notes, even though the 
laptop group took more notes. What happened here? Researchers sug-
gest that because writing by hand is slower than typ-
ing, these students’ brains had to listen, process, and 
then jot down a summary of the new learning. These 
cerebral processes apparently enhanced understanding 
and retention. Those students who typed their notes 
essentially recorded a transcription of the teacher’s 
presentation, with little processing of the new material. 
Ironically, the more verbatim the student’s transcript 
was, the lower that student’s retention of the lesson 
content. Even when a group of laptop students were instructed to think 
about the lesson’s information and type the notes in their own words, 
they exhibited the same degree of verbatim transcription, and they did 
no better in summarizing than the laptop students who did not get this 
instruction. This research reminds us that technology may be faster, but it 
does not necessarily help students learn the course content better.

Answer to Question 5. False: 
Students who take notes in 
longhand remember more and 
have a deeper understanding of 
new material compared with those 
who take notes on a laptop.
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Reading on Paper Versus Reading on a Screen

Tablets and e-readers are increasingly common in classrooms. Some 
schools have started phasing out paper textbooks in favor of e-books. What 
does the brain think about this shift from paper to screens? apparently, 
not much. accumulating research evidence over the past 15 years indicates 
that we understand better and remember more when we read text on paper 
rather than on a screen (Jabr, 2013). Screens may be inhibiting comprehen-
sion because the digital devices prevent readers from easily and intuitively 
navigating long texts and making mental maps of the information and con-
cepts presented in the text. In one study, 72 tenth-grade students read one 
narrative and one expository text, with half the group reading on paper 
and the other half on screens (mangen, Walgermo, & Brønnick, 2013). 
afterward, the students took comprehension tests while having access to 
the texts. The students who read on screens performed worse than those 
who read on paper. This is likely due to having to scroll and click through 
various screens, increasing demands on the students’ cognitive systems 
and making it harder to remember what they read. Students reading on 
paper had the entire text in their hands and could easily move among the 
pages.

Furthermore, e-readers deprive the reader of the tactile experiences 
of handling paper, which may subconsciously hinder comprehension. 
The very physicality of paper and the topography of a book, according 
to researchers, affect reading comprehension in several ways. The reader 
can easily flip through pages to compare sections of text or scan ahead. 
Experiments show that when recalling a passage, individuals often picture 
it on a page, and the four corners of the page act as a physical outline that 
strengthens these recalls. Reading on paper is less tiring than reading on a 
screen. Paper reflects ambient light, but screens shine light directly into the 
reader’s face, causing eye strain, blurred vision, and headaches, thereby 
lowering comprehension. In short, the mental workload required for the 
act of reading on paper is significantly lower than for reading on a screen, 
leaving more mental capacity available for processing and remembering 
what is read (Wästlund, Norlander, & archer, 2008).

There are, of course, some positive aspects of technology. video games 
and other onscreen media can improve attention, fine motor skills, visual–
spatial perceptions, the ability to identify specific objects from clutter, and 
reaction times. also, one positive outcome of a decrease in working mem-
ory capacity and ultimate storage is that brain regions may be reassigned 
to engage in more problem solving, critical analysis, reflection, and cre-
ativity (Greenfield, 2009). Technology is here to stay, and teachers should 
not shy away from using it judiciously and with understanding of its 
effects. avoid information overload and stick to one mathematics learning 
objective at a time so students have a chance to do some deep processing. 
Use the technology sparingly as a tool to help students achieve learning 
objectives in mathematics, rather than as an end unto itself.

Rehearsal Enhances Memory
Teachers should ensure that they have included instructional strategies 

purposefully designed to increase the probability that students will retain the 
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new learning. any new learning is more likely to be retained if the learner 
has adequate time to process and reprocess it. This continuing reprocessing 
of information is called rehearsal, and it is a critical component in the trans-
ference of information from working memory to long-term storage.

Types of Rehearsal

Time for Initial and Secondary Rehearsal. Time is a critical compo-
nent of rehearsal. Initial rehearsal occurs when the information first enters 
working memory. If the learner cannot attach sense or meaning and if there 
is no time for further processing, then the new information is likely to be 
lost. Providing sufficient time to go beyond the initial processing to sec-
ondary rehearsal allows the learner to review the information, make sense 
of it, elaborate on the details, and assign value and relevance, thus signifi-
cantly increasing the chances of retention.

Brain-imaging studies indicate that the frontal lobe is very much 
involved during the rehearsal process and, ultimately, in long-term mem-
ory formation (Blumenfeld & Ranganath, 2006). This makes sense because 
working memory is also located in the frontal lobe (Goldberg, 2001). 
Several studies using fmRI (functional magnetic resonance imaging) scans 
of human brains and other techniques showed that during longer rehears-
als the amount of activity in the frontal lobe determined whether items 
were stored or forgotten (Buckner, Kelley, & Petersen, 1999; ofen, 2012; 
Sharma, Nargang, & Dickson, 2012; Wagner et al., 1998).

Rote and Elaborative Rehearsal. Rote rehearsal is used when the learner 
needs to remember and store information exactly as it is entered into work-
ing memory. This is not a complex strategy, but it is necessary to learn 
information or a cognitive skill in a specific form or an exact sequence. We 
use rote rehearsal to remember a poem, the lyrics and melody of a song, 
telephone numbers, steps in a procedure, and, of course, the multiplication 
tables. Elaborative rehearsal is used when it is not necessary to store infor-
mation exactly as learned but when it is more important to associate the 
new learnings with prior learnings to detect relationships. This is a more 
complex thinking process in that the learner reprocesses the information 
several times to make connections to previous learnings and assign mean-
ing. Students use rote rehearsal to memorize mathematical facts and use 
elaborative rehearsal to probe the deeper meanings and interrelationships 
of mathematical concepts.

When students get very little time for, or training in, elaborative 
rehearsal, they resort more frequently to rote rehearsal for nearly all pro-
cessing. Consequently, they fail to make the associations or discover the 
relationships that only elaborative rehearsal can provide.

For example, suppose a teacher presents a lesson on dividing by a 
fraction this way:

15 ÷ 1/4 = 15 × 4/1 = 60

Instead of exploring and understanding the mathematical rationale 
used when dividing by a fraction, they simply remember the rote rule: 
“ours is not to reason why, just invert and multiply!” Furthermore, they 
continue to believe that learning mathematics is merely the recalling of 
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information as learned rather than its value for generating new ideas, con-
cepts, and solutions. By simply adding a visual representation of a situa-
tion that is relevant to students, greater meaning can be obtained. For 
instance, in this lesson the teacher could say, “We have 15 pizzas, and we 
cut (divide) each of them into fourths. How many pieces will we have?” 
The visual of each pizza cut into four pieces helps students recognize the 
meaning of dividing by a fraction.

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

By cutting each of the 15 pizzas into fourths, we have 60 pieces.

Rote rehearsal is valuable for certain limited learning objectives. 
Nearly all of us learned the alphabet and the addition and multiplication 
tables through rote rehearsal. But rote rehearsal simply allows us to 
acquire information in a certain sequence. Too often, students use rote 
rehearsal to memorize important mathematical terms and facts in a les-
son but are unable to use the information to solve problems. They will 
probably do fine on a true–false or multiple-choice test, mainly because 
the odds for guessing are not too bad. But they will experience difficulty 
answering higher-order questions that require them to apply their 
knowledge to new situations, especially those that have more than one 
solution. Keep in mind, too, that rehearsal contributes to acquisition of 
information but does not guarantee that information will transfer into 
long-term storage. However, there is almost no transfer to long-term 
memory without rehearsal.

The Importance of Meaning
Both experimental and anecdotal evidence reveals that mathematical 

content often does not have meaning for students. and why is meaning so 
important? We noted earlier that rehearsal is one way to increase the possi-
bility that new learning will be encoded into long-term memory. other cri-
teria also play a crucial role. Figure 3.1 shows that information in working 

memory can be either encoded into long-term memory 
sites for future recall (from the worktable to the file cabi-
net) or dropped out of the memory system. Which option 
will the brain choose? This is an important decision 
because we cannot later recall what we have not stored.

What criteria does the working memory use to make 
that decision? Information that has survival value is quickly stored, along 
with strong emotional experiences. But in classrooms, where the survival 
and emotional elements are minimal or absent, other factors come into 
play. It seems that the working memory connects with the learner’s past 
experiences and asks just two questions to determine whether an item is 
saved or rejected:

•• “Does this make sense?” This question refers to whether the learner 
can understand the mathematical content on the basis of experience. 
Does it “fit” into what the learner already knows about numbers and 
arithmetic operations? When a student says, “I don’t understand,” it 

Information is most likely to get 
stored if it makes sense and has 
meaning.
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means the student is having a problem making sense of the learning, 
usually because it doesn’t connect to previous learning.

•• “Does it have meaning?” This question refers to whether the item is 
relevant to the learner. For what purpose should the learner remem-
ber it? meaning is a very personal thing and is greatly influenced by 
an individual’s experiences. The same item can have great meaning 
for one student and none for another. For instance, a student who 
has astronomy as a hobby would find activities in geometry more 
meaningful than would one whose hobby is collecting stamps. 
Questions such as “Why do I have to know this?” or “When will I 
ever use this?” indicate that the student has not, for whatever rea-
son, accepted this learning as relevant.

The goal of learning is not just to acquire knowledge but to be able to 
use that knowledge in a variety of different settings that students see as 
relevant. To do this, students need a deeper understanding of the concepts 
involved in the learning. That’s one reason mathematics teachers so often 
hear students asking, “Why do we need to know this?” If teachers cannot 
answer that question in a way that is meaningful to students, then we need 
to rethink why we are teaching that item at all.

Whenever the learner’s working memory decides 
that an item does not make sense or have meaning, the 
probability of its being stored is extremely low (assum-
ing, of course, no survival or emotional component is 
present). If either sense or meaning is present, the prob-
ability of storage increases significantly. If both sense 
and meaning are present, the likelihood of long-term 
storage is very high. Brain scans have shown that when 
new learning is readily comprehensible (sense) and can 
be connected to past experiences (meaning), there is substantially more 
cerebral activity followed by dramatically improved retention (maguire, 
Frith, & morris, 1999).

Why Meaning Is So Significant

of the two criteria, meaning has the greater impact on the probabil-
ity that information will be stored. Think of all the television programs 
you have watched that are not stored, even though you spent 1 or 2 hours 
viewing each one. The show’s content or story line made sense to you, but 
if meaning was absent, you just did not save it. Now think of this process 
when teaching mathematics. Students may diligently fol-
low the teacher’s instructions to memorize facts or per-
form a sequence of tasks repeatedly, and may even get 
the correct answers. But if they have not found meaning 
by the end of the learning episode, there is little likeli-
hood of long-term storage. mathematics teachers are 
often frustrated by this. They see students using a cer-
tain formula to solve problems correctly one day, but 
they cannot remember how to do it the next day, the next 
week, or the next month. If the process was not stored, 
the brain treats the information as brand-new again!

If teachers cannot answer the 
question, “Why do we need to 
know this?” in a way that is 
meaningful to students, then we 
need to rethink why we are 
teaching that item at all.

Mathematics teachers get 
frustrated when they see students 
using a certain formula to solve 
problems correctly one day but they 
cannot remember how to do it the 
next day. If the process was not 
stored, the brain treats the 
information as brand-new again!



54 How tHe Brain Learns MatHeMatics

Sometimes, when students ask why they need to know something, the 
teacher’s response is, “Because it’s going to be on the test.” This response 
may raise the student’s anxiety level but adds little meaning to the learn-
ing. Students resort to writing the learning in a notebook or typing it into 
a laptop so it is preserved in writing but not in memory. Then we wonder 
the next day why they forgot the lesson.

Teachers spend about 90 percent of their planning time devising les-
sons so students will make sense of the learning objective. But teachers 
need to spend more time helping students establish meaning, keeping in 
mind that what was meaningful for students 10 years ago may not neces-
sarily be meaningful for students today (Sousa, 2011a).

Meaning Versus Automatic Response

We have already noted that evolution did not prepare our brains for 
multiplication tables, complicated algorithms, fractions, or any other for-

mal mathematical operation. So to carry out formal arith-
metic, our brain has to make do with whatever networks 
it has, even if it means following a sequence of steps that 
its owner does not understand. The result is that as chil-
dren spend their time memorizing arithmetic tables and 
facts, they become little calculators who can compute 
without having any idea of the underlying arithmetic 
principles involved.

When students attempt to carry out simple arithme-
tic computations using memorized facts, they often jump to conclusions 
without considering the relevant conditions of the problem. They become 
so skilled at the mechanics of computation that they arrive at answers that 
do not make sense. Furthermore, the language associated with solving a 
particular problem may itself interfere with the brain’s understanding of 
what it is being asked to compute. For example, quickly answer the follow-
ing questions:

•• an aquarium contains 9 fish. all but 6 die. How many fish remain?
•• Billy has 6 action figures, which is 3 fewer than Joey. How many 

action figures does Joey have?

Did you answer 3 to either of the problems? In the first problem, the 
presence of the numbers 9 and 6 coupled with the words “all but” and the 
question, “How many remain?” creates a strong temptation to perform 
the subtraction 9 −•6 = 3, giving the answer as 3. The correct answer is 6, 
but to get that answer you have to think about what the problem is saying 
and avoid the blind manipulation of symbols. Similarly, in the second 
problem, seeing the numbers 6 and 3, along with the words “fewer than,” 
is sufficient to trigger the subtraction mode in your brain: 6 – 3 = 3. When 
you think about the problem, however, you realize that you should add  
3 to 6 to get the correct answer that Joey has 9 action figures.

In both situations, you have to fight the automatic response and actu-
ally analyze each problem. This is the job of the front area of the brain’s 
frontal lobe, just behind the forehead, called the prefrontal cortex (Figure 3.2). 
However, the prefrontal cortex develops very slowly and is not fully 
mature until the age of 22 to 24. Thus, children and adolescents are prone  

Our development as a species did 
not prepare the brain for 
multiplication tables, complicated 
algorithms, or any other formal 
mathematical operations.
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to impulsive decisions while solving  
problems. Their prefrontal cortex areas 
have not had much opportunity in 
school to construct and practice the 
nonroutine strategies needed to over-
ride the automated responses and avoid 
the arithmetic traps that word problems 
can harbor. For students to become pro-
ficient in mathematical computation, 
they must resist the automated and 
meaningless responses and proceed to 
thoughtfully analyze the situation and 
select the appropriate calculation algo-
rithm for the problem at hand.

Teachers, then, become the means by 
which learners can see the links between 
a mechanical calculation and its mean-
ing. While we recognize the need for 
learners to remember some basic arith-
metic facts, memorization should not be 
the main component of instruction, and it should not replace exploring the 
underlying principles of mathematical operations. Depending on memori-
zation erodes the learner’s intuitive understanding of approximation and 
counting, as discussed in Chapter 2. Students then see arithmetic solely as 
the memorization of mechanical recipes that have no practical applications 
and no obvious meaning. Such a view can be discouraging, lead to failure, 
and set the stage for a lifelong distaste for mathematics.

How Will the Learning Be Stored?
Information can be stored in different ways. long-term memory can be 

divided into two major types: declarative memory and nondeclarative memory 
(Figure 3.3).

Declarative Memory. Declarative memory (also called conscious or explicit 
memory) describes the remembering of names, facts, music, and objects. 
When you think of an important event you attended with someone close 
to you, such as a concert, wedding, or funeral, note how easily other com-
ponents of the memory come together. This is declarative memory in its 
most common form—a conscious and almost effortless recall. Declarative 
memory can be further divided into episodic memory and semantic memory.

Episodic memory refers to the conscious memory of events (episodes) in 
our own life history, such as our 16th birthday party, falling off a bicycle, or 
what we had for breakfast this morning. It helps us identify the time and 
place when an event happened and gives us a sense of self. Episodic mem-
ory is the memory of personal and autobiographical remembering.

Semantic memory is knowledge of facts and data that may not be related 
to any event. It is knowing that the Eiffel Tower is in Paris, how to tell time, 
and the quadratic formula. Semantic memory is the memory of factual 
knowing. a student recalling the Pythagorean theorem is using semantic 
memory; remembering his experiences in the classroom when he learned 
it is episodic memory.

Figure 3.2  The prefrontal cortex is the part of the 
frontal lobe that, among other things, analyzes problems 
and implements and controls nonroutine strategies.

Occipital lobe

Temporal lobe

Frontal lobe

Prefrontal
cortex

Parietal lobe



56 How tHe Brain Learns MatHeMatics

Declarative memory is greatly enhanced by elaborative rehearsal, 
because our memory of facts, people, and events is preserved best when 
we can make connections between and among them. This comes through 
elaborative discussions, new ways of looking at things, analysis of sit-
uations, and a deep understanding of why we made specific decisions 
and behaved in certain ways. The more connections we make through 
these creative and analytical processes, the stronger and longer lasting 
the memory is likely to be. Could this have application for how we teach 
mathematics?

Nondeclarative Memory. Nondeclarative memory (also called implicit 
memory) describes all memories that are not declarative memories; that 
is, they are memories that can be used for tasks that cannot be declared or 
explained in any straightforward manner. of particular interest to teach-
ers of mathematics is the type of nondeclarative memory called procedural 
memory.

Procedural memory refers to the learning of motor and cognitive skills, 
and remembering how to do something, such as riding a bicycle, driving 

a car, or tying a shoelace. as practice of the skills con-
tinues, these memories become more efficient and can 
be performed with little conscious thought or recall. The 
brain process shifts from reflective to reflexive. much of 
what we do during the course of a day—such as breakfast 
rituals, getting to work, and shaking the hand of a new 
acquaintance—involves the performance of skills. We do 

these tasks without being aware that we are using our memory. although 
learning a new skill involves conscious attention, skill performance later 
becomes unconscious and relies essentially on nondeclarative memory.

We also learn cognitive skills, such as reading, discriminating colors, 
and figuring out a procedure for solving a problem. Cognitive skills, such 
as performing rote mathematical operations, are different from processing 
cognitive concepts, in that cognitive skills are performed automatically and 

Figure 3.3  long-term memory consists of two major types. Declarative 
memory is our daily recollections of people we know, our vocabulary, and 
related information. Nondeclarative memory is largely composed of automated 
procedures, such as driving a car or multiplying a pair of three-digit numbers.

Long-Term Memory
(Years)

Declarative (explicit memory)
 Episodic (autobiographical)
 Semantic (words, facts, objects, faces)

Nondeclarative (implicit memory)
 Procedural (motor and cognitive skills)
 Conditioning
 Nonassociative learning

Procedural memory helps us learn 
things that don’t require conscious 
attention, such as how to perform 
rote mathematical operations.
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rely on procedural memory rather than declarative memory. Procedural 
and cognitive skill acquisition involves some different brain processes and 
memory sites than does cognitive concept learning. If they are learned dif-
ferently, should they be taught differently?

Procedural memory is enhanced by the repetition of rote rehearsal. In 
fact, that is the only way we can retain certain information, such as vocab-
ulary words or how to add a column of numbers. Because following a step-
by-step procedure usually gives us the desired outcome, we can carry out 
the steps without much conscious input and without having a clue as to 
why we are doing these steps or how they work.

Brain-imaging studies indicate that procedural and 
declarative memories are stored in different regions of 
the brain, and declarative memory can be lost while pro-
cedural memory is spared (Rose, 2005; White, 2009). Such 
division of memory locations makes sense. Declarative 
memory requires conscious input and processing, so 
frontal lobe areas are actively involved. Procedural mem-
ory, on the other hand, triggers a set of automatic steps 
that are usually without conscious processing or frontal 
lobe input. This explains why you can drive your car to work (procedural 
memory) while your frontal lobe is simultaneously planning your day 
(declarative memory).

When Should New Learning Be Presented in a Lesson?
When an individual is processing new information, the amount of 

information retained depends, among other things, on when it is presented 
during the learning episode. at certain time intervals during the learning, 
we will remember more than at other intervals.

Primacy–Recency Effect

In a learning episode, we tend to remember best that which comes first 
and remember second best that which comes last. We remember least that 
which comes just past the middle of the episode. This common phenome-
non is referred to as the primacy–recency effect (also known as the serial posi-
tion effect). This is not a new discovery. The first studies on this effect were 
published in the 1880s.

more recent studies help explain why this is so. The 
first items of new information are within the working 
memory’s capacity limits, so they command our atten-
tion and are likely to be retained in semantic memory. The 
later information, however, exceeds the capacity shown 
in Table 3.1 and is lost. as the learning episode concludes, 
items in working memory are sorted or chunked to allow 
for additional processing of the arriving final items, which are likely held in 
working memory and will decay unless further rehearsed (Gazzaniga, Ivry, 
& mangun, 2002; Stephane et al., 2010; Terry, 2005).

Figure 3.4 shows how the primacy–recency effect influences retention 
during a 40-minute learning episode. The times are averages and approxi-
mate. Note that it is a bimodal curve, each mode representing the degree of 

The more arithmetic we can teach 
through declarative processes 
involving understanding and 
meaning, the more likely children 
will succeed and actually enjoy 
mathematics.

During a learning episode, we 
remember best that which comes 
first, second best that which comes 
last, and least that which comes 
just past the middle.
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greatest retention during that time period. 
In my own work, I refer to the first or pri-
macy mode as prime-time-1 and the second 
or recency mode as prime-time-2. Between 
these two modes is the time period in 
which retention during the lesson is least. 
I call that area the downtime. This is not a 
time when no retention takes place but a 
time when it is more difficult for retention 
to occur.

Does Practice Make Perfect?
Practice refers to learners’ repeating 

a motor or cognitive skill over time. It 
begins with the rehearsal of the new skill 
in working memory. later, the skill mem-
ory is recalled, and additional practice fol-
lows. Practice is a big part of instruction in 
mathematics. Therefore, it is important to 

remember that the quality of the practice and the learner’s knowledge base 
will largely determine the outcome of each practice session.

The old adage that “practice makes perfect” is rarely true. Practice 
makes permanent! It is very possible to practice the same skill repeatedly 
with no increase in achievement or accuracy of application. Think of the 
people you know who have been driving, cooking, or even teaching for 
many years with no improvement in their skills. Why is this? How is it pos-
sible for one to practice a skill continually with no resulting improvement 
in performance?

Conditions for Successful Practice

For practice to improve performance, four conditions must be met 
(Hunter, 2004):

1. The learner must be sufficiently motivated to want to improve per-
formance. If the learner has not attached meaning to the topic, then 
motivation is low.

2. The learner must have all the knowledge necessary to understand 
the different ways the new knowledge or skill can be applied.

3. The learner must understand how to apply the new knowledge to 
deal with a particular situation.

4. The learner must be able to analyze the results of that application 
and know what needs to be changed to improve performance in the 
future.

Guided Practice, Independent Practice, and Feedback

Practice may not make perfect, but it does make permanent, thereby 
aiding in the retention of learning. Consequently, we want to ensure that 
students practice the new learning correctly from the beginning. This early 

Figure 3.4  The degree of retention varies during a 
learning episode. We remember best that which 
comes first (prime-time-1) and last (prime-time-2). We 
remember least that which comes just past the 
middle.
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practice is done in the presence of the teacher (referred to as guided practice), 
who can offer immediate and corrective feedback to help students analyze 
and improve their practice. We often fail to recognize the power of feed-
back. a synthesis of more than 900 meta-analyses of 50,000 research studies 
on student achievement looked at the impact of certain influences on stu-
dent learning (Hattie, 2012). The effect is measured on a scale called “effect 
size.” It is a useful scale for comparing results on different measures, such 
as teacher-made tests, student work, and standardized tests. The aver-
age effect size for the 50,000 studies was 0.40; however, the effect size for 
feedback was an impressive 0.75. Feedback, incidentally, is not just about 
teachers informing students about their learning but also about teachers 
getting student feedback on their teaching. The message here is that stu-
dent achievement is likely to improve when student–teacher reciprocal 
feedback is frequent, providing information to both students and teachers 
about progress toward successfully accomplishing the learning objectives.

When the practice is correct, the teacher can then assign independent 
practice (usually homework) in which the students rehearse the skill on 
their own to enhance retention. This strategy leads to perfect practice, and, 
as coach vince lombardi once said, “Perfect practice makes perfect.”

Teachers should avoid giving students independent practice before 
guided practice. Because practice makes permanent, allowing students 
to rehearse a mathematical operation for the first time while away from 
the teacher is very risky. If they unknowingly practice the skill or proce-
dure incorrectly, then they will learn the incorrect method well! This will  
present serious problems for both the teacher and learner later on, because 
it is very difficult to change a skill that has been practiced and remembered, 
even if it is not correct. Furthermore, the student will likely get frustrated 
and annoyed at having spent personal time outside of 
school practicing a skill incorrectly and may lose the 
motivation to learn the process correctly. This frequent 
occurrence contributes to unfavorable attitudes toward 
mathematics.

Unlearning and Relearning a Skill or Process. If a 
learner practices a mathematical process incorrectly but 
well, unlearning and relearning that process correctly 
will be very difficult. The degree to which the unlearning and relearning 
processes are successful will depend on the

•• age of the learner (i.e., the younger, the easier to relearn),
•• length of time the skill has been practiced incorrectly (i.e., the longer, 

the more difficult to change), and
•• degree of motivation to relearn (i.e., the greater the desire for change, 

the more effort will be used to bring about the change).

In any event, both teacher and student have a difficult road ahead to 
unlearn the incorrect method and relearn it correctly.

Massed and Distributed Practice

Hunter (2004) suggests that teachers use two different types of prac-
tice over time. (Hunter uses practice to include rehearsal.) Practicing a new 
learning during time periods that are very close together is called massed 

Giving students independent 
practice before guided practice can 
help them learn an incorrect 
procedure well.
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practice (Figure 3.5). This produces fast 
learning, as when one mentally rehearses 
a multiplication table. Immediate mem-
ory is involved here, and the information 
can fade in seconds if it is not rehearsed 
quickly.

Teachers of mathematics provide 
massed practice when they allow students 
to try different examples of applying a 
new formula or concept in a short period 
of time—say, within one classroom period. 
Cramming for an exam is also an example 

of massed practice. material can be quickly chunked into working memory 
but can also be quickly dropped or forgotten if more sustained practice 
does not follow soon. This happens because the material has no further 
meaning, and thus the need for long-term retention disappears.

Sustained practice over time, called distributed prac-
tice, is the key to retention. If you want to remember a 
multiplication table later on, you will need to use it 
repeatedly over time. Thus, practice that is distributed 
over longer periods of time sustains meaning and consol-
idates the learnings into long-term storage in a form that 
will ensure accurate recall and applications in the future.

Effective practice, then, starts with massed practice 
for fast learning and proceeds to distributed practice later for retention. 
as a result, the student is continually practicing previously learned skills 
throughout the year(s). Each test should not only address new mate-
rial but also allow students to practice important older learnings. This 
method not only helps in retention but also reminds students that the 
learnings will be useful for the future and not just for the time when 
they were first learned and tested. That was the rationale behind the idea 
of the spiral curriculum, whereby critical mathematical facts and skills 
are reviewed at regular intervals within and over several grade levels. 
Whatever happened to it?

Assessment as a Form of Practice

No educator would deny that teachers should periodically assess their 
students’ progress toward achieving the intended learning objective. The 
question that arises is, “What is the best way to do this?” Too often, assess-
ments are in the form of written tests that are given at the end of a unit of 
study. These tests are usually graded and used to determine a student’s 
final grade for the subject. In addition to the tests created by teachers, 
many students have to take high-stakes tests, especially in mathematics 
and language arts. This test-heavy climate engenders in students a fear, 
distrust, and dislike of tests (Chu, Guo, & leighton, 2014). They place lit-
tle value on written tests, mainly because they look at them as “gotcha” 
experiences.

assessments become a much more valuable tool for learning when 
they are used frequently during a unit of study to determine each student’s 
progress. These are called formative assessments because they allow students 

Figure 3.5  Practice repeated over a short duration of 
time is called massed practice. Repeating the practice 
over increasingly longer periods of time is distributed 
practice, which is more likely to lead to retention.
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Cramming is an example of 
massed practice. Material is quickly 
chunked into working memory for 
a test and then forgotten unless 
distributed practice follows soon.
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and teachers to make adjustments to instructional and learning strategies, 
if needed. The traditional tests given at the end of the unit of study are 
called summative assessments.

Teachers of mathematics in middle schools and high schools have noted 
that they do few formative assessments because they take time away from 
all the curriculum material they need to cover. as a result, they have had 
little interest or practice in designing and implementing the various types 
of formative assessments in their classrooms (Sutton, 2010). However, 
when professional development programs provide adequate training for 
these teachers in this area, student achievement improves (Webb, 2010).

Formative assessments are more of a process than a test. They enhance 
student learning when they

•• allow students to practice what they have learned,
•• give teachers information about what each student has learned,
•• help teachers analyze how successful they were at teaching their 

lesson objectives,
•• allow teachers to make any needed adjustments to their teaching, and
•• enable students to assess themselves and understand how they can 

improve their learning.

Students are more receptive to formative assessments because they are 
participants in the process. They have opportunities to see their errors, 
discuss them, and correct them without penalty. Rather than a “gotcha” 
activity, they see formative assessments as a “let’s work on this together” 
activity, thereby improving their motivation and chances of success.

Formative assessments are rarely graded. They come in many forms, 
such as the following:

•• Teacher observations of student performance to determine what 
they know and do not know

•• Graphic organizers where a student can show relationships between 
concepts

•• Exit/admit slips asking students to write down several things they 
learned today or yesterday

•• Questioning to determine the students’ depth of understanding
•• Think/pair/share conversations allowing students to summarize 

what they have learned
•• Practice presentations several days before giving a 

final presentation to the class
•• Peer/self-assessments to help create a positive 

learning community in the class
•• Kinesthetic assessments where students can incor-

porate movement to demonstrate their under-
standing of a concept

With younger students, teachers should consider using written tests 
mainly for practice, and recording the score of only every third or fourth 
paper. oral tests are a good substitute because they are less stressful, and 
some younger students are better at telling what they know than at writing it.

Formative assessments should be 
used frequently because they allow 
students and teachers to make 
adjustments to instructional and 
learning strategies.
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Include Writing Activities
The Common Core State Standards in mathematics (National 

Governors association Center for Best Practices & Council of Chief State 
School officers, 2010) include numerous opportunities for writing at all 
grade levels. Writing is an important component of communication in the 
classroom, and research studies have highlighted the benefits to students 
of writing to learn mathematics (Pugalee, 2005; Stonewater, 2002). as the 
brain’s frontal cortex develops during the school years, writing enhances 
the learner’s ability to organize, understand, analyze, and reflect on the 
new learning. In addition to requiring focus, writing provides another 
modality for processing information and skills, thereby helping the stu-
dent find sense and meaning, and increasing the likelihood that the new 
learning will be remembered.

Benefits of Writing in Mathematics

Through writing activities, teachers help students

•• learn a mathematics concept more effectively and develop critical- 
thinking and problem-solving skills;

•• create a permanent record of their thoughts where they can return to 
reflect on them;

•• organize ideas, develop new applications for knowledge, and solve 
problems involving mathematical operations;

•• become active participants in their own learning by engaging in an 
interaction with the subject or content area;

•• maintain a silent dialogue with the content area, in which they inter-
nalize knowledge and articulate it in the learning process;

•• establish a personal connection to new mathematics concepts;
•• get involved in an active intellectual process in which they decide 

what is important and what is meaningful or relevant to them;
•• gain self-understanding and confidence in dealing with their 

concerns; and
•• personalize the subject matter, because it gives them choices for 

applying their knowledge in areas that interest them.

Besides helping students understand mathematical concepts, writing 
also enhances their confidence in their writing skills for other curriculum 
areas. In Chapter 8, you will find specific suggestions for how to incorpo-
rate writing into mathematics lessons.

Fixed and Growth Mind-Sets in Mathematics
Psychologists have known for years that our preconceptions about 

how the world works shape our beliefs and our actions. one psychologist, 
Carol Dweck (2006), has been looking specifically at preconceptions, called 
mind-sets, about what it means to be smart and successful. Her research 
has revealed that each of us develops at a young age either of two different 
mind-sets about our ability and what actions will lead to our success. She 
called these fixed and growth mind-sets. Below is a comparison of the two 
types of mind-sets as they apply to learning mathematics.
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Students with a fixed mind-set believe the following:

•• Success comes from being born smart; some people are smart at 
mathematics, and some are not.

•• Environment can contribute to our success, but the genetic predis-
position to be good or poor at mathematics cannot be overcome.

•• There is no sense working hard at mathematics, because it is some-
thing I know I cannot do.

Students with a growth mind-set believe the following:

•• Genetics are just a starting point.
•• Determination and persistence are what really predict my success in 

learning mathematics.
•• mistakes are opportunities to learn and develop.

Because fixed mind-sets are ability centered, they become self-fulfilling 
prophesies. Students who believe they have limited ability in mathematics 
(or any other endeavor) are reluctant to expend the effort to do better. as 
a result, their achievement suffers, and they use that as further evidence 
that they do not have the ability to improve. They often attribute their lack 
of success to something beyond their control, making statements such as, 
“No one in my family is any good at math.” Students with a growth mind-
set, on the other hand, are effort centered. They put forth the effort, see 
growth in their progress, and are thus motivated to accept new challenges 
(Haimovitz, Wormington, & Corpus, 2011).

Teachers, of course, also have mind-sets. Those with fixed mind-sets 
believe that some students will learn mathematics and some will not. 
Subconsciously, these teachers may separate students by their perceived 
ability and teach them mathematics accordingly. It makes sense to them to 
accelerate the smart kids and remediate the others. a fixed mind-set also 
helps these teachers justify why some students do well in mathematics and 
others do not.

Teachers with a growth mind-set believe that most students can learn 
mathematics—or any topic—if they exert the effort to do so. They see their 
job as eliciting that effort and doing what they can to help their students 
succeed. These teachers do not accept labeling students but, rather, adjust 
their instructional strategies to emphasize the process a student used to 
solve a problem and avoid mentioning talents or gifts. They praise stu-
dents’ effort and, when they do not do well, note that everyone learns in 
a different way and that both teacher and student will keep trying to find 
a way that works. Some evidence of the power of mind-set in mathemat-
ics can be seen in Figure 3.6, which shows the difference in mathematics 
grades between middle school students with fixed and growth mind-sets 
over a 2-year period (Blackwell, Trzesniewski, & Dweck, 2007).

Gender Differences in Mathematics
For decades, boys have consistently scored higher than girls on stan-

dardized mathematics tests, such as the SaT and National assessment of 
Educational Progress. High school and college mathematics classes usually 
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contain more males than females. Those 
seeking to explain this gender disparity 
have typically put the blame on outmoded 
social stereotypes. Recently, however, they 
have added discoveries in brain science as 
potential explanations. They cite, for exam-
ple, that male brains are about 6 to 8 per-
cent larger than female brains. But males 
are on average about 6 to 8 percent taller 
than females, which could also explain the 
similar difference in brain size. and brain 
imaging studies show that males seem to 
have an advantage in visual–spatial ability 
(the ability to rotate objects in their heads); 
(e.g., Ganley & vasilyeva, 2011; lowrie & 
Diezman, 2011; Syzmanowicz & Furnham, 
2011), while females are more adept at 
language processing (e.g., Kaushanskaya, 
Gross, & Buac, 2013). In female brains, the 
bundle of nerves that connects the two 
cerebral hemispheres, called the corpus cal-

losum, is proportionally larger and thicker than in male brains. This sug-
gests that communication between the two hemispheres is more efficient in 
females than in males. However, in male brains, communication appears to 
be more efficient within a hemisphere. But whether these differences trans-
late into a genetic advantage for males over females in mathematical pro-
cessing remains to be seen and proved.

Stereotype Threat

although the genders have differed on test results in mathematics, 
researchers believe social context plays an important role in partially 
explaining these variations. Differences in career choices, for instance, are 
due not to differing abilities in mathematics but to cultural factors, such 
as subtle but pervasive gender expectations that emerge in high school. 
Studies have shown that merely telling females that a mathematics test 
often shows gender differences is enough to hurt their performance (e.g., 
Jamieson & Harkins, 2012), but telling females that they have the power 
to do well in mathematical assessments significantly improves their per-
formance (van loo & Rydell, 2013). This phenomenon, called stereotype 
threat, occurs when people believe they will be evaluated based on soci-
etal stereotypes about their particular group. In a typical study of ste-
reotype threat, researchers give a mathematics test to males and females. 
They tell half the females that the test will show gender differences and 
tell the rest that it will show none. Females who expected gender differ-
ences do significantly worse on the test than males. Those females who 
were told there is no gender disparity perform equally to males on the 
test (e.g., Franceschini, Galli, Chiesi, & Primi, 2014; Spencer, Steele, & 
Quinn, 1999).

another study of stereotype threat was designed to have people think 
of their strengths rather than their stereotyped weaknesses (mcGlone & 

Figure 3.6  This chart shows the difference in 
mathematics scores (vertical axis) for students with 
fixed and growth mind-sets over a 2-year period. The 
scores of the growth mind-set students increased 
significantly, while those of the fixed mind-set 
students fell. (adapted from Blackwell et al., 2007)
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aronson, 2006). Would that serve to improve their performance in areas 
where they were not supposed to do well, as in mathematics? Ninety 
college students, half male and half female, completed a questionnaire. 
one group was asked if they lived in a single-sex or coed dormitory, as 
this question in previous studies was shown to activate male and female 
stereotypes. a second group was asked why they chose to attend a pri-
vate liberal arts college—an attempt, according to the researchers, to acti-
vate their “snob schema.” The third group, used as a control, was asked 
to write about their experiences living in the northeastern part of the 
United States.

after taking a standard test of visual–spatial abilities associated with 
mathematics performance, the gender gap closed among those who were 
primed to think about their status as students in an exclusive liberal arts 
college. The female scores improved, while the male scores were the same 
as for the control group. There was no significant difference between the 
male and female scores. Simply manipulating the way female students 
thought of themselves improved their test performance.

Instructional Approaches Narrow the Gap

although most neuroscientists will admit to gender differences in 
how the brain processes information, especially in young children, they 
are reluctant to support the concept that these differences offer a life-
long learning advantage for one sex over the other in any academic area. 
Spelke (2005) reviewed 111 studies and papers, and found that most sug-
gest that the male’s and female’s abilities for mathematics and science 
have a genetic basis in cognitive systems that emerge in early childhood 
but give males and females, on the whole, equal aptitude for mathematics 
and science.

It is important for educators to know about these gender differences 
and how they change through various stages of human development. The 
danger here is that people will think that if the differences are innate and 
unchangeable, then nothing can be done to improve the situation. Such 
ideas are damaging because they leave the student feeling discouraged, 
and they ignore the brain’s plasticity (the ability to continually change 
through experience) and exceptional capacity to learn complex informa-
tion when suitably motivated. a variety of teaching approaches and strat-
egies may indeed make up for these gender differences.

Consider Learning Styles
as adolescents mature, their learning styles also begin to mature and 

consolidate. learning style describes the methods and preferences of an 
individual when in a learning situation and seems to result from a com-
bination of genetic predispositions and environmental influences. These 
styles comprise a number of variables, including the following:

•• Sensory preferences (Do I have a preference for auditory, visual, or 
kinesthetic–tactile input?)

•• Hemispheric preference (Do I usually look at the world more 
analytically or more globally?)
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•• Intellectual preferences similar to Howard Gardner’s 10 intelli-
gences, mentioned in Chapter 1 (What are my intellectual strengths 
and weaknesses?)

•• Participation preferences (Do I want to do something now with this 
learning or think about it first?)

•• Sensing/intuitive preferences (Do I prefer learning facts and solving 
problems using established methods, or do I prefer discovering pos-
sibilities and relationships on my own?)

Remember, these are preferences and they are not rigid. Everybody can 
change to another style temporarily if the situation requires it. If you con-
sider just these five learning-style variables and their components, as well 
as the notion that many of these variables exist along a continuum, you 
quickly realize that there are thousands of possible permutations. How can 
a teacher address all these variations in the classroom? It helps if we nar-
row the field of possibilities.

The concept of learning styles is not accepted by all cognitive research-
ers. Some argue that there is no solid evidence from neuroscience to suggest 
that individuals learn in different ways. However, there is a growing body 
of research evidence, mostly related to the gender differences in mathe-
matics and language processing that we discussed earlier in this chapter. 
Some studies show that during mathematical processing, the brain areas 
activated in females are different from those activated in males (e.g., Keller 
& menon, 2009). other studies using brain imaging show that the activated 
brain regions are different among individuals of the same gender when 
performing the same cognitive task. This would suggest differences in pro-
cessing styles (e.g., lai et al., 2012; miller, Donovan, Bennett, aminoff, & 
mayer, 2012; okuhata, okazaki, & maekawa, 2009).

Despite the controversies, experience tells us that students will ben-
efit from multiple strategies and a range of approaches to the teaching–
learning process. Some students will grasp the concept of fractions with 
one teaching approach, while other students will benefit from different 
approaches. The variables forming learning style empower teachers with a 
deeper understanding of individual learning differences so they can devise 
multiple strategies to ensure student success.

Addressing Multiple Intelligences

In the 30-plus years since Gardner first proposed his theory of multi-
ple intelligences, educators have been developing activities to apply his 
ideas to classroom practice. You may be surprised to learn that there is 
little physical evidence from neuroscience to support Gardner’s theory. 
about the best neuroscientists can say is that scanning studies show that 
different parts of the brain are used to perform certain tasks associated 
with Gardner’s intelligences. For example, language processing is largely 
devoted to the left frontal lobe, while many visual–spatial operations 
are generally located in the right parietal lobe. Creating and processing 
music involve the temporal lobes, and running and dancing are con-
trolled mainly by the motor cortex and cerebellum (see Figure 3.2 earlier 
in this chapter).

of course, there is plenty of anecdotal evidence to indicate different 
degrees and types of intelligence, as anyone who has been a teacher will 
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confirm. We encounter, for example, the star athlete (high bodily/kines-
thetic) who can hardly write a complete sentence (low linguistic), or the 
mathematics whiz (high logical/mathematical) who rarely communicates 
with classmates (low interpersonal). Classroom observations and studies 
have shown that more students are likely to be motivated and succeed in 
classes where teachers use a variety of activities designed to appeal to stu-
dents whose strengths lie in one or more of the intelligences described by 
Gardner (Shearer, 2004). Several studies have shown that instructional strat-
egies focusing on the logical/mathematical aspect of this theory improve 
student motivation and achievement in mathematics (e.g., Karamikabir, 
2012; li, ma, & ma, 2012). However, it is important to remember that these 
intelligences describe the different types of competencies that we all pos-
sess in varying degrees and use in our daily lives.

Whether scientists will eventually discover the under-
lying neurological networks that form different intelli-
gences remains to be seen. In the meantime, Gardner’s 
theory can still be beneficial for two reasons. First, it 
reminds teachers that students have different strengths 
and weaknesses and different interests, and that they 
learn in different ways. By using Gardner’s ideas, teach-
ers are likely to address the needs of a wider range of 
students. Second, teaching the mathematics curriculum through a variety 
of approaches will probably be more interesting, and this in itself often 
motivates students to learn.

Figure 3.7 takes a closer look at eight of the intelligences and some of 
their relevant behaviors as described and revised by Gardner (1993). I am 
not including in this discussion Gardner’s recently proposed intelligences, 
spiritualist and emotionalist, because there has not been adequate assess-
ment of their educational implications. Specific suggestions for activities 
to consider in mathematics lessons that address these intelligences are 
provided in Chapter 7.

Consider Teaching Styles
Quick, finish this statement: “Teachers tend to teach the way they 

______.” Did you say “were taught”? That is a common response but not 
truly accurate. observational data and research on learning styles show 
that teachers really tend to teach the way they learn. Thus, our learning 
style drives our teaching style. Teachers who are predominantly auditory 
learners will do lots of talking in their classes and personally enjoy going 
to lectures and hearing others recount their vacation trips and other sto-
ries. But teachers who are predominantly visual learners will use lots of 
charts and visual aids in their classes and personally prefer movies, tele-
vision, museums, and the like for entertainment. actually, the alternative 
response that teachers teach the way they were taught is indirectly related 
to learning style. If a student (prospective teacher) is in a class where the 
teacher’s teaching style closely matches the student’s learning style, then 
the student is more likely to achieve success. later, the student will feel 
comfortable emulating that teacher’s teaching style because it was so 
compatible with the student’s own learning style. as a result, that student 
is now teaching as he or she was taught.

Studies show that more students 
are motivated and succeed in 
classes where teachers use 
activities that address the various 
intelligences.
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Figure 3.7  The eight intelligences describe the different types of competencies that we all 
possess in varying degrees and use in our daily lives (Gardner, 1993).

Interpersonal:

People smart!
Interacts with others,
empathizes, socializes,
and mediates conflicts.

Naturalist:

Nature smart!
Aware of,
understands, and
appreciates
environment; sees
the big picture.

Logical/Mathematical:

Number smart!
Enjoys mathematics,
reasoning, logic, and
problem solving; well-
organized.

Linguistic:

Word smart!
Enjoys speaking,
writing, poems,
plays, and manipulating
language.

Musical:

Music smart!
Enjoys picking up
sounds and
melodies; notices
and uses rhythm.

Spatial:

Picture smart!
Creates mental
images; enjoys
charts, puzzles, and
visualization tasks.

Bodily/Kinesthetic:

Body smart!
Enjoys physical
activities, crafts, and
hands-on
investigations.

Intrapersonal:

Self smart!
Focuses inward
on feelings and
dreams; follows
instincts;
meditative and
reflective.

Multiple
Intelligences

of course, there are lots of other combinations of teaching styles and 
learning styles that would take up many pages. That is not our purpose 
here; so let us turn our discussion to the thinking and learning style of 
mathematicians. many high school mathematics teachers majored in math-
ematics in college and perhaps in graduate school as well. It is fair to say, 
then, that many of these teachers think and learn like mathematicians.

How Do You Think About Mathematics?
If you are a mathematics educator, how do you think about mathemat-

ics? Do you see mathematics as mainly an abstract construct of the human 
mind and mathematical objects as having no relation to reality? Perhaps 
you see mathematical objects as real and necessary for our daily experi-
ences. Dehaene (1997), himself a mathematician and researcher in cogni-
tive neuroscience, suggests that mathematicians view their subject from 
any one of the following three perspectives (see Figure 3.8):

•• Platonist. For these individuals, mathematics exists in an abstract 
plane, but the objects of mathematics that they study are as real as 
everyday life. mathematic reality exists outside the human mind, 
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and the function of the mathematician is to discover or observe 
mathematical objects.

•• Formalist. For them, mathematics is only a game in which one 
manipulates symbols in accordance with precise formal rules. 
mathematical objects such as numbers have no relation to reality. 
Rather, they are defined solely as a set of symbols that satisfy certain 
axioms and the theorems of geometry.

•• Intuitionist. These people believe that mathematical objects are 
merely constructions of the human mind. mathematics does not 
exist in the real world but only in the brain of the mathematician 
who invents it. after all, neither arithmetic nor geometry nor logic 
existed before human beings appeared on the earth.

after reading the descriptions of these three perspectives, where would 
you classify yourself? Keep in mind that just as your learning preferences 
direct your teaching style, so will your perspective on the subject close to 
your heart affect your approach to designing and presenting lessons in 
mathematics.

From the information presented in Chapters 1 and 2, it would seem that 
the intuitionist perspective provides the best account of the relationship 
between arithmetic and the human brain. We noted in those chapters that

Figure 3.8  Dehaene (1997) suggests that mathematicians view their subject from any one 
of three different perspectives: Platonist, formalist, or intuitionist. This diagram gives a 
brief description of each perspective. Whichever perspective a teacher holds will likely 
affect that individual’s approach to presenting mathematics in the classroom.

Platonist
— Mathematics exists in an
 abstract plane
— Objects of mathematics are
 as real as everyday life
— Mathematic reality exists
 outside the human mind
— Mathematician’s function
 is to discover or observe
 mathematical objects

Formalist
— Mathematics is a game in
 which one manipulates
 symbols in accordance
 with precise formal rules
— Mathematical objects have
 no relation to reality and
 are solely a set of symbols
 that satisfy axioms and
 theorems of geometry

Intuitionist
— Mathematical objects are
 solely constructions of the
 human mind
— Mathematics does not exist
 in the real world, but only in
 the brain of the
 mathematician who
 invents it
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•• human beings are born with the innate mechanisms for separating 
objects and determining the numerosity of small sets of objects;

•• number sense is present in animals as well and thus is indepen-
dent of language and has a long history in the development of our 
species;

•• in children, the capability to do numerical estimation, comparison, 
finger counting, simple addition, and subtraction arises spontaneously 
without much direct instruction; and

•• mental manipulation of numerical quantities is carried out by neural 
networks located in the parietal areas of both brain hemispheres.

Thus, intuition about numbers is deeply rooted in our brains. It is one 
of the ways we search for structure in our environment. Just as specialized 
brain circuits allow us to locate objects in space, so do circuits in our pari-
etal lobes allow us to effortlessly determine numerical quantities.

n  MOTIVATING STUDENTS IN MATHEMATICS

Students in the elementary grades are still interested in their studies, and 
the arithmetic they need to learn is achievable without too much effort. 
They generally maintain a positive attitude toward mathematics in these 
grades. But attitudes change when students get into middle school and 
high school, where mathematics is taught by subject-area teachers and the 
coursework is more demanding. Teachers now hear many students saying, 
“I don’t like math!” There are several reasons for this emotional response 
to secondary-level mathematics. one reason is due to what is generally 
termed “math anxiety.” We will discuss math anxiety in greater detail in 
Chapter 7. For now, we will note that anxiety triggers an increase in corti-
sol—the stress hormone—in the blood, and that produces an unwelcome 
and uncomfortable mental state.

a second reason is the increased weight that states have attached to 
the scores of high-stakes testing in mathematics, another stressful situa-
tion. a third reason is that students often do not see any usefulness to the 
mathematics they are learning, now or in the future. The lament, “When 
will I ever use this?” is a clear sign that what they are learning does not 
appear relevant to them. and let us not forget that another important 
reason for the distaste for mathematics may be that the student has not 
done well in this subject in the past. In the student’s brain, the equation 
is simple: mathematics = failure. We do not like to repeat things that we 
fail at.

Regardless of the source of the negative feelings about mathemat-
ics, they can be overcome if students become sufficiently motivated to see 
that mathematics can be engaging, it has practical applications in the real 
world, and they can learn it successfully. Not surprisingly, studies show 
that motivation improves student performance in mathematics (e.g., 
Steinmayr, Wirthwein, & Schöne, 2014). Some studies found that identi-
fying the motivation of students in mathematics classes provides teachers 
with important information regarding instructional approaches (Cleary & 
Chen, 2009).
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Motivation Surveys
It could be very helpful for mathematics teachers to know how their stu-

dents feel about mathematics at the beginning of the school year (Whitin, 
2007). a simple survey would give the teacher a quick summary of the 
extent of any negative feelings the students might harbor about mathemat-
ics. Such a survey should be anonymous and include statements that ask 
students to respond using a scale such as Strongly agree (Sa), agree (a), 
Neither agree nor Disagree (N), Disagree (D), and Strongly Disagree (SD). 
Here is a sample survey. Replace or reword the statements as appropriate 
for the particular school and grade level.

Student Survey in Mathematics

What grade are you in? _____

Please respond to the following statements circling the appropriate letters, indicating 
whether you Strongly Agree (SA), Agree (A), Neither Agree nor Disagree (N), Disagree (D), or 
Strongly Disagree (SD) with the statement.

 1. I enjoy studying math Sa a N D SD

 2. I find math boring Sa a N D SD

 3. I am good at math Sa a N D SD

 4. I usually do my math homework Sa a N D SD

 5. I keep trying in math even when the problem is difficult Sa a N D SD

 6. I solve problems on my own without the help of others Sa a N D SD

 7. I ask for help when I need it Sa a N D SD

 8. I enjoy helping someone else in math Sa a N D SD

 9. I enjoy using manipulatives when learning math Sa a N D SD

10. I use technology when learning math Sa a N D SD

11.  I like working in small groups with  
my classmates to solve problems Sa a N D SD

12. math is important throughout life Sa a N D SD

13. If I work hard, I can be successful in math Sa a N D SD

14. I know how to assess my understanding in math Sa a N D SD

15. Homework is important to my learning in math Sa a N D SD

Strategies for Motivating Students in Mathematics
Teachers sometimes spend more time with the students who are moti-

vated in mathematics than with those who are not. Yet it is possible to get 
disinterested students motivated with a few strategies, such as the following 
(Posamentier, 2013):
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•Highlight a void in students’ knowledge. This strategy involves teas-
ing the students with a familiar situation followed by an unfamiliar 
situation. Can we solve the unfamiliar situation? For example, the 
students may know that we can use radar to calculate the distance to 
the moon. But how would we calculate the distance to a star?

•Show passion for your subject. Students are motivated when they 
see teachers who are passionate about the subject they teach. Their 
natural curiosity urges them to discover what the teachers see in this 
subject matter that they do not. Passion is contagious.

•Look for an unexpected pattern. Set up a situation that leads stu-
dents to discover a pattern they have not seen before. For example, 
ask the students how they would find the sum of the numbers from 
1 to 100. They could, of course, start by adding them one at a time. 
after they do that for a bit, point out that they can add the first and 
last numbers (1 + 100 = 101), and then add the second and next-to-
last numbers (2 + 99 = 101). See a pattern? So how could they find 
the sum of all the numbers faster? Simply multiply 50 (the number 
of similar pairs) by 101 (the sum of each pair): 50 x 101 = 5,050.

•Pose a challenge. many students play video games because they are 
challenging and engaging. They are motivated to keep playing. 
Challenging them in the mathematics class can be motivating, but 
the challenge should relate to the lesson objective and be within the 
students’ abilities.

•Show the practical applications of the topic. Students often do not 
see how a particular topic in mathematics has any practical applica-
tion. Showing the practical application whenever possible will raise 
student interest and motivation.

•Entice the class with a surprising mathematical result. The laws of 
probability can often surprise people. one classic example is the 
birthday phenomenon, which shows an unexpectedly high proba-
bility that two people in a relatively small group will have the same 
birthday. This one is always surprising to students when they 
encounter it for the first time.

•Tell a historical story about the use of mathematics. a historical 
story can be a motivating event. Stories can be about famous math-
ematicians or the mathematics involved in building the pyramids of 
Egypt or the verrazano Bridge in New York City, one of the longest 
suspension bridges in the world. To be really interesting, the story 
should be recited slowly and be rich in detail.

•Use games, puzzles, and other recreational activities in mathemat-
ics. Games, puzzles, paradoxes, and the like can be really motivating 
for students, especially in this technology-rich environment. The 
activity should not be too complicated or time-consuming, and 
should have some relationship to the learning objective at hand.

•Stimulate interest in mathematical curiosities. Students can be 
motivated by trying to explain sets of numbers that have curious 
properties. Some of these are the Fibonacci series, the golden ratio 
(phi), Pythagorean triples (whole numbers that satisfy the 
Pythagorean theorem, such as 3, 4, 5; 5, 12, 13; etc.).

•Mathematics in the movies. mathematics can be found in numer-
ous movies. Some funny scenes come from old black-and-white 
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films (a novelty in themselves for some students). Examples include 
In the Navy, with Bud abbott and lou Costello, in which Costello 
tries to prove that 7 times 13 equals 28, or Ma and Pa Kettle Back on 
the Farm, which shows how 5 times 14 equals 25. Having students 
discuss these clever routines gives them a deeper understanding of 
mathematical processes.

another activity is to determine if some of the stunts performed 
in movies are really possible. For example, in Speed, a bus full of 
passengers has a bomb onboard that will explode if the speed of 
the bus drops below 50 mph. The bus is traveling on an unfinished 
highway that has a 50-foot gap. ask students to calculate at what 
speed the bus would need to travel to successfully jump this gap? 
many mathematics-related film clips are available on the Internet. 
(Note: Be careful not to violate copyright laws. It is best to find the 
clip on the Internet and then purchase the DvD for classroom use.)

any of these strategies can motivate students in mathematics. They 
may even prompt students to come up with other suggestions that teachers 
can use in the classroom. Bring mathematics to life, and help the students 
recognize that it is a human endeavor that enriches us all.

WHAT’S COMING?  n

Now that we have looked at the major components of learning, the next 
step is to decide how these components need to be adapted to serve the 
needs of preschool, preadolescent, and adolescent learners. are there lim-
its to what mathematics concepts we can teach at each developmental 
level? How will the Common Core State Standards for mathematics affect 
how and what we teach? are preschoolers even ready for mathematics? Is 
the preadolescent brain really mature enough to learn algebra? are we 
sufficiently challenging adolescents in mathematics classes, or just scaring 
them off? The answers to these questions will emerge in the next three 
chapters. First, we start with preschoolers and kindergartners.
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Chapter 3—Reviewing the 
Elements of Learning

n  QUESTIONS AND REFLECTIONS

Respond to the following questions, and jot down on this page key points, 
ideas, strategies, and resources you want to consider later. This sheet is 
your personal journal summary and will help jog your memory.

What seems to be happening to students’ working-memory capacity?

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

What are the kinds of rehearsal, and why are they important to learning 
mathematics? _______________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

What effects does technology seem to be having on the developing brain? 
_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________
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4
Teaching 

Mathematics to 
the Preschool 

and Kindergarten 
Brain

I recommend you to question all your beliefs, except that two and two 
make four.

—Voltaire

Chapters 1 and 2 provided detailed discussions about the development 
of a child’s innate capabilities for subitizing, estimating, counting, 

and doing simple arithmetic processing. By the time most children reach 
the age of 4, their interactions with the environment have offered them 
opportunities to practice these basic numerical operations. The purpose 
of preschool is to provide children a wide variety of learning experiences 
that they might not otherwise get. But should these experiences include 
mathematics? Is the brain of a 4-year-old sufficiently prepared to tackle 
numerical operations beyond a young child’s limited inborn talents? Let’s 
see what research is telling us.
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n   SHOULD PRESCHOOLERS LEARN  
MATHEMATICS AT ALL?

Should there even be mathematics in preschool? Some people think that 
the preschool brain is not sufficiently mature to deal with number 
manipulation. But as we have already explained in earlier chapters, 
humans are born with intuitive capabilities for handling simple numeri-
cal quantities. Mathematics at the preschool level, then, should take 
advantage of a young child’s innate number sense. This means that 
instructional activities should be deeper and broader than mere practice 
in counting and adding.

Researchers suggest the following reasons why basic mathematical 
concepts should be taught in preschool (Claessens, Engel, & Curran, 2014; 
Clements, 2001; Golbeck, 2005; Klibanoff, Levine, Huttenlocher, Vasilyeva, 
& Hedges, 2006; Purpura & Lonigan, 2013):

•• Preschoolers already encounter curricular areas that include only a 
small amount of mathematics. Supplemental instruction would help 
make these areas more understandable.

•• Many preschoolers, especially those from low-income and minority 
groups, have often experienced difficulties with mathematics in 
their later years. This potential gap can be narrowed by including 
more mathematics at the preschool level.

•• Preschoolers already possess numbering and geometry abilities 
ranging from counting objects to making shapes. Children use 
mathematical ideas in their everyday life and can develop surpris-
ingly sophisticated mathematical knowledge. Preschool activities 
should extend these abilities so these students can be successful 
with mathematics in kindergarten.

•• Preschoolers can develop their mathematics-related vocabulary. 
When preschool teachers talk to young children about mathematics, 
the children will be better able to understand word problems, com-
municate their learning strategies, and discuss their solutions.

•• Recent brain research affirms that preschoolers’ brains undergo sig-
nificant development, that their learning and experiences affect the 
structure and organization of their brains, and that their brains 
develop most when challenged with complex activities and not with 
rote skill learning.

Because the human brain is such a powerful pattern seeker, preschool-
ers are self-motivated to investigate shapes, measurements, the meaning 
of numbers, and how numbers work. Activities in preschool mathematics, 
therefore, should be designed to raise their intuitive number sense and 
pattern-recognition abilities to an explicit level of awareness. Teachers 
should not assume that preschoolers perceive situations, problems, or 
solutions the same way adults do. Clements (2001) reports how one 
researcher asked a student to count six marbles. Then the researcher cov-
ered the marbles, showed the student one more, and asked how many 
marbles there were in total. The student responded that there was just one 
marble. When the researcher pointed out that he had six marbles hidden, 
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the preschooler replied adamantly that she didn’t see six. 
For her, no number could exist unless there were objects 
to count.

Preschool teachers need to interpret what the student 
is thinking and doing, and use these interpretations to 
assess what concepts the student is learning and how 
they can be linked to the student’s own experiences. 
Young students do not see the world as separate subject areas. They try 
to link everything together. Their play is usually their first encounter with 
mathematics, be it counting objects or drawing geometric designs.

Assessing Students’ Number Sense
one of the first tasks of a preschool and kindergarten teacher is to 

determine the level of number sense that each student has already reached. 
designing a number knowledge test is no easy task. Researchers Sharon 
Griffin and Robbie Case tackled this problem. Starting in the 1980s, they 
refined their assessments over the years on the basis of their research to 
ensure that the items reflected the capabilities possessed by a majority of 
students at ages 4, 6, 8, and 10 (Griffin, 2002; Griffin & Case, 1997).

By administering this test, a teacher can determine how far an indi-
vidual student’s number sense has progressed. The teacher can then use 
differentiated activities to develop the number sense for students of the 
same age who may be at different levels of competence. Table 4.1 shows 
the current version of the test for 4-year-olds, reprinted here with per-
mission (Griffin, 2002). Tests for the other grade levels are provided in 
Chapter 5.

Mathematics activities in preschool 
should raise children’s intuitive 
number sense and pattern-
recognition abilities to an explicit 
level of awareness.

Level 0 (4-year-old level): Go to Level 1 if 3 or more correct (see Chapter 5).

1 Can you count these chips and tell me how many there are? (Place 3 
counting chips in front of the child in a row.)

2a (Show stacks of chips, 5 versus 2, same color.) Which pile has more?

2b (Show stacks of chips, 3 versus 7, same color.) Which pile has more?

3a This time I’m going to ask you which pile has less. (Show stacks of 
chips, 2 versus 6, same color.) Which pile has less?

3b (Show stacks of chips, 8 versus 3, same color.) Which pile has less?

4 I’m going to show you some counting chips. (Show a line of 3 red and 4 
yellow chips in a row, as follows: R Y R Y R Y Y). Count just the yellow 
chips and tell me how many there are.

5 Pick up all chips from the previous question. Then say: Here are some 
more counting chips (Show mixed array, not in a row, of 7 yellow and 8 
red chips). Count just the red chips and tell me how many there are.

Table 4.1  number Knowledge Test for 4-Year-olds

SouRCE: Griffin (2002). Reprinted with permission of the author.
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Preschoolers’ Social and Emotional Behavior
A young child’s social and emotional functioning will have an impact 

on practically any content the child studies, including the development 
of mathematical competence. not surprisingly, recent studies done with 

preschoolers show that those students who had initia-
tive, self-control, and attachment, regardless of gender, 
were better at acquiring mathematics skills than were 
students with behavior, social, and attention problems. 
Moreover, students who received interventions designed 
to address their social and emotional problems improved 
their mathematics skills, as compared with the students 
who did not receive the interventions (dobbs, doctoroff, 
Fisher, & Arnold, 2006; dobbs-oates & Robinson, 2012; 
Garner & Waajid, 2012). The obvious implication here is 
that young students who consistently display social and 
emotional problems will need to have those problems 
addressed before we can expect them to successfully 
acquire and develop their mathematics skills.

n  WHAT MATHEMATICS SHOULD PRESCHOOLERS
 AND KINDERGARTNERS LEARN?

Preschool teachers do not always agree among themselves as to what is 
appropriate curriculum for this age group. A study of prekindergarten 
teachers revealed that the teachers’ beliefs about the appropriateness of 
early mathematics instruction differed with the socioeconomic status (SES) 
of the children (Lee & Ginsburg, 2007).

Teachers of low-SES children at publicly funded preschools believed that

•• mathematics education should be a priority or the children will have 
a difficult time catching up later,

•• parents should be encouraged to work with their children at home,
•• mathematics instruction should be organized around a theme or topic,
•• teachers should use ready-made mathematics instructional materials,
•• teachers should encourage even those children who show little 

interest to engage in mathematics activities, and
•• computers are effective instructional tools.

Teachers of middle-SES children, on the other hand, believed that

•• social development should be more of a priority than mathematics 
education and the children will be able to catch up later in kindergarten,

•• parents demand a rigorous academic education in prekindergarten,
•• curriculum should be based on the children’s interests and adapted 

to their pace of learning,
•• teachers should not use ready-made curriculum materials,
•• teachers should postpone the introduction of mathematics activities 

when the children do not seem interested, and
•• computers are inappropriate instructional tools.

Answer to Question 6. False: A 
young child’s social and emotional 
functioning will have an impact 
on the development of 
mathematical competence and 
any content the child studies.

Preschoolers with social and 
emotional problems will need to 
have those problems addressed 
before they can successfully 
develop their mathematical skills.



79TEACHInG MATHEMATICS To THE PRESCHooL And KIndERGARTEn BRAIn

Professional development programs will need to take into account these 
dramatically different views of what constitutes appropriate preschool 
instruction in mathematics. The quality of instruction should not be deter-
mined by children’s SES, any more than it should be determined by their skin 
color. The national Council of Teachers of Mathematics’ (2006) focal points 
are a good starting point for establishing a common instructional approach 
for preschool mathematics instruction, regardless of the children’s SES.

The Common Core State Standards for Mathematics (national 
Governors Association Center for Best Practices & Council of Chief State 
School officers, 2010) do not address standards for preschool. However, 
Curriculum Focal Points (national Council of Teachers of Mathematics, 2006) 
suggests that prekindergarten children should be

•• developing an understanding of whole numbers, including concepts 
of correspondence, counting, cardinality, and comparison;

•• identifying shapes and describing spatial relationships; and
•• identifying measurable attributes and comparing objects by using 

these attributes.

The Common Core State Standards for Mathematics (national Governors 
Association Center for Best Practices & Council of Chief State School 
officers, 2010) suggest the following standards for kindergarten children:

Counting and Cardinality

•• Know number names and the count sequence.
•• Count to tell the number of objects.
•• Compare numbers.

operations and Algebraic Thinking

•• understand addition as putting together and adding to, and under-
stand subtraction as taking apart and taking from.

number and operations in Base Ten

•• Work with numbers 11–19 to gain foundations for place value.

Measurement and data

•• describe and compare measurable attributes.
•• Classify objects and count the number of objects in each category.

Geometry

•• Identify and describe shapes.
•• Analyze, compare, create, and compose shapes.

Mathematical Practices

1. Make sense of problems and persevere in solving them.

2. Reason abstractly and quantitatively.
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3. Construct viable arguments and critique the reasoning of others.

4. Model with mathematics.

5. use appropriate tools strategically.

6. Attend to precision.

7. Look for and make use of structure.

8. Look for and express regularity in repeated reasoning.

More specifically, early childhood researchers and mathematics educa-
tors agree that preschoolers and kindergartners should be exposed to the 
following areas and skills:

•• Numbers. Children learn about numbers by counting objects and 
talking about their results. “You gave Billy five cards. How many 
does Mary need?” Children count spaces on board games. “You are 
now on Space 3. How many more spaces do you need to go to get to 
Space 7?” They count the days until their birthdays. The teacher 
might say, “Yesterday there were 9 days until your birthday. How 
many days are there now?” Children read counting books and recite 
nursery rhymes with numbers.

•• Geometry and spatial relations. Children practice constructing var-
ious shapes and discussing their properties. They can see thin trian-
gles, fat triangles, and upside-down triangles, and gradually realize 
that they are all still triangles.

•• Measurement. Children compare the height of a block tower with 
the height of a chair or table. They measure each other’s heights and 
the distance from the desk to a wall. They learn that a block is too 
short or too long to complete a project.

•• Patterns/geometry. Children become aware of patterns in their envi-
ronment. They learn to recognize patterns of different colors and sizes 
in beads, blocks, and their clothes. They practice reproducing simple 
patterns by stringing beads and copying designs with colored blocks.

•• Analyzing data. Children sort objects by color, size, and shape; 
count them; and record the data on graphs and charts. These charts 
might reflect how many bean plants have sprouted, the class pet’s 
growth, the number of rainy days in March, or the number of chil-
dren with a birthday in January.

n  PRESCHOOL AND KINDERGARTEN
 INSTRUCTIONAL SUGGESTIONS

General Guidelines
Here are some suggestions that should guide preschool and kindergar-

ten instruction:

•9 Plan a learning environment conducive to mathematical explorations, 
including unit blocks and manipulatives. This includes building on 
the students’ languages and cultural backgrounds, as well as their 
current mathematical ideas and counting strategies.



81TEACHInG MATHEMATICS To THE PRESCHooL And KIndERGARTEn BRAIn

•9 Recognize whether a student’s mathematical thinking is developing 
or stalled. When thinking is developing, you can observe and take 
notes, leave the students alone, and later talk with the students or 
the entire class to explain the mathematics involved. If the thinking 
is stalled, then intervene to clarify and discuss the ideas. For exam-
ple, two students might be arguing about whose block set is bigger. 
It might be that one child is talking about height, while the other is 
looking at width or volume. use this opportunity to discuss how 
size can be measured in different ways.
•9 Introduce activities that specifically rely on mathematics. For exam-
ple, card games that use numbered cards and board games with 
number cubes offer students experiences with counting and com-
parison. Many students’ books have mathematical themes that 
develop classifying and ordering, and strengthen students’ number 
and geometric knowledge.
•9 use a variety of instructional strategies that create meaningful 
age-appropriate contexts and require students to be active partici-
pants in their learning.
•9 Continue to enhance the students’ thinking about mathematics by 
posing higher-order questions, such as “Have you tried this way?” or 
“What do you think would happen if . . . ?” and “Is there another 
way we could . . . ?”

Suggestions for Teaching Subitizing
In Chapter 1 we discussed the innate skill of subitizing, which is the 

ability to know the number of objects in a small collection without count-
ing. If, as it seems, conceptual subitizing is the prerequisite skill for learn-
ing counting, then strengthening this skill should make learning to count 
easier for young students.

It may seem odd to suggest that it is possible to strengthen an innate 
ability, but we do this continually as we grow. Humans are born with 
the innate abilities to move and to speak, abilities that are strengthened 
through developmental learning experiences. The ability to subitize can be 
developed as well, and studies show that doing so significantly improves 
children’s counting skills (e.g., Kroesbergen, Van Luit, Van Lieshout, Van 
Loosbroek, & Van de Rijt, 2009). Thus, preschool and kindergarten teachers 
should consider incorporating activities that strengthen this capability in 
their young students.

In searching for activities that strengthen subitizing, teachers should use 
cards or objects with dot patterns, and avoid using manipulatives. Why? 
The brain is a superb pattern seeker, and we want to take advantage of this 
capability by getting students to form mental images of 
number patterns. If students use manipulatives, they are 
more likely to rely on counting by ones rather than on 
mental imagery.

Clements (1999) suggests four guidelines that should 
be followed when designing activities that encourage 
conceptual subitizing in young students. The groups to be 
subitized should (1) stand alone and not be embedded in pictures; (2) be 
simple forms, such as groups of circles or squares rather than pictures of ani-
mals (which could be distracting); (3) emphasize regular arrangements that 

Subitizing is best practiced with 
dot patterns, rather than with 
manipulatives, to enhance imagery 
and eliminate counting by ones.
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include symmetry; and (4) have strong contrast with the background. Here 
are some examples of activities for preschool and kindergarten students:

•9 Dot patterns on cards. draw circles on cards (or punch holes in cards 
for use with an overhead projector). The circles (or holes) should be 
arranged in geometric patterns on some cards and randomly on oth-
ers. Some examples are shown in Figure 4.1 (Clements, 1999).

•• one activity uses cards with randomly placed dots and asks the 
students to say how many dots are on a card without counting them.

•• Another activity is to play a matching game. display several cards 
that have the same number of dots, except one. Ask the students 
to say which card does not belong with the others without count-
ing the dots.

•• Select decks of cards that have 0 to 10 dots arranged randomly and 
in patterns. Give a deck to each student. Ask the students to spread 
the cards out in front of them. Say a number and ask students to 
find the matching card as fast as they can and to hold it up. on 
other days, use different sets of cards with different arrangements.

•• display a card and ask students to say the number that is one 
more than the number of dots on the card. You can have them 
respond aloud, by writing down the numeral, or by holding up a 
numeral card. Remind them to try to avoid counting the dots.

•• Place dots on a large sheet of paper or poster board in various 
arrangements. Point to an arrangement and ask the students to 
say its number as fast as possible. Each time you play this game, 
rotate the paper or board so it is in a different orientation.

•• Another variation is to flash one particular pattern on the white-
board or overhead projector for just 3 seconds. The goal here is to 
encourage the students to think about the parts of the image. Ask 
them to tell how many dots were shown and to describe what they 
saw. You may want to flash it a second time for 3 seconds to give 
them a chance to organize their images. That second look will be 
unnecessary once the students get better at recognizing patterns 
instantaneously. Timing is important. If you show the pattern for 
too long, the students will work from the picture rather than from 
their mental image. Showing it too briefly will not give them 
sufficient time to form the mental image (Kline, 1998).

Figure 4.1  Cards like these that have dots placed randomly and in patterns 
help young children enhance their ability to subitize, which is determining the 
number of a collection without counting.
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•9 Visualization. Subitizing relies heavily on visualization because the 
goal is to determine the number of a small group of objects with a 
quick visual glance and without counting. Visualization abilities 
develop rapidly in young children. Thus, activities that rely on visual 
cues enhance this development and allow students to make mental 
connections between patterns of objects and their numerosity.

•• For instance, cards displaying dot patterns in specific geometric 
shapes (Figure 4.2) help students associate number and geometry 
by purposefully combining the two.

Figure 4.2  These types of cards combine numbers with geometry and are 
useful in developing conceptual subitizing in young students.

Figure 4.3  Showing different arrangements of the same number of objects 
helps students recognize different decompositions, or partitioning, of a number 
(Clements, 1999).

•• Visuals also help young students see that different patterns can 
show the various ways a number can be partitioned, or decom-
posed (Figure 4.3). Through partitioning, students come to under-
stand the idea that numbers can be broken down into other 
numbers. They also begin to recognize the relationship of parts to 
the whole. When students interpret numbers in terms of part–
whole relationships, they think about numbers as being made up 
of other numbers, and this way of thinking is the major conceptual 
achievement of the early school years.

Subitizing and Understanding Part–Whole Relationships

Enhancing subitizing helps students as young as 4 understand part–
whole relationships. Thus, preschool and kindergarten students should 
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be investigating different ways of splitting up numbers in a variety of 
contexts. If the quantities are small and the activities meaningful, the idea 
of the parts and the whole can be introduced successfully in the early 
childhood years. As students become better able to take numbers apart 
and put them back together without even thinking, they develop a flu-
ency with small numbers that will help them later when working with 
larger numbers.

Two other ideas that are central to the notion of quantifying without 
counting (i.e., subitizing) are covariation (the idea that the whole quantity 
increases/decreases if one of the parts is increased/decreased) and com-
pensation (the idea that removing some items from one part and adding 
them to the other part leaves the whole quantity unchanged). Studies have 
shown that children as young as 4 were able to give the correct answer 
on problems involving covariation and compensation. Furthermore, they 
were able to justify their answers by giving appropriate reasons for their 
responses. These results support the idea that children need experiences 
that draw their attention to the dynamic relationship between the parts 
and the whole, and the effect on the whole when there are changes to 
one of the parts. Having an understanding of part–whole relationships is 
important for learning numeracy. Counting is a valuable tool, but it need 
not be the first step toward the development of part–whole understand-
ing. Early childhood teachers have an important role in helping students 
appreciate the ways numbers are composed of other numbers and how 
these part–whole relationships can be used to solve arithmetic problems 
(Young-Loveridge, 2002).

using visualization to enhance conceptual subitizing eventually will 
help young students develop ideas about addition and subtraction. Visuals 
provide a basis for students to see addends and the sum by recognizing that 
two apples and two apples make four apples. Some students may advance 
to counting on 1 or 2, solving 3 + 2 by saying “3, 4, 5.” Counting on 1 or 2 
gives students an idea of how counting on works. Later they can learn to 
count on using larger numbers by developing their conceptual subitizing.

Studies indicate that the maximum size for objects to be subitized is 
about five, even for adults (dehaene, 1997). Eventually, we have to deal 
with quantities that exceed our ability to subitize, and counting becomes 
necessary. But remember that persistent practice with activities that 
enhance subitizing will make it much easier for young students to count 
and to manipulate numbers for basic arithmetic.

Subitizing With Audio Input

Would adding audio input improve a child’s ability to perform simple 
arithmetic by subitizing? The answer to this question is yes, and it came 
from a study conducted by Hilary Barth and her colleagues at Harvard 
university (Barth, La Mont, Lipton, & Spelke, 2005). In these experiments, 
5-year-olds who had no real experience using number symbols were 
able to add two arrays of dots and compare them to a third array. When 
researchers replaced the third array of dots with beeps, the children inte-
grated the sight and sound quantities easily. The children performed all 
these tasks successfully, without actually counting or having any knowl-
edge of number symbols.
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To study this ability further, the Harvard researchers investigated the 
responses of preschoolers to both visual and audio inputs. on the first test, 
the children were shown some blue dots. After these were covered, they 
saw red dots. They were asked if there were more red or blue dots. The 
preschoolers had no trouble answering correctly even when the difference 
was only a matter of a few dots. on another test, the children had to visu-
ally add two arrays of blue dots and compare them with the number of 
red dots in a third array. This they did without problems. Then sound was 
added. First, they compared numbers of dots with numbers of beeps. After 
that, they added two arrays of dots and compared them with a sequence 
of beeps. Surprisingly, the children added and compared dots and beeps as 
easily as they had dots alone.

At the conclusion of this study, the researchers reflected on how their 
findings could be used to help the many young children who experience 
trouble learning basic arithmetic. devising new teaching strategies in ele-
mentary education that harness children’s preexisting arithmetic intuitions 
can help them acquire knowledge about symbolic numbers and operations. 
They came up with two suggestions:

•9 First, youngsters who struggle with symbols for numbers might be 
encouraged and reassured if they discover that they can successfully 
play the kinds of games mastered by the children in the Harvard 
experiments. This play could show them that they already have the 
abilities they need to do the operations their mathematics teachers 
are presenting in the classroom.
•9 Second, joining nonsymbolic play with symbolic arithmetic problems 
could help children master the symbol system. numerical symbols 
and operations may be less confusing to children if they are coupled 
with examples of sets of dots that are added, subtracted, multiplied, 
or divided—events they may already intuitively understand.

Learning to Count
There are several activities that can be used to help young children 

learn the principles of counting.

•9 Reinforce the cardinal principle with number line activities, using, 
for instance, chips that have different-colored sides. Lay the chips 
out with the same color facing up. Turn each chip as it is counted 
(Figure 4.4). Cover up a group that has just been counted and ask the 
students, “How many did you count?” Keep extending the wait 
time before asking the question. You can also ask the students to 
count the items in their hands and to put their hands behind their 
backs. Then ask them the “how many” question. Vary the activity by 
having students do counting without the number line and in various 
pattern arrangements (Solomon, 2006).
•9 Students also need to realize that number words describe “how 
many” objects and not their arrangement or size. This concept is 
reinforced when students have practice in counting objects that are 
arranged in different patterns (Figure 4.5) or a collection of objects of 
different sizes.
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By the age of 4, most children have mastered basic counting and can 
apply counting to new situations. Exactly how this competence emerges is 
not fully understood. It most likely starts with the genetic predisposition 
to understand the numerosity of a small group of objects in the environ-
ment. Reciting number words in a fixed sequence is a natural outcome of 
our facility with language. And the principle of one-to-one correspon-
dence is actually widespread in the animal kingdom.

once children learn to count using objects, the next challenge is learn-
ing to count mentally without objects. Children who have been practicing 
activities that enhance visualization are likely to learn mental counting 
more easily because it is so heavily dependent on imagery. The next step 
is the realization that when two quantities are joined, counting can begin 

Figure 4.4  using chips with different-colored sides can enhance students’ 
understanding of the cardinal principle. Turn each chip over as it is counted, 
cover up the counted group, and then ask the students to say how many have 
been counted. The idea is to get students to recognize that the last number said 
indicates the number of total items in a group.

Figure 4.5  Activities that allow young students to practice counting objects in 
different arrangements and sizes help reinforce the notion that number is 
independent of other physical qualities.

How many shoes?

How many shoes?

How many footballs?
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from the last number of one quantity rather than starting all over from 1. 
This is called counting on and is an advanced strategy used by children to 
solve problems in addition.

An Easier Counting System
We discussed in Chapter 1 that young Asian children have a much eas-

ier time learning how to count because their language logically describes 
the counting sequence. Some early childhood researchers suggest trying 
out this approach with English-speaking children, using English count-
ing words in a pattern similar to that used in some Asian languages. This 
method requires just 10 different words to count from 1 to 100, instead of 
the 28 English words needed for the traditional counting 
method.

The numbers in this approach are not shorter or 
faster to say, but they make a lot more sense and help 
children get a deeper understanding of our base-10 sys-
tem. Some people fear that adding this approach may be 
confusing, but schools in north America where this has 
been used have not reported any significant confusion. 
Children will learn the traditional counting words with-
out any instruction through their exposure to adults, 
television, and other media. no one believes it is practi-
cal to suggest that this method replace the traditional one, but its use may 
help those students who struggle to understand our numbering system. 
Table 4.2 shows what the easier counting system from 1 to 100 would look 
and sound like.

Teacher Talk Improves Number Knowledge
A research study showed that preschool teachers who use numbers in 

their everyday speech aid the growth of their students’ conventional math-
ematical knowledge over the school year. Klibanoff and her colleagues 
(2006) recorded the speech of 26 preschool teachers during a randomly 
selected hour of class instruction, including the times when the teacher 
gathered the class for a story or games. Although the teachers did not  
present planned mathematics activities during the recorded hour, many 
incorporated counting and even calculation into their speech.

The researchers assessed the students’ skills in mathematics at the 
beginning and the end of the school year. Students who were in classrooms 
where the teachers talked a lot about numbers tended to improve more 
over the course of the school year than students who were less exposed to 
mathematics vocabulary. Furthermore, the improvements were unrelated 
to general teacher quality, the complexity of the teachers’ sentence struc-
ture, or the students’ socioeconomic status (Klibanoff et al., 2006).

Questioning
Questioning about numbers can be a very helpful tool for teachers as 

they assess the development of their students’ mathematical thinking. It is 

Teaching how to count might be 
easier using a method modeled 
after some Asian languages, such 
as Japanese and Chinese. The 
system is easier and more logical, 
and gives students a deeper 
understanding of our base-10 
system.
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important that teachers follow up on a student’s initial response if it will 
encourage additional explanation. This approach takes time, but studies 
show that when teachers take the time to examine a student’s explanation 
through targeted questions, they can make more informed decisions about 
ensuing instructional strategies (e.g., Franke et al., 2009).

•9 Help young students think mathematically by asking questions 
about numbers and following up with an appropriate activity. Some 
examples follow (Burns, 1998):

•• “How many are there?” Young students love to count but need 
practice learning the correct sequence of numbers. To develop an 
understanding of the meaning of numbers, they must learn about 
one-to-one correspondence—counting objects one by one, point-
ing to them as they say the numbers in the sequence. Students 

1  
one 

2  
two 

3  
three 

4  
four 

5  
five 

6  
six 

7  
seven 

8  
eight 

9  
nine 

10  
ten

11  
ten-one 

12  
ten-two 

13  
ten-three 

14  
ten-four 

15  
ten-five 

16  
ten-six 

17  
ten-seven 

18  
ten-eight 

19  
ten-nine 

20  
two-ten 

21  
two-ten 

one 

22  
two-ten 

two 

23  
two-ten 

three 

24  
two-ten 

four 

25  
two-ten 

five 

26  
two-ten 

six 

27  
two-ten 
seven 

28  
two-ten 

eight 

29  
two-ten 

nine 

30  
three-ten 

31  
three-ten 

one 

32  
three-ten 

two 

33  
three-ten 

three 

34  
three-ten 

four 

35  
three-ten 

five 

36  
three-ten 

six 

37  
three-ten 

seven 

38  
three-ten 

eight 

39  
three-ten 

nine 

40  
four-ten 

41  
four-ten 

one 

42  
four-ten 

two 

43  
four-ten 

three 

44  
four-ten 

four 

45  
four-ten 

five 

46  
four-ten 

six 

47  
four-ten 

seven 

48  
four-ten 

eight 

49  
four-ten 

nine 

50  
five-ten 

51  
five-ten 

one 

52  
five-ten 

two 

53  
five-ten 

three 

54  
five-ten 

four 

55  
five-ten 

five 

56  
five-ten 

six 

57  
five-ten 
seven 

58  
five-ten 

eight 

59  
five-ten 

nine 

60  
six-ten 

61  
six-ten 

one 

62  
six-ten 

two 

63  
six-ten 
three 

64  
six-ten 

four 

65  
six-ten 

five 

66  
six-ten 

six 

67  
six-ten 
seven 

68  
six-ten 
eight 

69  
six-ten 

nine 

70  
seven-

ten 

71  
seven-
ten one 

72  
seven-

ten two 

73  
seven-

ten three 

74  
seven-

ten four 

75  
seven-
ten five 

76  
seven-
ten six 

77  
seven-ten 

seven 

78  
seven-

ten eight 

79  
seven-

ten nine 

80  
eight-ten 

81  
eight-ten 

one 

82  
eight-ten 

two 

83  
eight-ten 

three 

84  
eight-ten 

four 

85  
eight-ten 

five 

86  
eight-ten 

six 

87  
eight-ten 

seven 

88  
eight-ten 

eight 

89  
eight-ten 

nine 

90  
nine-ten 

91  
nine-ten 

one 

92  
nine-ten 

two 

93  
nine-ten 

three 

94  
nine-ten 

four 

95  
nine-ten 

five 

96  
nine-ten 

six 

97  
nine-ten 

seven 

98  
nine-ten 

eight 

99  
nine-ten 

nine 

100  
ten-ten 

Table 4.2  A More Logical Counting System for numbers 1 to 100

Copyright  2015 by david A. Sousa. All rights reserved. Reprinted from How the Brain Learns Mathematics by david A. Sousa. 
Thousand oaks, CA: Corwin. www.corwinpress.com. Reproduction authorized only for the local school site or nonprofit 
organization that has purchased this book.
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must also grasp the concept of cardinality—that the last number 
in the sequence tells how many objects there are. Activity idea: 
Play “How Many Buttons?” Ask the students to come to the front 
of the classroom one by one, and count how many buttons are on 
each student’s shirt. This is a good way to introduce the idea that 
zero means none at all.

•• “How many of each kind?” Students develop classification and 
counting skills as they think about this question. “How many?” 
asks them to count the number of items, but they must first sort the 
items to determine “each kind.” Students learn that different types 
of things belong to different groups. Activity idea: Provide collec-
tions of almost anything in your classroom, such as buttons, cray-
ons, blocks, markers, and beads, for students to sort and count.

•• “How are these items the same or different?” To answer this ques-
tion, the students look at two items and identify how they are alike 
or different. Answering the question requires students to observe, 
compare, analyze, and then reach a conclusion—the basic skills of 
mathematical and scientific exploration. Activity idea: Gather stu-
dents in a circle and ask each child to remove one shoe. Pick up two 
shoes and ask, “How are these shoes the same?” Allow the stu-
dents to share their ideas. Then ask, “How are they different?”

•• “Which has more or fewer?” Comparing quantities is key to set-
ting the stage for students’ later thinking about subtraction. 
Activity idea: Play “Coin Toss.” Give a student an odd number of 
pennies to toss, such as five or seven, to start. Ask, “Which are 
there more of, heads or tails?” This activity also helps students 
become familiar with coins.

•• “Which is taller, longer, or shorter?” Young students are most 
comfortable comparing lengths by using direct comparison and 
matching up objects to see which is taller, longer, or shorter. If this 
is not possible, such as figuring out which table is longer when 
they are on different sides of the room, students can use a variety 
of nonstandard measures (paper clips, pencils, baby steps). 
Making direct comparisons and using nonstandard measures 
help prepare students for learning standard units such as inches, 
centimeters, and feet. Activity idea: Choose one length of ribbon 
from a basket of ribbons, and ask students to sort the rest accord-
ing to whether they’re longer or shorter.

Developing Sorting and Classifying Skills
Young children use sorting and classifying skills to help them organize 

the world around them. Both of these skills, which emerge around the age 
of 3, are essential in developing a child’s understanding of the real world. 
As these skills develop, children begin to recognize the differences between 
plants and animals, day and night, and different geometric shapes. They 
enhance their number sense and their intuitive understandings about how 
to manipulate numbers during mathematical operations. As a result, they 
begin to apply logical thinking to the mathematical concepts they encoun-
ter. Platz (2004) offers the following suggestions on how to teach young 
children sorting and classifying skills.
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Sorting Versus Classifying. Sorting and classifying 
are terms often used synonymously, but they really rep-
resent two separate levels of logical thinking. Sorting is 
a beginning type of grouping task in which the student 
is told how the objects will be sorted: “Give me all the 
green blocks.” Classifying, however, requires students to 
discover how a given set of objects might be grouped: 

“Look at these different blocks and show me how you could put them into 
groups.” unlike sorting tasks, the students are not told to put objects into 
groups based on a particular attribute. With classifying tasks, students 
must decide how the objects in each group might be alike.

•9 Keep the following key developmental factors in mind when select-
ing activities for young students on sorting and classification tasks.

•• Age. Tasks that challenge a 3-year-old student may not be chal-
lenging to a 4-year-old student. Younger students may be 
assigned simple sorting tasks in which real objects, such as 
fruit, are shown and their task is to find all the objects in a 
group that are like the one shown. older students may work 
with a set of attribute blocks and be asked to place the attribute 
blocks into different groups so the blocks in each group are 
alike in some way.

•• Perceptions. How things look to students becomes the founda-
tion for understanding their environment. As they engage in 
sorting and classifying, things that look more similar may be 
considered the same. Thus, for younger students, it is more 
helpful at first to use objects that are more dissimilar in their 
appearance.

•• Constructing information. Because of their limited experience, 
young students construct information differently than adults. 
Adults may expect that a young student will sort or classify a 
group of objects by triangles and circles when the student actually 
groups the objects by things that roll or do not roll. Students often 
see categories or groupings that adults do not anticipate.

•• Tactile and kinesthetic tasks. Even before young students learn 
numbers, using tactile or kinesthetic tasks with real objects per-
mits signals about the numerosity of items to be sent directly to 
the brain. This has great value for learning mathematical concepts 
that include sorting and classifying.

•• Quantity of objects. Three-year-old students are less likely to 
attend to sorting and classifying tasks if there are too many 
objects involved. Starting with four to five objects and increasing 
to six to eight objects should be sufficient when starting with sort-
ing and classifying tasks.

•• Mathematical talking. As students sort and classify objects, they 
should communicate their thinking aloud as to how they sorted or 
classified them. We know that task-related talking is important for 
learning the vocabulary of mathematics. Providing students the 
opportunity to communicate their actions can clarify mathematical 
terms and phrases.

Teaching young students sorting 
and classifying skills enhances 
their number sense and their 
intuitive understandings about 
how to manipulate numbers.
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•• Make it fun and offer choices. Providing students with various 
opportunities to sort and classify in fun ways through individual 
play and group-time activities will promote healthy learning as 
they engage in these activities.

Levels of Sorting. Sorting tasks are excellent beginning activities for 
promoting understandings related to grouping. The teacher’s responsibil-
ity here is to provide a set of objects to students and identify how the set 
is to be grouped. For example, the teacher may show students five differ-
ent fruits and ask them to pick out all the red apples. In sorting, the tasks 
can become more challenging by increasing the number of objects to be 
sorted, by having students consider more attributes, and by giving verbal 
instead of visual clues. Platz (2004) suggests the following four levels for 
moving from simple to complex sorting tasks (Figure 4.6).

•9 Level 1: One different attribute. To start, the students complete a 
number of tasks with four or five objects that contain only one dif-
ferent attribute. For example, the student may be given all different 
shapes of the same color or size and be asked to indicate all the 
shapes that are like the one shown, perhaps a square. Students need 
to sort by shape only. At this level, show the object and ask the stu-
dents to place all like objects in a container (or similar space). After 
the students learn shapes, ask them to select the squares—a verbal 
cue instead of a visual cue. The students should also explain why 
they picked out the objects they did. This communication compo-
nent helps teachers gain insight into the students’ rationale for pick-
ing the objects they did while helping students clarify their own 
understanding of the task. Increase the number of objects to five to 
eight as they work through Level 1.
•9 Level 2: Two different attributes. Provide students with six to eight 
objects that have different colors as well as different shapes. Show 
the students an object with two attributes, such as a red circle, and 
ask them to give you all the objects like the one shown. Include sev-
eral different shapes and colors in the pile of objects used. Students 
who select all the red circles are classifying based on two different 
attributes. Again, provide students with the opportunity to talk 
about how they are sorting into groups. You can add more objects as 
the student becomes successful.
•9 Level 3: Three different attributes. The next step is to sort objects 
with three different attributes: color, size, and shape. Show a large 
green square and ask the students to give you all the objects like this 
one. Make sure that the pile contains a variety of shapes that repre-
sent the three different attributes.
•9 Level 4: Adding more attributes. Another attribute, such as thick-
ness, is added as the students become more successful in their sort-
ing. A different task might include sorting based on a function, such 
as with a spoon, fork, and knife. Have a group of objects containing 
some used for eating and some not used for eating, and ask students 
to give you things they would use to eat with. When sorting by func-
tion, ask the students to explain why they selected the objects for 
each grouping.
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Levels of Classifying. As students become profi-
cient in sorting tasks, teachers can introduce classifica-
tion tasks. When using classification tasks, the students 
are not told how to classify. When asking students to 
classify sets of objects based on their thinking, teachers 
should also ask them to explain their reasoning behind 
the classifications they have made. Basic attribute 
blocks of different colors, sizes, and shapes are useful 
for the four levels of strategies for developing classifica-
tion tasks (Figure 4.7; Platz, 2004).

•9 Level 1: One different attribute. Initial classifi-
cation tasks follow similar strategies to those 
used in sorting tasks. Start with four to five 
objects that have only one different attribute. For 
example, the objects may have the same color 
and size but have different shapes. Ask the stu-
dent to put objects into different piles that are 
alike in some way. If the students do not classify 
them by shapes, the teacher puts the objects back 
into a pile and asks them to show another way 
they can be classified. Any reasonable explana-
tion by students as to how objects were classified 
is acceptable. As students work through Level 1, 
add more objects.
•9 Level 2: Several different attributes. The next 
stage is to give students a group of objects that 
have several different attributes and ask them to 

show several ways they could be classified into groups. 
For example, if given attribute blocks with different colors, sizes, 
and shapes, the students could first classify them by color, and then 
the objects could be put into groups of the same size or shape. 
normally, young students will look first for the attributes of color 
and shape before the attribute of size. Here again, the students 
should explain why particular objects were placed into certain 
groups, giving you an insight into their thinking and an opportunity 
to ask for clarification, if needed.
•9 Level 3: Classifying by groups. This level challenges students to 
classify objects in such a way that the objects fit into a specific num-
ber of groups. For example, a collection may include objects with 
three different colors, two different shapes, and two different sizes. 
Ask the students to put the objects into three different groups so the 
objects in each group are alike in some way. Some students of 4 and 
5 years of age who can complete classification tasks for Level 2 may 
struggle at first with Level 3 tasks. The intent of this level is to have 
students think logically about the possible ways a set of objects 
could be classified and deduce the one way that best fits the specific 
number of groups being sought.
•9 Level 4: Student-selected tasks. Beyond the teacher-directed tasks 
in Levels 1 through 3, provide opportunities for student-to-teacher 
and student-to-student classification tasks. A student can select a 

Figure 4.6  These are four levels of 
sorting tasks for children in preschool 
(Platz, 2004).

Level 4
Adding more attributes

Level 3
Three different attributes

Level 2
Two different attributes

Level 1
One different attribute
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group of objects for you or other students to clas-
sify based on a system the student has in mind. 
This reversal of roles provides students the 
opportunity to develop another level of under-
standing with regard to classification. By setting 
up tasks for others to solve, students perform 
classification thinking in new ways that add to, 
and clarify, their understandings.

By using sorting and classification tasks, teachers 
help develop students’ thinking in terms of grouping 
and regrouping, which is important to learning mathe-
matical operations. Selecting and developing tasks 
organized in some sequential manner will give students 
the opportunity to expand the ways they think about 
new situations and will assist them in organizing new 
information.

WHAT’S COMING?  n

We have looked here at some basic activities in mathe-
matics for students in preschool and kindergarten. The 
focus has been on assessing number sense, helping stu-
dents learn to count, and developing sorting and classi-
fying skills. With brain growth and development 
proceeding at a breakneck pace, students moving into 
the elementary and middle school grades are ready for 
more difficult and complex challenges. The next chap-
ter examines the components and strategies that teachers of elementary 
and middle school students should consider when constructing lessons in 
mathematics.

Figure 4.7  These are the four levels of 
classifying tasks for children in 
preschool (Platz, 2004).

Level 4
Student-selected tasks

Level 3
Classifying by groups

Level 2
Several different

attributes

Level 1
One different attribute
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Chapter 4—Teaching 
Mathematics to  

the Preschool and 
Kindergarten Brain

QUESTIONS AND REfLECTIONS  n

Respond to the following questions, and jot down on this page key points, 
ideas, strategies, and resources you want to consider later. This sheet is 
your personal journal summary and will help jog your memory.

What are some basic concepts to teach preschoolers in mathematics? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

What are the advantages and disadvantages of teaching young children to 
count based on the Asian number system? ____________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

What are some sorting and classifying skills these children should learn? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________
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5
Teaching 

Mathematics  
to the 

Preadolescent 
Brain

The different branches of arithmetic: Ambition, Distraction, Uglification, 
and Derision.

—Lewis Carroll
Alice in Wonderland

WHAT IS THE PREADOLESCENT BRAIN?  n

Exactly what is the preadolescent brain? Teachers and parents have been 
struggling with the answer to this question for a long time. Many ideas 
have emerged about the internal and external forces acting on the young 
brain as it develops through the preadolescent years. Now neuroscience 
weighs in with evidence from brain-imaging technologies that may shed 
more light on the mysteries of the preteen brain. Let’s take a look at how 
nature (genetic contribution) and nurture (environmental influence) inter-
act to sculpt the preadolescent mind. For our purposes, we will define 
preadolescence as the growth period between the ages of 6 and 12.
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How Nature Influences the Growing Brain
Humans are born with certain innate abilities to help them survive 

during their long trek from infancy to adulthood. Our genetic predisposi-
tions for spoken language, numerosity, and social bonding, among others, 
allow us to develop the skills needed to remain alive and become a con-
tributing part of a family unit. The brain guides these actions, and while 
it grows and develops, new capabilities emerge. But brain growth is not 
linear; it is sporadic, and different regions of the brain develop at different 
rates. At any given moment, some parts of the brain are already sufficiently 
developed to carry out their functions while others are just beginning to 
get their neural networks organized. Early learning, therefore, depends 
largely on the maturity level of those brain regions responsible for acquir-
ing cognitive, motor, and emotional skills.

Gray Matter and White Matter

No doubt you have come across references to the brain’s gray and 
white matter. But what are they, exactly? Gray matter (Figure 5.1) is the 
one-tenth-of-an-inch-thick, six-layered covering of the brain (also called 

the cerebral cortex) that contains mainly the 
cell bodies of neurons and their support 
cells. It is so named because it appears 
gray in preserved brains. The gray mat-
ter includes areas of the brain responsi-
ble for sensory perception, such as seeing 
and hearing, muscle control, speech, 
numerosity, and emotions. This cortex is 
where most conscious thinking, creating, 
and problem solving occur. Some recent 
research evidence suggests a positive cor-
relation between the thickness of the cor-
tex layer and certain aspects of intelligence 
(e.g., Burgaleta, Johnson, Waber, Colom, & 
Karama, 2014) and degree of attention (e.g., 
Ducharme et al., 2012).

The white matter is below the gray mat-
ter. It looks lighter than the gray matter 
in preserved tissues, due to myelin, the 
milky and fatty substance that surrounds 

the transmitting arm of each neuron, called the axon. Nerve axons are 
connected in a complex array of neural networks that relay information 
back and forth between the rest of the body and the cerebral cortex. These 
networks also interact with systems that regulate the body’s autonomic 
(unconscious) functions, such as blood pressure, heart rate, and body tem-
perature. Certain nuclei in the limbic system (Figure 5.2) are responsible 
for the expression of emotions, the release of hormones, and the regulation 
of food and water intake.

What Brain Scans Show. Longitudinal brain-imaging studies of indi-
viduals between the ages of 4 and 21 have revealed some interesting clues 
about how parts of the young brain develop. There may not be many sur-
prises here for people who work with preadolescents, but it is interesting 

Figure 5.1  A horizontal cross section of the brain. 
The gray matter is composed primarily of neurons, 
and the white matter below is composed of 
myelinated axons.
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to see how examining brain development 
can explain the learning and behavior of 
these children. Table 5.1 shows the major 
imaging findings related to preadolescents, 
along with my own thoughts on some pos-
sible implications for learning and teach-
ing (gogtay et al., 2004). Findings related 
to the adolescent brain are discussed in the 
next chapter.

Emotional and Rational Behavior

Deep within the brain lies the limbic 
area, which is largely involved in gener-
ating emotional responses. Because these 
emotions can get out of hand, one of the 
functions of the frontal lobe is to assess and control the types and inten-
sity of emotions emanating from the limbic area (Figure 5.2). But this is 

Figure 5.2  Emotional responses are generated in the 
limbic area. Moderating the intensity of those 
responses is one function of the frontal lobe.

Research Finding Possible Implications for Learning Mathematics

The volume of gray matter and white matter 
continues to increase from childhood until 
puberty as the brain grows in size.

Children can tackle problems of increasing 
difficulty as they move through the 
intermediate grades. There is no “learning 
pause” in the intermediate grades as some 
people still believe.

At puberty, when the brain is nearly at its full 
adult size, gray-matter volume begins to 
decrease because unneeded and unhealthy 
neurons are pruned away.

By sixth grade, creative problem solving should 
start becoming easier, include more options, 
and show greater sophistication of thought.

Parts of the brain associated with basic functions 
mature early. Motor and sensory functions (taste, 
smell, and vision) mature first, followed by areas 
involved in spatial orientation, speech and 
language development, and attention (upper 
and lower parietal lobes).

Primary-grade children may have some 
difficulty solving complex visual–spatial 
problems. Boys may do better than girls at 
these types of challenges in the early grades, 
but the gap narrows in the intermediate grades. 
A multimodality approach is likely to be 
successful.

Later to mature are those areas involved in 
executive functions (creativity, problem solving, 
reflection, analysis), attention, and motor 
coordination (frontal lobes).

These skills are just emerging in the 
intermediate grades, so problems with multiple 
approaches and answers are a challenge but 
doable.

Most areas of the temporal lobes mature early. 
These areas are involved mainly in auditory 
processing. Maturing last is a small section of 
the temporal lobe involved in the integration of 
memory, audiovisual association, and 
recognition of objects.

Because the auditory areas are rapidly 
maturing, reading problems aloud is helpful. 
Three-dimensional object rotation and 
manipulation would be difficult for 
intermediate-grade students.

Table 5.1  Preadolescent Brain Development and Some Implications

SOurCE: gogtay et al. (2004).
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hardly a balanced system in preadolescents. Among other things, human 
survival depends on the family unit, where emotional bonds increase the 
chances of producing children and raising them to be productive adults. 
The human brain has learned over thousands of years that survival and 
emotional messages must be given high priority as it filters through all the 
incoming signals from the body’s senses. So it is no surprise that studies 
of human brain growth show that the emotional (and biologically older) 
system develops faster and matures much earlier than do the frontal lobes 
(Paus, 2005; Smith, Chein, & Steinberg, 2013; Steinberg, 2005). Figure 5.3 
shows the percentage development of the brain’s limbic area and frontal 

lobes from birth through the age of 24 years. The lim-
bic area is fully mature around the age of 10 to 12, but 
the frontal lobes mature closer to 22 to 24 years of age. 
Consequently, the emotional system is more likely to 
win the tug-of-war for control of behavior during the 
preadolescent years.

What does this mean in a classroom of preadolescents? Emotional 
messages guide the individual’s behavior, including directing his or her 
attention to a learning situation. Specifically, emotion drives attention and 
attention drives learning. But even more important to understand is that 
emotional attention comes before cognitive recognition. For instance, you 

see a snake in the garden, and within a 
few seconds your palms are sweating, 
your breathing is labored, and your 
blood pressure is rising—all this before 
you know whether the snake is even 
alive. That’s your limbic system acting 
without input from the cognitive parts 
of your brain (frontal lobe). Thus, your 
brain is responding emotionally to a 
situation that could be potentially life 
threatening, without the benefit of cog-
nitive functions, such as thinking, rea-
soning, and consciousness.

Preadolescents are likely to respond 
emotionally to a learning situation much 
faster than rationally. getting their atten-
tion for a lesson in mathematics means 
trying to find an emotional link to the 
day’s learning objective. Starting a les-
son with, “Today we are going to study 

fractions,” will not capture their focus anywhere near as fast as asking 
whether they would rather have one third, one fourth, or one sixth of a 
pie or pizza. Whenever a teacher attaches a positive emotion to the math-
ematics lesson, it not only gets attention but also helps the students see 
mathematics as having real-life applications.

Environmental Influences on the Young Brain
Part of our success as a species can be attributed to the brain’s persistent 

interest in novelty—that is, changes occurring in the environment. The brain 

Answer to Question 7. False: 
Emotional attention comes before 
cognitive recognition. 

Figure 5.3  Based on recent studies, this chart suggests 
the possible degree of development of the brain’s 
limbic area and frontal lobes (Paus, 2005; Smith et al., 
2013; Steinberg, 2005).
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is constantly scanning its environment for stimuli. When an unexpected 
stimulus arises—such as a loud noise from an empty room—a rush of adren-
aline closes down all unnecessary activity and focuses the brain’s attention 
so it can spring into action. Conversely, an environment that contains mainly 
predictable or repeated stimuli (like some classrooms?) lowers the brain’s 
interest in the day’s lesson and tempts it to search elsewhere, such as in 
whatever technology the student is carrying, for novel sensations.

We often hear teachers remark that students are more different today 
than ever before in the way they learn. They seem to have shorter atten-
tion spans and grow bored easily. Why is that? Is there 
something happening in the environment of learners 
that alters the way they approach the learning process? 
Let’s look at Table 5.2 and review the kind of environ-
ment the brain of today’s preadolescent is facing, along 
with some of my thoughts on implications for learning. 
Note how students today are immersed in multimedia 
experiences and are acclimated to shifting among dif-
ferent tasks. They want to participate in their learning experiences. When 
students appear uninterested in a topic, it may be because the lesson is 
almost entirely teacher directed and there is little opportunity for active 
student participation. Furthermore, they may not see meaning in what is 
being presented.

In Chapters 1 and 2, we saw evidence that humans are born with an 
innate number sense that enables them to estimate small numbers of 
objects without counting (subitizing) and to understand some basic rules of 
numbers in base 10, using one-to-one correspondence with finger manipu-
lation. Their brains are excellent pattern recognizers that seek meaning in 
whatever they encounter. Will the learning environment support or hinder 
the development of these innate capabilities? As children begin their formal 
schooling, they will find out there is a lot more to learn about manipulating 
numbers. How teachers introduce numbers in the primary grades will 
affect how children view mathematics later. Will we insist that they focus 
on memorizing symbols without understanding the numbers those sym-
bols represent? Will we show them how to perform symbolic procedures, 
such as how to add fractions, in an essentially mindless fashion?

Because the human brain has superb adaptive capabilities, it can be 
coaxed to learn the procedures for manipulating symbols during the 
addition of fractions. After all, lots of school children get good grades in 
mathematics because they mastered a sequence of actions without any 
understanding of what they were doing. Many intelligent adults cannot 
add fractions, even though they could do so as children in school. What 
happened? If only they had really understood what was going on in their 
lessons on the addition process, they would never forget how to do it. 
Instead, they carried the rote procedures in working memory long enough 
to take the test. After that, the information was dropped out of working 
memory because it had no meaning.

Teaching for Meaning
We already explained in Chapter 3 the importance of teaching math-

ematics in a way that makes it meaningful for students. recognizing that 

Students today are immersed in 
multimedia, are acclimated to 
shifting among different tasks, and 
want to participate in their 
learning experiences.
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Environmental Factor Possible Implications for Learning

Family units are not as stable as they once 
were. Single-parent families are more 
common, and children have fewer 
opportunities to talk with the adults who 
care for them. Their dietary habits are 
changing as home cooking is becoming a 
lost art.

More preadolescents come to school looking to 
have their emotional needs met before they can 
focus on course content. Also, many have low 
blood sugar because they do not eat breakfast. 
Make sure they are fed, and make them feel that 
you really care about their success.

They are surrounded by media: cell phones, 
movies, computers, video games, e-mail, 
and the Internet, where they spend 17 hours 
a week, on top of the 14 hours a week they 
spend watching television.

Media are a part of their learning experience. 
Because most media are so interactive, students 
today want to participate in their learning 
experiences. use all the technology and active 
participation you can in your lessons.

They get information from many different 
sources besides school.

Students are exposed to so much information 
outside of school that they come with many 
preconceived notions about numbers, geometry, 
and problem solving—not all of them accurate. 
Find out what they know and what their interests 
are, and use that information for motivation.

Children have become accustomed to their 
information-rich environment and its 
rapidly changing messages. It divides their 
attention, so they try to pay attention to 
several things at once, but they seldom go 
into any one thing in depth.

Modern technology has not shortened children’s 
attention spans, but it has made it more difficult to 
get them to focus on one concept long enough to 
probe it in depth. That is one reason they are in a 
hurry to get the answer. By offering problems that 
can be solved in different ways, we force them to 
spend more time analyzing the situation as they 
look for various solutions.

They spend much more time indoors with 
their technology, thereby missing outdoor 
opportunities to develop the gross motor 
skills and socialization skills necessary to 
communicate and interact personally with 
others.

Look for opportunities to present and solve 
problems outdoors or in a large indoor area such as 
the gymnasium. Movement and greater social 
interaction stimulate long-term memory and create 
interest in the lesson.

Young brains have responded to technology 
by changing their functioning and 
organization to accommodate the large 
amount of stimulation occurring in the 
environment. In acclimating themselves to 
these changes, brains respond more than 
ever to the unique and different—or novelty.

Doing the unexpected is a form of novelty. Every 
day, students have a fairly accurate expectation of 
how their teachers will present lessons. Anytime 
you disrupt that expectation, you create novelty. 
How many ways can you think of to introduce 
different types of polygons?

Table 5.2  The Preadolescent Environment and Some Implications

meaning is a key criterion for long-term storage, teachers at all grade lev-
els should purposefully plan for meaning in their lessons. We also noted 
that closure was a valuable strategy for helping students attach meaning 
to their new learning. Here are two basic ideas, with examples, about how 
to teach arithmetic for meaning using models (Dehaene, 1997) and closure 
(Sousa, 2011a).
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Using Models

99 Use multiple models. Arithmetic and mathematical knowledge 
should be based first on concrete situations rather than abstract con-
cepts. Numerical representations help students develop mental 
models of arithmetic that connect to their intuitive number sense. 
For instance, a simple subtraction problem such as 8 −93 = 5 can be 
presented in different ways using concrete situations. It can be 
shown using a set-of-objects model: a box has eight toys. Take away 
three, and there are five toys left. It can also be applied to a tempera-
ture model: If it is only 8 degrees outside and the temperature drops 
3 degrees, then it will be 5 degrees. A distance model is another 
option: In a board game, a chip moving from space 3 to space 8 
requires five moves. While these examples may seem the same to an 
adult, they are new for a young student who must discover that 
subtraction is the arithmetic process applied to them all.

The use of various models is important because relying on just 
one model may not be sufficient. Suppose you introduce negative 
numbers, for example, and you ask the class to compute 3 −98. A stu-
dent who relies solely on the set-of-objects model will say that this 
operation is illogical and impossible because you cannot take eight 
toys away from three. But this problem would be logical using the 
temperature model, because most young students can comprehend 
the concept of negative degrees.
99 Select the correct model. Children encounter fractions in real life 
long before they meet them in school. They have a few concrete 
examples, such as portions of pie or cake. When first confronted 
with the problem of adding the fractions 1/2 and 1/3, they can 
relate these numbers to their intuitive notions of sections of a pie. 
They may soon realize that these two portions will add up to just 
less than 1. However, children who have no intuitive understanding 
of fractions are very likely to simply add the numerators and 
denominators and get the incorrect result: 1/2 + 1/3 = 2/5.

This result is not as far-fetched as it seems, because it does have 
a concrete representation in the real world. If a baseball player gets 
one hit out of two times at bat, his average is 1/2. In his next game, 
if he gets one hit out of three times at bat, his average is 1/3. For 
both games, his total performance is two hits for five times at bat, 
or 2/5. Here is a situation where 1/2 “plus” 1/3 equals 2/5. How 
do you explain this seeming conflict? When teaching fractions, it 
is important to make clear to students that they should have the 
“portion-of-pie” model in their head, not the “scoring-average” 
model.

Using Cognitive Closure to Remember Meaning

Closure in a lesson does not mean to pack up and move on; rather, 
it is a cognitive activity that helps students focus on what was learned 
and whether it made sense and had meaning. Attaching meaning 
greatly increases the probability that the learning will be remembered. 
remembering the meaning increases the likelihood that the learning will 
be used again in a new, future situation.
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99 One way to assist students in remembering the meaning of what 
was learned is to have them record key information in a paper or 
computer journal after each lesson in which something new was 
presented. It is important that they record the answers to these three 
questions:

9• What did we learn today? This question ensures that the students 
have made sense of what they learned.

9• How does what we learned today connect or add to something 
we already have learned? This question increases the likelihood 
that the new learning will be associated in memory with similar 
or related concepts, making future recall easier.

9• How can what we learned today help us in the future? This 
question goes to the heart of meaning. The human brain is apt to 
save information that can be useful to its owner in the future.

This task should not take more than 
a few minutes (depending on the age of 
the students). Preprinted journal pages 
or onscreen templates can make this 
activity go faster with younger students. 
Figure 5.4 suggests one way this pre-
printed page or template could be orga-
nized and shows a sample student entry.

Mathematics becomes much easier 
when students understand what it is 
about and when the symbols have mean-
ing for them and thus become a means 
to an arithmetic end rather than an end 
unto themselves. People who do not see 
meaning in arithmetic computations are 
often the ones who say they are not good 
at mathematics.

n  WHAT CONTENT SHOULD WE BE TEACHING?

Elementary and middle school teachers have expressed to me their con-
cern that there are too many elements in the mathematics curriculum at 
each grade level and not enough time to cover them. In some cases, 
important concepts are not given enough time while less important top-
ics are repeated in different grade levels. We have all heard of the “mile-
wide and inch-deep curriculum.” There was also the question of 
whether the topics at each grade level were consistent with the students’ 
cognitive growth. This lack of focus led to a widely disparate mix of 
topics that varied among grade levels and school districts. Topics that 
were taught in grade 5 in District A were presented in grade 4 in 
District B and in grade 6 in District C. Consequently, student results on 
national mathematics achievement tests in the elementary grades were 
often lower than expected, not because the students had low ability in 
mathematics but because they had not yet been taught some of the topics 
that were tested.

Figure 5.4  Sample journal entry sheet to help students 
remember meaning in a lesson

Today’s Lesson: Commutative property in 
multiplication

1. Today I learned: That I can multiply numbers in any 
order and get the same answer, so 3 × 6 × 7 is the 
same as 7 × 3 × 6. This is known as the commutative 
property.

2. This connects/adds to what I know about: The 
same rule worked when Iearned in addition that 3 + 
6 + 7 was the same as 7 + 3 + 6.

3. What I learned today can help me later when: I 
will be able to rearrange longer lists of numbers to 
add or multiply faster.
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Common Core State Standards for Mathematics
Because of this lack of consistency and our students’ disappointing 

performance in mathematics and reading on national assessments, state 
governors and school chiefs who are members of the National governors 
Association and the Council of Chief State School Officers led an effort in 
2009 to develop a consistent set of standards in K–12 mathematics (and 
English/language arts). These standards are known as the Common Core 
State Standards (CCSS; National governors Association Center for Best 
Practices & Council of Chief State School Officers, 2010) and were devel-
oped in collaboration with teachers, school administrators, and subject-area 
experts. The standards are research and evidence based, and are meant to 
reflect the skills needed for students to succeed in college, career, and life. 
In addition, they compare favorably with standards in other countries, par-
ticularly in those that consistently outscore u.S. students in international 
assessments. The standards focus on what students need to learn, but they 
do not tell teachers how they should teach; schools and teachers will decide 
how best to teach the standards. The idea is to develop higher-order think-
ing skills and to increase the rigor of instruction, especially given the com-
plaints from professionals in higher education that an increasing number 
of students need remediation in mathematics (and reading) at the beginning 
of their college studies.

Nearly all the states have adopted these standards, and some are 
already implementing them in their respective school districts. Continued 
implementation is currently facing resistance from some political groups 
who see the standards as an inappropriate overreach of the federal gov-
ernment to gain further control over what is taught in the nation’s schools. 
Supporters say that CCSS builds on the best of the already existing stan-
dards, with a few key shifts to improve rigor and critical-thinking skills. 
Furthermore, the standards may greatly benefit students with high mobil-
ity: students in Tennessee should be learning the same curriculum as those 
in Oregon or Minnesota. regardless of how these different viewpoints get 
resolved, CCSS for Mathematics (CCSS-M) currently offers a reasonable, 
research-based set of learning objectives for K–12 students that are consis-
tent with what we currently know about brain growth and development.

Key Shifts in CCSS-M

CCSS-M (National governors Association Center for Best Practices & 
Council of Chief State School Officers, 2010) includes three key shifts from 
previous standards to ensure that students are prepared in mathematics 
for college and career. These shifts provide a greater focus on fewer topics, 
link topics and thinking across grade levels, and increase academic rigor.

Greater Focus on Fewer Topics. The Common Core calls for greater 
focus in mathematics by asking teachers of mathematics to cut down sig-
nificantly on the number of topics covered and spend more time with those 
that matter most. This means focusing deeply on the major work of each 
grade as follows:

grades K–2: Concepts, skills, and problem solving related to addition 
and subtraction

grades 3–5: Concepts, skills, and problem solving related to multiplication  
and division of whole numbers and fractions
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grade 6: ratios and proportional relationships, and early algebraic 
expressions and equations

grade 7: ratios and proportional relationships, and arithmetic of ratio-
nal numbers

grade 8: Linear algebra and linear functions

This focus helps students gain a solid understanding of concepts, a high 
degree of procedural skill and fluency, and the ability to apply the mathe-
matics they know to solve problems inside and outside the classroom.

Coherence: Linking Topics and Thinking Across Grade Levels. Too 
often, students see mathematics as a disjointed collection of concepts that 
have no relationship to one another. Mathematics is a coherent body of 
knowledge made up of interconnected concepts; therefore, the standards 
for mathematics are designed around coherent progressions from one grade 
level to the next. Topics are carefully connected across grades so students 
build new understandings on the foundations they built in previous years. 
For example, in fourth grade, students must “apply and extend previous 
understandings of multiplication to multiply a fraction by a whole num-
ber” (Standard 4.NF.B.4). This extends to fifth grade, when students are 
expected to build on that skill to “apply and extend previous understand-
ings of multiplication to multiply a fraction or whole number by a fraction” 
(Standard 5.NF.B.4). Each standard is not a new event but, rather, an exten-
sion of previous learning. Coherence is also built into the standards in how 
they reinforce a major topic by using supporting, complementary topics. 
For example, instead of presenting the topic of data displays as an end in 
itself, the topic is used to support grade-level word problems in which stu-
dents apply their mathematical skills to solve problems.

Rigor: Pursuing Conceptual Understanding, Procedural Skills and 
Fluency, and Application With Equal Intensity. rigor does not mean mak-
ing mathematics harder by introducing certain topics in earlier grades. 
rather, it refers to deep, authentic command of mathematical concepts. 
To help students meet the standards, educators should pursue, with equal 
intensity, three aspects of rigor in the major work of each grade: conceptual 
understanding, procedural skills and fluency, and application.

9• Conceptual understanding: The standards call for conceptual 
understanding of key concepts, such as place value and ratios. 
Students must be able to understand concepts from a number of 
perspectives to see mathematics as more than just a set of mnemon-
ics or discrete, rote procedures.

9• Procedural skills and fluency: The standards call for speed and 
accuracy in calculation. Students must practice core functions, such 
as single-digit multiplication, to gain access to more complex con-
cepts and procedures. Fluency must be addressed in the classroom 
or through supporting materials, as some students might require 
more practice than others.

9• Application: The standards call for students to use math in situa-
tions that require mathematical knowledge. Correctly applying 
mathematical knowledge depends on students’ having a solid con-
ceptual understanding and procedural fluency.
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TEACHING PROCESS SKILLS  n

understanding how to manipulate numbers, detect and 
analyze patterns, solve problems, and apply mathemati-
cal knowledge to the real world requires the acquisition 
of certain process skills. CCSS describes five important 
processes that have long been part of mathematics edu-
cation. These processes, which come from the National 
Council of Teachers of Mathematics (2000) Principles and 
Standards for Mathematics, are (1) problem solving, (2) 
reasoning and proof, (3) communication, (4) connections, 
and (5) representation.

Three areas related to the process standards that cognitive neuroscience 
has explored to some extent are number sense, estimation (a by-product of 
subitizing), and reasoning. When planning and presenting lessons for pre-
adolescents, here are some questions teachers should ask about these skills.

Does the Lesson Enhance Number Sense?
Chapter 1 provides an in-depth look at that innate quantifying capability 

that we call number sense, particularly as it applies to cognitive development 
in a child’s early years. We have already noted that cognitive neuroscientists 
view number sense as a biologically based innate quality that is limited to 
simple intuitions about quantity, including the rapid and accurate percep-
tion of small numerosities (subitizing) and the ability to count, compare 
numerical magnitudes, and comprehend simple arithmetic operations.

As we discussed in Chapter 2, mathematics educators have a much 
broader view of number sense than do cognitive neuroscientists. Because 
the development of number sense is not limited to the primary grades, 
teachers of mathematics at all grade levels should be determining which of 
the number-sense abilities are being addressed in each lesson.

Assessing Students’ Number Sense

As teachers prepare lessons to develop number sense 
in their students, it is important for them to know the 
level of number sense that each student has already 
reached. We noted in Chapter 4 that designing a number 
knowledge test is no easy task but that researchers Sharon 
griffin and robbie Case started addressing this problem 
in the 1980s. While using their assessments for more than 
20 years, they made refinements based on their research to ensure that the 
items reflected the capabilities possessed by a majority of students at each 
age level (griffin, 2002; griffin & Case, 1997). Other assessments that have 
subsequently appeared use a similar approach.

By administering these tests, a teacher can determine how far an indi-
vidual student’s number sense has progressed at ages 4, 6, 8, and 10. The 
teacher can then use differentiated activities to develop number sense for 
students of the same age who may be at different levels of competence. Table 
5.3 shows the current version of the test for ages 6, 8, and 10, reprinted here 
with permission (griffin, 2002). The test for age 4 is provided in Chapter 4.

The Common Core State Standards 
for Mathematics (CCSS-M) shift 
the focus of instruction to 
conceptual understanding, 
procedural fluency, and the ability 
to apply mathematical concepts 
and processes to solve problems.

As teachers prepare lessons to 
develop number sense, they should 
determine what level of number 
sense each student has already 
reached.
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Level 1 (6-year-old level): Go to Level 3 if 5 or more correct.

1 If you had 4 chocolates and someone gave you 3 more, how many chocolates would you 
have altogether?

2 What number comes right after 7?

3 What number comes two numbers after 7?

4a Which is bigger: 5 or 4?

4b Which is bigger: 7 or 9?

5a This time, I’m going to ask you about smaller numbers. Which is smaller: 8 or 6?

5b Which is smaller: 5 or 7?

6a Which number is closer to 5: 6 or 2? (Show visual array after asking question)

6b Which number is closer to 7: 4 or 9? (Show visual array after asking question)

7 How much is 2 + 4? (OK to use fingers for counting)

8 How much is 8 take away 6? (OK to use fingers for counting)

9a (Show visual array of 8 5 2 6 and ask child to point to and name each numeral.) When you 
are counting, which of these numbers do you say first?

9b When you are counting, which of these numbers do you say last?

Level 2 (8-year-old level): Go to Level 3 if 5 or more correct.

1 What number comes 5 numbers after 49?

2 What number comes 4 numbers before 60?

3a Which is bigger: 69 or 71?

3b Which is bigger: 32 or 28?

4a This time I’m going to ask you about smaller numbers. Which is smaller: 27 or 32?

4b Which is smaller: 51 or 39?

5a Which number is closer to 21: 25 or 18? (Show visual array after asking question)

5b Which number is closer to 28: 31 or 24? (Show visual array after asking question)

6 How many numbers are there in between 2 and 6? (Accept either 3 or 4)

7 How many numbers are there in between 7 and 9? (Accept either 1 or 2)

8 (Show card: 12 54) How much is 12 + 54?

9 (Show card: 47 21) How much is 47 take away 21?

Level 3 (10-year-old level):

1 What number comes 10 numbers after 99?

2 What number comes 9 numbers after 999?

3a Which difference is bigger: the difference between 9 and 6 or the difference between 8 and 3?

3b Which difference is bigger: the difference between 6 and 2 or the difference between 8 and 5?

4a Which difference is smaller: the difference between 99 and 92 or the difference between 25 
and 11?

4b Which difference is smaller: the difference between 48 and 36 or the difference between 84 
and 73?

5 (Show card: 13 39) How much is 13 + 39?

6 (Show card: 36 18) How much is 36 − 18?

7 How much is 301 take away 7?

Table 5.3  Number Knowledge Test for 6-, 8-, and 10-Year-Olds

SOurCE: griffin (2002). reprinted with permission of the author.
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Developing Multidigit Number Sense

Students in primary grades have developed a notion of counting but 
have a difficult time studying subject matter that contains large numbers, 
such as the population of a country, distances to the planets and stars, and 
the cost of running a space mission. Although they are fascinated by large 
quantities, they have a limited understanding of them and often express 
exaggerated amounts in their conversation—as in, “There were thousands 
of people at my birthday party.” When students lack an understanding of 
large numbers, they cannot reason effectively with the information they 
are given. In this situation, teachers need to develop the students’ ability 
to process large numbers—that is, develop their multidigit number sense.

The concept of multidigit number sense refers to the 
students’ understanding of, and flexibility in, using num-
bers of more than one digit. It includes intuitive feelings 
for large numbers and their uses, as well as the ability 
to make judgments about the reasonableness of mul-
tidigit numbers in different problem situations (Jones, 
Thornton, & Putt, 1994). As can be expected, research 
studies show that the progressing brain development 
of grade 4 students allows them to deal with three-digit 
and larger numbers more easily than can students in grade 2. This seems 
to be because manipulating numbers greater than two digits requires both 
sequential and parallel processing, a more sophisticated cerebral strategy 
(Mann, Moeller, Pixner, Kaufmann, & Nuerk, 2012; Meyerhoff, Moeller, 
Debus, & Nuerk, 2012). Because of the complexity of this topic, teachers 
should select meaningful activities that help students make sense of how 
large numbers are used in context.

Diezmann and English (2001) have found success working with stu-
dents in the primary grades by selecting activities that help the students 
read large numbers, develop meaningful examples for large numbers, and 
understand large numbers that represent quantity, distance, and money.

99 Reading large numbers. In this activity, students are introduced to 
the pattern for reading large numbers. Numbers of increasing magni-
tude are displayed for the students, starting with the ones column, 
progressing to the thousands column, and ending with the millions 
column. The name of each column is added to facilitate students’ 
reading.
99 Developing physical examples of large numbers. Concrete exam-
ples help students understand the nature of ever-increasing num-
bers. One activity to show visually the quantities 1, 10, 100, and 1,000 
is to use colored sprinkles (confectionery decoration) on buttered 
bread that is cut into four pieces. The students add 1 sprinkle on the 
first piece of bread, 10 sprinkles on the second piece, about 100 sprin-
kles on the third piece (by estimating groups of 10), and about 1,000 
sprinkles on the final piece (by estimating groups of 100).

The sprinkles activity provides a meaningful example for the students’ 
understanding of the relative magnitude of numbers to a thousand. Some 
students may extrapolate beyond the physical examples and observe that 
you probably cannot fit 1 million sprinkles on one piece of bread.

Multidigit number sense allows 
students to acquire an 
understanding of large numbers 
and to make judgments about 
their reasonableness in different 
problem situations.
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99 Appreciating large numbers in money. What size of container 
would be needed to carry a million dollars? Before solving this prob-
lem, the students should complete two tasks. The first involves 
making posters that are labeled with the amounts $1, $10, $100, 
$1,000, $10,000, $100,000, and $1,000,000. The students identify items 
in magazine and newspaper advertisements that cost roughly each 
of these amounts and then glue the pictures of items under the cor-
responding amounts. This activity raises students’ awareness of the 
monetary value of expensive items. In the second task, the students 
calculate how much money is in a Monopoly game.

After completing these tasks, the students tackle the main problem of 
determining the container size needed to hold a million dollars. The stu-
dents should use the Monopoly money to help them solve this problem. 
No containers are provided, as the students are encouraged to model dif-
ferent container sizes with their hands. Through discussion, the students 
should realize that there is more than one answer to the problem. For 
instance, the size of the container is dependent on the denomination of the 
notes that are used to make a million dollars. Some students may observe 
that a larger-sized container would be required if notes of low value were 
used and vice versa.

99 Appreciating large numbers in distance. How far away are the bright-
est stars? The purpose of this activity is to develop the students’ under-
standing of large distances within the context of space travel. One 
approach is to have the students make 10 paper stars and label them 
with the names of the 10 brightest stars in the sky, their brightness, and 
their distance from Earth. The stars can be fastened onto upturned 
paper cups for ease of mobility. The students initially arrange the stars 
by order of brightness, beginning with the brightest star.

Next, consideration is given to the stars’ distances from Earth. After the 
students discuss the notion of measuring stellar distances in light-years, 
they rearrange the stars in order from the closest to Earth to the most dis-
tant. Extend the activity by asking the students to discuss whether there is 
a relationship between the brightness of a star and its distance from Earth.

To represent the stars’ relative distances from Earth in light-years, draw 
a timeline and mark it in 100s, from 0 to 1,000. Ask the students to position 
each star at the correct number of light-years from Earth. Then they can 
discuss the fact that when we see a star today, the light from that star was 
actually emitted many years ago. Older students may be able to connect 
the year when light was emitted from particular stars to significant historic 
events on Earth. In this way, students make links between their mathemat-
ical understanding and their scientific knowledge.

Does the Lesson Deal With Estimation?
A close correlate to number sense is estimation.
Estimation is an extension of the brain’s innate ability to subitize. 

Estimating how many animals to hunt or how many crops to plant to feed 
the village was a survival skill. Our ancestors were good at it. Are we? 
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Mathematics educators often comment on the poor estimation skills of stu-
dents. A frustrated teacher once told me that a middle school student felt 
very pleased with himself after calculating the size of a molecule to be just 
over 1 meter in length. The unreasonableness of this measurement never 
occurred to him. Yet, ironically, youngsters often successfully use estima-
tion skills outside of school. For example, they can quickly make the com-
putations needed to cross a street with traffic, decide if a sibling is sharing 
equally, or accurately throw, catch, or hit a ball in sports. Poor estimation 
skills, it seems, are more likely to appear inside school when dealing with 
arithmetic estimation, and they can result from at least three factors.

9• First, students at an early age are programmed to get the exact 
answer to a problem; so they have few experiences with estimation. 
Furthermore, activities that ask students for both an estimated and 
exact answer undermine the value of estimation. Why should stu-
dents estimate if they are going to find the exact answer, too?

9• Second, when students use a calculator in their work, they assume 
the calculator’s answer must be right, with no thought that they 
could have inadvertently entered an incorrect number or a mis-
placed decimal. Consequently, they rarely reflect on the reasonable-
ness of their answers.

9• Third, students want to get the answer quickly and avoid estimation 
because it often takes more time.

Activities involving estimation should begin as early 
as possible in the primary grades. However, they should 
not be isolated as a single unit of instruction but, rather, 
should be taught in the context of other mathematics 
skills throughout all grade levels. If we want to empha-
size the value of estimation, then students should be 
given assignments that require them only to estimate.

Methods of Estimation

The common methods of estimation include (1) rounding, which 
involves finding a number to the nearest 10, 100, or 1,000, or the nearest 
one, tenth, hundredth, or thousandth; (2) front-end estimation, which 
entails computing the higher place values or leftmost digits, then adjusting 
the rounded sum using the lower place values or digits to the right; and 
(3) clustering, which involves grouping numbers and is useful whenever 
a group of numbers cluster around a common value. These methods of 
estimation are most helpful when students are doing computational tasks. 
They can check whether their answers come close to the estimated answer 
and use it to determine if their answer makes sense.

Students need to be aware that methods of estimation may not work in 
the real world. If you want to buy a shirt for $17.45, rounding down to the 
nearest dollar will not give you enough money to buy it. This is also true 
for estimations related to measurement. If you need exactly 3 1/4 yards of 
fabric to make a dress, you will not succeed if you round down to just 3 
yards. Thus, rounding down for estimations of quantity in real-life situa-
tions is often impractical. So what other types of estimation are available?

Estimation is an extension of the 
brain’s innate ability to subitize. 
Estimating how many animals to 
hunt or how many crops to plant 
to feed the village was a survival 
skill. Our ancestors were good at it. 
Are we?
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Types of Estimation

Taylor-Cox (2001) suggests four distinct types of estimation:

1. True approximations are used when an estimate is acceptable, espe-
cially when dealing with very large numbers. Is it really important 
to know that the average distance from Earth to the sun is 92,955,630 
miles, or will 93,000,000 miles suffice? True approximations are 
more applicable to problems in the intermediate and upper grades. 
unfortunately, the numbers that youngsters work with in the pri-
mary grades are typically smaller and less complex than the num-
bers that lend themselves to true approximations. Making true 
approximations has little advantage with simpler numbers because 
we can easily calculate to ensure that we know the exact amount.

2. Overestimating is used when rounding up might be beneficial, 
such as overestimating the amount of food to buy for a child’s 
birthday party. The major drawback for this option is that it may be 
wasteful if you get way too much. But if you underestimate, some 
kids may not get enough food.

3. Underestimating is used when rounding down is applicable. This 
can be helpful in certain situations. For example, better to underes-
timate the amount of profit a business will make so as to avoid 
overspending.

4. Range-based estimations broaden the applicability and under-
standing of estimation. Some situations call for underestimating 
and some for overestimating. range-based estimation involves 
thinking about quantity in terms of the upper end and the lower 
end that encompass an estimate: “What are the minimum and max-
imum quantities I need for this?” In the primary grades, teachers 
can design mathematical tasks that are productive and worthwhile 
by using range-based estimation, thereby encouraging students to 
become better estimators.

Meaningful Estimation Activities

For estimation activities to be meaningful rather than futile, Taylor-Cox 
(2001) suggests that the activities include the following five components:

99 Purpose. Whenever you ask students to estimate a number, give 
them a reason for doing so. These contexts offer a purpose and give 
students a reason to engage in real-life mathematical problem solv-
ing. Otherwise, students may ask, “Who cares?” Making the task 
relevant, interesting, and significant invites students to care and, 
consequently, to engage in mathematics. Offering a purpose does 
not ensure that the “Who cares?” response will disappear. But by 
listening to students and reflecting on their perspectives and feel-
ings, you can manage the continuing challenge of providing mean-
ingful mathematics.
99 Referents (benchmarks). To help students succeed, give them a 
referent or benchmark they can use when making estimations. For 
instance, if you ask students to estimate the number of marbles in a 
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jar, it would be helpful to provide a smaller container with a known 
number of marbles of the same size. This container gives students a 
point of reference on which to base their estimates for the larger jar.
99 Pertinent information. Clarify the actual mathematical problem to 
be solved so the students can decide what type of estimation is most 
appropriate. For example, students do not need to estimate the num-
ber of marbles in a jar if they are going to open the jar and count the 
actual number of marbles. As explained earlier, doing so counteracts 
the purpose of, and time spent on, estimating. rather, you should 
ask whether estimating or counting to find out the actual number is 
more appropriate. Which methods will be used to check for accu-
racy? What kind of information is pertinent to the given mathemat-
ical situation?
99 Diverse experiences. Students need numerous and diverse experi-
ences with estimation in the context of other content areas, such as 
in time and measurement. Primary-grade students often have diffi-
culty estimating time. Teachers are no help when they attach inaccu-
rate time constraints to their statements. When we say, “I will be 
there in just a minute” or “Wait one second,” we really mean, “I will 
be there when I can” or “Wait indefinitely.” Perhaps asking students 
to time the teacher would encourage them to check estimates of time 
while enhancing their experiences and improving their precision 
with estimating time.

Young students work on measurement skills by comparing lengths, 
weights, and capacities. For estimating size they use comparative language, 
such as larger, smaller, heavier, and lighter. Figure 5.5 shows two examples of 

Figure 5.5  These are sample activities that develop estimation skills in different grade 
levels.

Intermediate grades: Estimate how many square units are in each of the four shapes.

= 2 Square Units

Figure 1 (Balls)

1 2 3 4

1 2 3 4

5

Primary grades: Which balls in Figure 1 can fit through the holes in Figure 2?

A B C D E

Figure 2 (Holes)
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activities for different age groups that require estimating size. In these 
types of tasks, students engage in estimation that is related to size rather 
than quantity and recognize that estimation is an important tool for dealing 
with real-life mathematical experiences.

99 Range-based techniques. Estimation should involve using mathe-
matical skill to predict information within a reasonable range. If, for 
example, the actual number of a quantity or measurement is in the 
70s, an appropriate estimation may be in a range of 10 or less. But if 
the actual number is in the 700s, an appropriate range may include 
up to 60 or 70 numbers. Although suitable ranges vary with the prob-
lem situation, the aim is to estimate within an appropriate range. 
However, many students still want to estimate the precise amount. 
To combat this need for the right answer, it may help to use terminol-
ogy such as the actual answer. A range of about 10 to 20 per hundred 
is reasonable. This type of ranged-based estimation is particularly 
helpful in situations that call for approximating a quantity that may 
need to be overestimated.

Estimation experiences improve the students’ estimation skills, increase 
their confidence in their level of mathematical expertise, enhance their 
perception of the value of mathematics, and improve their mathematics 
achievement test scores (Booth & Siegler, 2006). Each estimation activity is 
an opportunity for teachers to connect mathematics with the everyday 
lives of students.

From Memorization to Understanding
We discussed earlier in this chapter the importance of teaching chil-

dren the meaning of what they are doing when they manipulate numbers 
during arithmetic computations. Meaning not only increases the chances 
that information will be stored in long-term memory but also gives the 
learner the opportunity to change procedures as the nature of the problem 
changes. Without meaning, students memorize procedures without under-
standing how and why they work. As a result, they end up confused about 
when to use which procedure. Teachers who use primarily a declarative 
approach emphasize not only arithmetic facts but how they are related to 
one another and connected to other concepts the students have already 
learned. They use elaborative rehearsal and provide for cognitive closure.

Are We Teaching Elementary-Grade  
Arithmetic for Understanding?

In some schools, we teach too much arithmetic through procedural 
approaches and very little with declarative methods. Could it be because 
that is how most teachers learned arithmetic themselves? Could this 
explain why arithmetic instruction in the primary grades has not changed 
very much over the years? We teach students a procedure for solving com-
putation problems, which they then repeatedly practice (procedural mem-
ory). But the practice does not result in computational fluency because we 
rarely talk about how and why the procedure works. Consequently, when 
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we give the students a problem to solve, they reflexively 
draw on their knowledge of the practiced procedure and 
apply that procedure quickly and efficiently, but with lit-
tle understanding of the mathematical concepts involved.

Of course, students need to learn some basic proce-
dural activities, such as memorizing a short version of 
the multiplication tables mentioned in Chapter 2, along 
with a few number facts. But the emphasis should be on showing students 
(at the earliest possible age) why they are performing certain arithmetic 
operations. The more arithmetic we can teach through declarative pro-
cesses involving understanding and meaning, the more likely students will 
be to succeed and actually enjoy mathematics.

Example of a Declarative-Based Approach

A declarative-based approach focuses on capitalizing on the students’ 
innate number sense, intuitive notions of counting by finger manipula-
tion, and an understanding of a base-10 model for expressing quantities. 
It includes allowing students to create their own procedures for arith-
metic computations so they truly understand the algorithms involved. 
researchers have long recognized, and recent studies confirm, that stu-
dents in the primary grades are capable of constructing their own meth-
ods of computation (Carpenter, Franke, Jacobs, Fennema, & Empson, 1998; 
Fuson et al., 1997; guerrero & Palomaa, 2012; National Science Teachers 
Association, 2014). In doing so, primary-grade students pass through three 
predictable developmental levels:

9• At the first level, students deal with all the quantities in a problem. 
To add a group of objects, they count out separate groups of objects, 
combine the groups, and then recount the total. To subtract, students 
count out and separate a group, and then recount what is left.

9• At the next level, students consider all parts of the problem before 
solving it. They demonstrate this ability by counting on from, or 
back to, a quantity to determine an answer.

9• At the most advanced level, students use abstract knowledge and 
consider quantities in flexible ways. They make use of what they 
already know to solve new problems. For example, students might 
use their prior knowledge to realize that 6 + 7 is equal to 6 + 6 + 1, 
or that 7 + 9 is equal to 6 + 10, by decomposing and recombining 
tens and ones.

understanding the development of mathematical thinking in young 
students allows teachers to anticipate procedures that students are apt to 
invent, and find ways to support students as they progress through the 
different levels. When teachers encourage students to invent alternative 
problem-solving strategies, the learning objectives are different from those 
that result from instruction using standard memorization procedures. The 
emphasis is on making sense and finding meaning in the methods that 
students create and successfully use (Scharton, 2004).

Mathematics educator Susan Scharton (2004) has been a strong advocate 
for giving primary-grade students opportunities to solve computational 

To develop understanding and 
meaning, teachers should show 
students (at the earliest possible 
age) why they are performing 
certain arithmetic operations.



114 How tHe Brain Learns MatHeMatics

problems, create their own procedures for solving them, and explain their 
methods to others. She found that this approach improved the students’ 
accuracy, as well as their understanding of the methods they had created. 
When she asked students to explain their methods, their understanding 
of their own procedures deepened as a result of this elaborative rehearsal. 
Listening to the methods that others had used prompted some students to 
experiment with other students’ methods of computing.

One example that Scharton (2004) has used to demonstrate how stu-
dents can resort to different solution strategies involves the following 
problem: “Paul has 28 markers. He got 34 more. How many does he have?” 
One second-grade student wrote 34 under 28 and attempted classic addi-
tion of two-digit numbers in a column. Here is what he wrote down and 
then stopped:

   1
  28
+ 34
  2

He tried to follow a standard procedure that typically begins by com-
bining the numbers in the ones column. However, he did not understand 
how this step in the standard procedure works when the resulting sum is 
a two-digit number: He was unsure about where to place which digit. He 
treated each digit separately but did not associate each digit with a value. 
He was trying to use an efficient procedure that he did not understand and 
lacked confidence in his method because he could not recall the steps he 
thought he had learned. If he had devised his own solution strategy, he 
would have been forced to rely on his own understanding of the numbers 
and operations he was using, rather than on someone else’s.

Another second-grade student, who came from a class that encour-
aged sharing problem-solving approaches, used a different method. She 
was able to accurately and efficiently solve the problem using the method 
she described in Figure 5.6. Her process demonstrated essential aspects 
of number sense and place–value relationships. She decomposed numbers 
into tens and ones, and then recombined these parts. She understood that 
each digit in a two-digit number has a different and separate value. She 
recognized the commutative and associative properties of the problem, 
and she created her own sequence of steps to follow that were comfortable 
and meaningful to her. Not only could she use a method that made sense, 
but she could clearly explain in writing why and how her method worked.

An Instructional Model for First and Second Grade. Hoping to 
encourage young students to develop their own procedures for solving 
arithmetic problems, Scharton (2004) devised an instructional model in 
which students in first and second grade alternate between small-group 
sessions and whole-class discussions.

99 The model focuses on the students’ invention of meaningful compu-
tation methods and how they can effectively communicate these 
methods to one another through discussions and written work. 
Here’s how it works:
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9• Small-group work. Students first participate in a small, heteroge-
neous group of four to six students every week, usually during 
choice time. give the group an arithmetic problem to solve. 
Meanwhile, the rest of the class works on activities that expose 
students to different types of problems and promote the develop-
ment of various invented strategies for solution. In the small 
group, students independently solve the problem using methods 
they have invented or have learned from other students. They 
explain their methods to other group members (elaborative 
rehearsal) and discuss how their methods are similar to and dif-
ferent from one another, as well as the ways the methods are 
related. Students write down the ways they solved the problem.

9• Whole-class discussion. Following the small-group session, the 
whole-class discussion allows students to explain a range of 
methods to the larger group. Class discussions should focus on 
the efficiency of each method, the relationships between the meth-
ods, ways to effectively represent and communicate them, and 
how and why each method is successful. After the whole-class 
discussion, give students another similar problem to solve to 
determine the degree of transfer—that is, which strategies the 
students will apply to solve the new problem. The students repeat 
this cycle weekly. Figure 5.7 illustrates this instructional model.

Too often, the goal of arithmetic instruction in most primary class-
rooms is the accurate and rapid use of a teacher-demonstrated algorithm. 
Scharton’s model, however, helps young students build fluency by invent-
ing their own computation procedures, explaining these procedures 
clearly to their peers, and analyzing their procedures for relevancy, effi-
ciency, and effectiveness.

Other Strategies to Enhance Understanding

9• Connecting new learning to past learning. The brain is more likely 
to understand new learning if it can link it to something already in 

Figure 5.6  A second-grade student describes her method for solving the 
addition of a pair of two-digit numbers. (Adapted from Scharton, 2004)

What I did was I put 20 from 28 together with 30 from 34 and got
50. I put 50 and 8 together and 58. Then I broke up 4 into 2
and 2. Then I put 58 plus one of the twos and got 60. I put 60
plus the other two and then I got 62.

20 + 30 = 50
50 + 8 = 58
58 + 2 = 60
60 + 2 = 62

28 34+ 62

43020 8

50 58 2 2

6260

=
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Figure 5.7  This instructional model by Scharton (2004) for first and second 
grade encourages students to develop strategies in small-group settings and to 
share them in whole-class discussions. (used by permission of the author)

Small-Group Guided Work

Solve problem.
Elicit, communicate,

connect, and
represent strategies.

Choice Time Activities

Whole-Class Discussion

Range and analysis of strategies.
Ways to represent and

communicate.
Related problem: transfer

its long-term memory. This is known as transfer and is one of the 
most powerful learning principles. Transfer also refers to how stu-
dents can use their new learning in new situations. Whenever pos-
sible, teachers should look for ways to activate the students’ relevant 
background knowledge before introducing a new mathematical 
concept. using a K-W-L chart can often facilitate this process. 
Students become aware of what they already know (K), determine 
what they want to know (W), and discover ways of applying what 
they learned to new settings (L). The K-W-L chart will also inform 
the teacher about what the students already know, which may allow 
skipping past certain topics and make more time to delve deeper 
into the new and essential learnings.

9• Predicting patterns. remember that the brain is programmed to 
detect patterns. Mathematics is fundamentally a study of patterns, 
from Pascal’s triangle to the Fibonacci sequence. Help students use 
this innate pattern-seeking ability by giving them some information 
about a new topic and asking them to identify any patterns. For 
example, in the lower grades, ask the children to shout out the miss-
ing number in a sequence—say, the times table: 4, 8, 12, 16, 20, 28, 32, 
. . . The first student to call out “24” wins. For upper grades, use 
more complicated number patterns, such as 1, 2, 4, 7, 11, 16, 22, . . . 
(adding one more each time: 1 + 1 = 2, 2 + 2 = 4, 4 + 3 = 7, 7 + 4 = 11, 
11 + 5 = 16, 16 + 6 = 22, etc.), or 32, 16, 8, 4, 2, 1, 1/2, 1/4, 1/8, . . . 
(halving each time).

9• Questioning. We discussed in Chapter 4 the value of using ques-
tioning to encourage students to reflect more on the concepts they 
are learning. In addition to the questions teachers ask, students 
should get into the habit of asking themselves these important ques-
tions when moving into a new area: What do I already know (K)? 
What do I need to find out (W)? Are there any special conditions to 
consider (C)? Modify the K-W-L chart to a K-W-C chart for this activ-
ity so students can keep a written or computer record of their prog-
ress toward the learning objective.

9• Visualization. Students can often get a better understanding of the 
complexities of a problem if they can visualize it. This makes it eas-
ier to represent the mental image on paper or on a screen. 
Furthermore, this strategy helps teachers move from the concrete to 
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the abstract when dealing with higher mathematics. Studies show 
that regularly using visual images increases student performance in 
mathematical problem solving (e.g., van garderen, 2006). The visu-
alization strategy seems to be particularly helpful in improving the 
problem-solving accuracy of students with mild learning disabilities 
(Krawec, 2014).

Multiplication With Understanding
An elementary school principal once told me about conversations she 

had with parents regarding the third-grade mathematics curriculum. The 
parents felt that there should be heavy emphasis on memorizing multi-
plication facts. To them, third-grade mathematics should include memo-
rizing facts through drill and practice, worksheets, flash cards, and other 
memorization aids. But this school principal was promoting an approach 
that encouraged problem solving and understanding. She explained to the 
parents that this approach would help children remember the processes 
of multiplication for a much longer time. She recounted from her own 
experiences that students who had mastered their multiplication tables 
during third grade were barely able to remember them the following 
year. Apparently, memorizing multiplication facts during third grade had 
accomplished little because it did not build understanding of multiplica-
tion concepts. Despite having experienced a “back-to-basics” curriculum, 
they still did not know what multiplication was.

Students typically develop the ability to add quite naturally, but mul-
tiplication is much more complex than addition and requires guidance 
to understand the actions that are important elements of the process. By 
memorizing facts before developing an understanding of multiplication, 
students get a mistaken impression about the need to understand what it 
means to multiply and the situations in which multiplying is the appropri-
ate thing to do.

So what does it mean to understand multiplication? The mathematics 
education literature suggests that a basic understanding of multiplication 
requires four interconnected concepts: (1) quantity, (2) problem situations 
requiring multiplication, (3) equal groups, and (4) units relevant to mul-
tiplication. Most of these understandings can develop from experiences 
using counting and grouping strategies to solve meaningful problems in 
the early grades (Smith & Smith, 2006).

9• Understanding quantity. The meaning of quantity often gets over-
looked in addition, but it provides an important foundation for 
understanding multiplication. A quantity is a characteristic of 
objects that can be counted or measured, and it consists of a number 
and a unit. Seven dollars is an example of a quantity because it 
includes both the number 7 and the unit dollars. Number words (e.g., 
seven) are often used to describe the number portion of a quantity, 
but other representations, such as pictures (e.g., seven bills repre-
senting seven dollars), can be used. In addition to the number, a unit 
must be specified to provide the complete quantity.

A count is a particular type of number that is part of the quan-
tity characteristic of collections of objects. It answers the question, 
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“How many?” Counting begins with counting by ones and pro-
gresses to skip counting using larger, equal-sized units. Students 
need sufficient experience in counting collections of objects to clearly 
understand these two aspects of quantities and the various ways of 
representing them. A measure (e.g., length) is a particular type of 
quantity that is a continuous characteristic of individual objects. 
Measuring includes selecting an appropriate unit of measure (e.g., 
an inch) and determining the number of these units in the continu-
ous characteristic of the object. Thus, to fully understand quantity, 
students need to understand the differences between discrete and 
continuous quantities, recognizing that they use both different units 
and different processes (counting vs. measuring) to determine the 
number portion of the quantity.

9• Understanding problem situations requiring multiplication. 
Students need experience with interpreting word problems that 
require multiplication and distinguishing them from other situa-
tions requiring addition, subtraction, or division. Students also need 
to understand the relationships between multiplication and division 
and be able to find each of the three possible unknown quantities 
when provided with any two of these three pieces of information 
(e.g., 3 × 7 = ? or 3 × ? = 21).

9• Understanding equal groups. Students need experience with 
arranging objects into groups to understand the role of equal groups 
in multiplication and the efficiency of multiplying equal groups 
instead of counting all the objects in the problem. Number sense 
includes the ability to compose and decompose numbers. reasoning 
in multiplication includes using factors and multiples as equal 
groups when composing and decomposing numbers, instead of 
using adding. For example, eight objects can be arranged into 
groups representing multiplication (one group of eight, two groups of 
four, four groups of two, or eight groups of one) rather than groups 
representing addition (one and seven, two and six, four and four, and 
eight and zero). Visual images are particularly helpful in under-
standing grouping (e.g., the difference between a disorganized col-
lection of 60 items and the same 60 items organized into five groups 
of 12 items or an array of 6 rows and 10 columns).

9• Understanding units relevant to multiplication. Students need expe-
rience with counting and arranging objects into groups to understand 
the differences between various kinds of units that are relevant to 
multiplication. Addition most often involves the joining of unequal 
quantities of the same unit (e.g., adding 35 cents and 24 cents). 
However, the two factors in multiplication most often refer to differ-
ent units (e.g., multiplying 12 dogs by four legs for each dog). Students 
also need to understand how units are sometimes transformed in 
multiplication. For example, adding 7 oranges to 7 oranges makes 14 
oranges, but multiplying 7 inches by 3 inches equals 21 square inches.

Area Model With Base-10 Blocks

Another way to increase the students’ deeper understanding of the 
process of multiplication is to show different ways multiplication can be 
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carried out by hand. One method uses the area model along with base-10 
blocks as an engaging, hands-on tool for exploring single and multidigit 
multiplication. The process can be shown in various ways. Figure 5.8 offers 
some examples using graph paper and the base-10 blocks.

The task is to multiply 14 by 12. Ask students to do so on paper, using 
the traditional algorithm they learned. This usually produces the two 
results shown on the left in Figure 5.8, depending on which algorithm the 
student has learned. Then ask the students to decompose the two num-
bers by place value and to mark out the rectangular area represented by 
the partial numbers, either by drawing the base-10 area on graph paper or 
creating the area with base-10 blocks. Adding up the areas, 100 + 40 + 20 + 
8 = 168; so 14 x 12 = 168.

Area models can also be used to show the distributive property of 
mathematics. For example, Figure 5.9 illustrates the distributive property 
of 3 x 9 using different area combinations.

Does the Lesson Develop Mathematical Reasoning?
CCSS (National governors Association Center for Best Practices & 

Council of Chief State School Officers, 2010) calls for increased attention to 
developing mathematical reasoning as early as first grade, where students 
should be able to solve two-digit addition and subtraction problems with 
strategies they understand and can explain. Mathematical reasoning also 
includes spatial and quantitative concepts as well as metacognition, which 

Figure 5.8  The box on the left shows the traditional algorithms used to multiply multidigit numbers. 
The graph on the right uses a model that represents the numbers by area, giving the students a deeper 
understanding of the process of multiplication.
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is thinking about what you are doing and why you are doing it, and mak-
ing adjustments as needed.

Mathematical competence involves a blend of skills, knowledge, proce-
dures, understanding, reasoning, and application. But too often, instruction 
focuses on skills, knowledge, and performance—that is, what students know 
and are able to do. Thus, students learn to use routine methods, leading to 

superficial understanding. We do not spend enough time 
on reasoning and deep understanding—that is, why and 
how mathematics works as it does. Knowledge and per-
formance are not reliable indicators of either reasoning 
or understanding. For deep understanding, the what, the 
why, and the how must be well connected. Then students 
can attach importance to different patterns and engage in 
mathematical reasoning.

Can Preadolescents Do Mathematical Reasoning?

Have the brains of young children developed sufficiently to carry out 
reasoning skills? The answer: yes, but it depends on which reasoning skill. 
By the age of 6, most students can demonstrate deductive reasoning using 
concrete objects. Abstract reasoning, on the other hand, is possible but more 
difficult and becomes easier in the early teen years and over the course of 
adolescence as the brain’s frontal lobes mature. Teachers of preadolescents 
can find many activities in books and on the Web designed to enhance rea-
soning skills. using activities that move students from concrete to abstract 
reasoning in effect also moves them from arithmetic thinking to algebraic 
thinking (Carpenter & Levi, 2000; Hewitt, 2012).

Too often, mathematics instruction 
focuses on skills, knowledge, and 
performance but spends little time 
on reasoning and deep 
understanding.

Figure 5.9  These three rectangles illustrate the various ways to multiply 3 x 9 using the 
distributive property.

(__+__) x __ = __ + __ = __

2

+

9

3

2 + 7

3 x (__+__) = __ + __ = __

9

3

__ x __ = __

1
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99 Here is one example: Show students in the first and second grade a 
series of number sentences. Ask them to discuss the series and to 
make a general statement (conjecture) about that series.

Number Sentences Conjecture by Students

7 −99 = –2  When you subtract a number bigger than your 
starting number,

10 −914 = –4  you will always get a negative number for your 
answer.

15 −920 = –5  Then: 7 −916 = ?

8 + 0 = 8  Zero plus a number equals that number.

11 + 0 = 11 Then: 19 + 0 = ?

0 + 15 = 15 

6 −96 = 0  If you subtract the same number from the same 
number, you

12 −912 = 0 will get zero.

14 −914 = 0 Then: 21 −921 = ?

4 −90 = 4  If you subtract zero from a number, you will end 
up with the

13 −90 = 13 same number.

21 −90 = 21 Then: 18 −90 = ?

3 + 3 = 6  If you add two identical whole numbers that are 
higher than

6 + 6 = 12 zero, you will get an even number.

11 + 11 = 22 Then: 14 + 14 = ?

5 + 3 = 8  If you add two odd whole numbers, you will get 
an even

11 + 7 = 18 number.

15 + 9 = 24 Then: 13 + 17 = ?

8 + 3 = 11  If you add an even and an odd whole number, 
you will always

14 + 7 = 21 get an odd whole number.

18 + 9 = 27 Then: 6 + 11 = ?

Interpreting the Equal Sign

Although most students in the primary grades can come up with 
these conjectures, they have difficulty interpreting the equal sign as 
expressing a relationship. Even into the upper elementary grades, most 
students interpret the equal sign as an operational symbol meaning “find 
the total” or “put the answer here.” When asked to define the equal sign, 
students not only provide operational interpretations but also believe 
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that interpretations such as “the total” and “the answer” are more accu-
rate than interpretations such as “equal to” or “two amounts are the 
same” (McNeil & Alibali, 2005; Stephens et al., 2013). One study provided 
evidence that age alone cannot account for students’ operational—rather 
than relational—interpretation of the equal sign. When researchers asked 
first- through sixth-grade students what number should be placed on the 
line to make the number sentence 8 + 4 = __ + 5 true, they found that 
fewer than 10 percent in any grade gave the correct answer. Further, that 
performance did not improve with age (Carpenter, Franke, & Levi, 2003). 
The obvious question here is whether the preadolescents’ difficulties in 
interpreting the equal sign are due to immature cognitive structures or to 
their earlier experiences with arithmetic.

Several studies were conducted to find the answer to this question. A 
case study of a second-grade classroom provided a systematic examination 
of the contexts in which students actually see the equal sign. The research-
ers analyzed two mathematics textbooks used by students in the classroom. 
They found that the equal sign was nearly always presented in the opera-
tions-equal-answer context (e.g., 4 + 5 = __). This finding is in line with the 
belief that students’ understanding of the equal sign can be explained by 
their experiences (Seo & ginsburg, 2003) and to some extent by their culture 
(Jones, Inglis, gilmore, & Dowens, 2012).

In an examination of four popular middle school 
mathematics textbooks, researchers found that the text-
books frequently present the equal sign in an opera-
tions-equal-answer context, and rarely present the equal 
sign in an operations-on-both-sides context. This practice 
likely reinforces the students’ interpretation of the equal 
sign as an operational symbol. Thus, middle school math-
ematics textbooks may not be designed to help students 
acquire a relational understanding of the equal sign. 

Although the proportion of equal signs presented in an operations-equal- 
answer context declined across the middle grades, even in eighth grade 
many students continue to interpret the equal sign as an operational symbol 
(McNeil et al., 2006).

researchers found that students in middle school did not exhibit a rela-
tional understanding of the equal sign unless they had contextual support. 
Seventh-grade students were randomly assigned to view the equal sign in 
one of three contexts: alone (=), in an operations-equal-answer equation (4 
+ 5 + 6 + 4 = __), and in an operations-on-both-sides equation (4 + 5 + 6 = 
4 + __). Only 11 percent of the students in the alone and only 25 percent 
of the students in the operations-equal-answer contexts had a relational 
understanding of the equal sign. By contrast, 88 percent of the students in 
the operations-on-both-sides context exhibited a relational understanding 
of the equal sign. Apparently, students in seventh grade did not interpret 
the equal sign as a relational symbol of equivalence in general, but they 
were able to interpret the equal sign as a relational symbol in the context 
of an equation with operations on both sides of the equal sign (McNeil 
& Alibali, 2005). This finding is important because middle school (or the 
upper elementary grades) is where students make the transition from 
arithmetic to algebra, and where a relational understanding of the equal 
sign is necessary for success.

Most middle school students do 
not interpret the equal sign as a 
relational symbol, setting the stage 
for difficulties with algebraic 
operations. Their textbooks don’t 
help.
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Clearly, middle school students benefit from seeing more equal signs in 
an operations-on-both-sides context. The notion of equal is complex and dif-
ficult for students to comprehend, yet it is a central mathematical idea within 
algebra. However, improving students’ understanding of the equal sign and 
their preparation for algebra may require changes in teachers’ instructional 
practices, as well as changes in elementary and middle school mathematics 
curricula and textbooks. Teachers should present students with statements 
of equality in different ways to further develop their ideas of equivalence.

Using Practice Effectively With Young Students
We noted in Chapter 3 that practice allows the learner to use the newly 

learned skill in a new situation with sufficient accuracy so that it will be 
correctly remembered. Before students begin practice, the teacher should 
model the thinking process involved and guide the class through each step 
of the new learning’s application.

Since practice makes permanent, the teacher should monitor the stu-
dents’ early practice to ensure that it is accurate and to provide timely 
feedback and correction if it is not. This guided practice helps eliminate 
initial errors and alerts students to the critical steps in applying new skills. 
Here are some suggestions by Hunter (2004) for guiding initial practice, 
especially as it applies to young students:

99 Limit the amount of material to practice. Practice should be limited 
to the smallest amount of material or the skill that has the most rel-
evancy for students. This allows for sense and meaning to be consol-
idated as the learner uses the new learning. remember that most 
preadolescents can deal with only about five items in working mem-
ory at one time.
99 Limit the amount of time to practice. Practice should take place in 
short, intense periods of time when the student’s working memory 
is running on prime time. When the practice period is short, stu-
dents are more likely to be intent on learning what they are practic-
ing. Keep in mind the 5- to 10-minute time limits of working 
memory for preadolescents, discussed in Chapter 3.
99 Determine the frequency of practice. New learning should be prac-
ticed frequently at first so it is quickly organized (massed practice). 
Vary the contexts in which the practice is carried out to maintain 
interest. Young students tire easily of repetitive work that lacks 
interest. To retain the information in long-term memory and to 
remember how to use it accurately, students should continue the 
practice over increasingly longer time intervals (distributed prac-
tice), which is the key to accurate retention and application of infor-
mation and mastery of skills over time.
99 Assess the accuracy of practice. As students perform guided prac-
tice, give prompt and specific feedback on whether the practice is 
correct or incorrect, and why. Ask the students to summarize your 
feedback comments in their own words. This process gives you 
valuable information about the degree of student understanding 
and whether it makes sense to move on or reteach portions that may 
be difficult for some students.
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Property Addition Multiplication
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Associative
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Distributive

What Are the Properties of the Real Number System?

SOurCE: graham and Meyer (2007). Adapted with permission of the authors.

What Are the Properties of Proportions?
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SOurCE: graham and Meyer (2007). Adapted with permission of the authors.

Graphic Organizers
Today’s students have grown up in a visual world. They are surrounded 

by television, computer screens, movies, portable DVD players, tablets, and 
cell phones with screen images. using visual tools in the mathematics class-
room, then, makes a lot of sense. A graphic organizer is one type of visual 
tool that not only gets students’ attention but is also a valuable device for 
improving understanding, meaning, and retention.

Many different types of graphic organizers are available in books and on 
the Internet (see websites in the Resources section of this book). The follow-
ing are just two examples created by Dale graham and Linda Meyer (2007) for 
use in middle school mathematics classes, used here with their permission.
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Taking Advantage of Technology
As we discussed in Chapter 3, students today have grown up with 

technology. using new technologies involves time, effort, and a rethinking 
of instructional approaches. It also has its benefits and risks.

Teachers are sometimes torn between the enthusiasm for using technol-
ogy in mathematical investigations and the cautions about undermining 
students’ computational skills. research studies show that—particularly 
in middle-grade mathematics—technology, including online peer tutoring, 
can have positive effects on students’ attitudes toward learning, on their 
confidence in their abilities to do mathematics, and on their motivation 
and time on task. Furthermore, technology use can help students make sig-
nificant gains in mathematical achievement and conceptual understanding 
(Tsuei, 2012).

research studies also suggest that using technology for nonroutine 
(i.e., novel) applications, such as exploring number concepts and solving 
complex problems, leads students to greater conceptual understanding 
and higher achievement, whereas using technology for 
routine calculations does not. Students often perceive 
calculators as simply computational tools. But when 
they engage in mathematical exploration and problem 
solving with calculators and other technologies, they 
broaden their perspective and see these instruments as 
tools that can enhance their learning and understanding 
of mathematics (gibson et al., 2014).

Technology cannot replace the instructional strate-
gies teachers use to deepen students’ understanding of 
mathematical concepts or their problem-solving skills. 
It can, however, extend their ability to make sense of mathematics, gain 
access to additional content not available in the classroom, enhance their 
mathematical reasoning, and improve their computational fluency. It is 
equally important for professional development programs to continually 
update teachers’ knowledge of various technologies and their practical 
application in the teaching–learning process.

WHAT’S COMING?  n

As the brain’s frontal lobes continue to mature during adolescence, stu-
dents should be able to successfully engage in solving more complex and 
abstract problems. But many adolescents are not successful in high school 
mathematics courses. Why is that, and what can teachers do to improve 
mathematics achievement for this age group? How can we help these stu-
dents see mathematics as a meaningful, practical, and enjoyable endeavor? 
The answers to these and other questions about adolescent performance in 
mathematics are provided in the next chapter.

Answer to Question 8. False: 
Using technology for nonroutine 
mathematics applications leads 
students to greater conceptual 
understanding and higher 
achievement, whereas using 
technology for routine calculations 
does not.
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Chapter 5—Teaching 
Mathematics to the 
Preadolescent Brain

n  QUESTIONS AND REFLECTIONS

respond to the following questions, and jot down on this page key points, 
ideas, strategies, and resources you want to consider later. This sheet is 
your personal journal summary and will help jog your memory.

What are some characteristics of the developing preadolescent brain? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

What are some process skills preadolescents should learn in mathematics? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

How can we develop mathematical reasoning? ___________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________
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6
Teaching 

Mathematics to 
the Adolescent 

Brain

No employment can be managed without arithmetic, no mechanical 
invention without geometry.

—Benjamin Franklin

WHAT IS THE ADOLESCENT BRAIN?  n

Only in recent years have cognitive science researchers begun to focus on 
understanding the capabilities and limitations of the adolescent brain. You 
will recall from Chapter 5 that the brain’s frontal lobe matures much more 
slowly than the limbic area. So the processes that control voluntary behav-
ior are not yet fully operational. Adolescents may look and sometimes 
even act like adults. But as recent studies indicate, differences in the devel-
opment of the frontal lobe may be one of the most important distinctions 
between adolescents and adults. Although the strategies suggested in this 
chapter focus on adolescents, some of them can be easily adapted for use 
with preadolescents.
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Overworking the Frontal Lobes
Much of the new information about brain growth and development 

has come from imaging studies using fMRI (functional magnetic resonance 
imaging). One of the first seminal studies involved scanning 8- to 30-year-
old subjects performing visual–motor tasks. The researchers found that 
adolescents used more of their prefrontal cortex than did adults. Actually, 

the amount of prefrontal cortex used was sim-
ilar to what adult brains use when perform-
ing much more complex tasks. The teens’ 
excessive reliance on a brain region that is not 
mature can lead to problems. A mature pre-
frontal cortex makes it easier for an individual 
to use reason to override reflexive or emotional 
behavior. But for adolescent brains, deliber-
ately overriding the automatic response is 
more difficult than for adult brains. Adults, 
on the other hand, recruit other parts of the 
brain to collaborate and better distribute the 
workload (Luna et al., 2001).

Figure 6.1 shows how the workload to 
handle a visual–motor task is drawing heav-
ily on frontal lobe resources in the adolescent 
brain. The adult brain recruits more resources 
from other parts of the brain to distribute 
the workload and collaborate to handle the 
task. Thus, if something unexpected occurs 
in an already stressful situation, an adoles-
cent may exhaust his or her prefrontal cor-
tex resources. That explains why adolescents 
often exhibit impulsive or thoughtless behav-
ior. Subsequent studies have found similar 
results (e.g., Blakemore, 2012; Smith, Cobb, 
Farran, Cordray, & Munter, 2013).

Working Memory Still Developing

One of the functions of working memory 
is to control and guide voluntary behavior. 
Working memory is still developing in ado-
lescents. Thus, fMRI scans reveal that adoles-
cents are not as efficient as adults in recruiting 
brain areas that support working memory. 
Investigations of spatial working memory 
showed that early adolescents performed well 
on spatial working-memory tests, but they 

needed to engage more neural circuits than did older adolescents. Further, 
they also became much less efficient if they were stressed when asked to 
perform an additional task. This is likely due to cortisol, a hormone released 
into the blood stream when the body is under stress. Cortisol prepares the 
body to deal with the stress and reduces working memory’s ability to focus 
on unrelated and less important learning tasks.

Figure 6.1  These representative fMRI scans 
show that adolescent brains draw heavily on the 
frontal lobe areas to accomplish a visual–motor 
task, while adults distribute the workload over 
other brain regions (Luna et al., 2001).
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Older adolescents seem to recruit fewer neurons and use different 
strategies to perform the same job, compared with younger adolescents. 
Researchers found that the older teens solved the task through a verbal 
strategy rather than by rote spatial rehearsal. As adolescents mature, the 
brain uses more areas in general and distributes certain tasks to special-
ized regions. This process reduces the total neural effort necessary to 
achieve the same level of performance (nagel, herting, Maxwell, Bruno, &  
Fair, 2013).

We discussed in Chapter 5 the results of longitudinal brain-imaging 
studies of individuals between the ages of 4 and 21. Table 6.1 summarizes 
the results of those studies, along with additional scanning studies that 
have focused mainly on adolescents.

Can Adultlike Challenges Accelerate Maturity?

not all neuroscientists and psychologists accept the notion that the 
rate of maturation of the frontal lobes in adolescents is so closely linked to 

Research Finding
Possible Implications for Learning 
Mathematics

After puberty, gray-matter volume 
continues to decrease until about the 
age of 20 to 22 as unneeded and 
unhealthy neurons are destroyed.
Meanwhile, the white matter is 
thickening as more myelin surrounds 
neurons to increase protection and 
transmission of signals.

As neural networks begin to 
consolidate in the frontal lobes, 
learners can tackle more complex 
problem solving requiring inductive 
and deductive reasoning.

Some regions of the temporal lobes 
(located just above the ears) are the 
last to mature, even though some of 
the areas with which they are 
associated (such as the visual and 
language-processing areas) mature 
earlier.

The temporal lobes are responsible 
mainly for auditory processing, but 
they also contribute to visual object 
identification and the association of 
vocabulary with objects. Older 
adolescents will be better able to 
name and discriminate plane and 
solid objects visually and auditorily 
compared with younger adolescents.

during problem solving, more 
frontal-lobe areas are used in the 
adolescent brain than in the adult 
brain.

Overworking of the frontal lobes 
leads to impulsive and more 
emotional (rather than rational) 
responses during problem solving.

Working memory (located mainly in 
the frontal lobes) matures slowly.

Adolescents can have difficulty 
working with problems that have 
more variables and/or components 
than working memory’s limited 
capacity can handle.

Table 6.1  Adolescent Brain development and Some Implications

SOuRCeS: gogtay et al. (2004); Luna et al. (2001); nagel et al. (2013).
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genetic influences. They point out that teens in other countries spend much 
more time with adults than with their peers and, consequently, do not 
exhibit the immature behavior of teens in north America (Sabbagh, 2006). 
If the environment can provide the adolescent brain with more adultlike 
experiences, then perhaps adolescents can avoid the stress and antisocial 
behavior associated with this period of growth. Furthermore, they contend 
that allowing adolescents to make adult decisions (e.g., serving in the mil-
itary) will accelerate frontal-lobe maturation.

The extent to which genetic forces and environmental demands 
affect the developing brain will most likely be unique to each adolescent. 
nonetheless, the implication of this approach is that schools should not 
view adolescents as being so biologically immature that they cannot take 
on challenging tasks, including those in mathematics (Moshman, 2013).

The Search for Novelty
In Chapter 5, we discussed how the developing preadolescent brain 

responds to novelty. With the onset of puberty and during the adolescent 
years, the search for novelty becomes more intense. When curious adoles-
cents try a new challenge, such as a video game, they keep at it until they 
master it. Then the novelty wears off, they get bored with it, and they move 
on to a new challenge. Cognitive neuroscientists attribute this phenom-
enon to the specialized functions of each cerebral hemisphere and how 
these functions affect new learning. Research seems to indicate that hemi-
spheric specialization may center on the differences between novelty and 
routine. Closer examination of brain-damaged patients shows that those 
with severe right-hemisphere problems experience difficulty in facing new 
learning situations but can perform routine, practiced tasks, such as lan-
guage, normally. Conversely, patients with severe left-hemisphere damage 
can create new drawings and think abstractly but have difficulty with rou-
tine operations and language (Fridriksson, Richardson, Fillmore, & Cai, 
2012; goldberg, 2001, 2005).

These findings give us a different way of looking at how the brain 
learns. They suggest that upon encountering a novel situation for which 
the individual has developed no coping strategy, the right hemisphere 

is primarily involved and attempts to deal with the sit-
uation. In mathematics, for instance, that novel situa-
tion could be the student’s first encounter with solving 
quadratic equations. With repeated exposure to simi-
lar situations, coping strategies eventually emerge and 
learning occurs because this process results in a change 
of behavior. In time, and after sufficient repetition, the 
responses become routine and shift to the left hemi-
sphere (Figure 6.2). The amount of time and the num-
ber of situational exposures needed to accomplish this 
right-to-left–hemisphere transition vary widely from 

one person to the next. But it may be that one component of mathematical 
aptitude is the ability of a student’s brain to make right-to-left transitions 
involving mathematical operations in less time and with fewer exposures 
than average.

One component of mathematical 
aptitude may be the ability of a 
student’s brain to make right-to-
left–hemisphere transitions 
involving mathematical operations 
in less time and with fewer 
exposures than average.
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For more than a decade, studies using 
neuroimaging have provided evidence 
to support this right-to-left transition. In 
one early study, researchers used posi-
tron emission tomography (PeT) scans to 
measure the changes in brain-flow pat-
terns when subjects were asked to learn 
various types of information. Changes in 
blood-flow levels indicate the degree of 
neural activation. When the information 
was novel, regions in the right tempo-
ral lobe were highly activated. After the 
information had been presented several 
times to the subjects, activity in the right 
temporal lobe decreased dramatically 
(Figure 6.3). In both instances, however, 
the level of activation in the left temporal 
lobe remained constant (Martin, Wiggs, & 
Weisberg, 1997).

Similar results were reported from 
other studies involving a variety of learn-
ing tasks, such as recognizing faces and symbols (Schwartz et al., 2003), 
learning a complex motor skill (Bassett et al., 2011; Krakauer & Shadmehr, 
2006), and learning and relearning different words or systems of rules 
(Berns, Cohen, & Mintun, 1997; doron, Bassett, & gazzaniga, 2012; habib, 
McIntosh, Wheeler, & Tulving, 2003). The same shifts were detected no 
matter what type of information was presented to the subjects. In other 
words, the association of the right hemisphere with novelty and the left 
hemisphere with routine appears to be independent of the nature of the 
information being learned.

Novelty and Mathematics

Teachers ultimately decide whether 
mathematics is full or devoid of novelty. 
If adolescents have already mastered a 
mathematical operation but we continue 
to give them more of the same assign-
ments, they will see no purpose in com-
pleting repetitive practice. They will lose 
interest, they will see mathematics as 
boring and hum-drum work, their moti-
vation will drop, and their grades will 
slump. The key here is for the teacher to 
find different and meaningful applica-
tions of the mathematical operation or 
concept to maintain interest and atten-
tion, key components of motivation. And 
even more so, the teacher should recog-
nize how much practice each student 
needs to show mastery, and stop at that.

Figure 6.2  With repeated exposure, novel 
experiences become routine, and their cortical 
processing areas shift from the right hemisphere to 
the left hemisphere.

Novelty

Routine

Left

Right

Figure 6.3  In this representation of PeT scans, the 
white areas show the changes in regional blood flow 
for novel and practiced tasks. The images reveal areas 
of high activation in the left and right temporal lobes 
for novel tasks, but only in the left temporal lobe for 
practiced tasks.
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novelty and motivation are also undermined by a mathematics cur-
riculum that focuses mainly on a strict formal approach, heavy in mem-
orizing abstract axioms and theorems. This model, which emerged in the 
1970s, was based on the brain–computer metaphor—the notion that cog-
nitive processing in the human brain is similar to that in a computer. As 
neuroscience reveals more about the underlying mechanisms that power 
the brain’s cognitive processes, it is clear that the differences between the 
brain’s operations and those of a computer are far greater than their simi-
larities. An adolescent’s brain, unlike a computer, is a structured entity that 
requires facts only insofar as they can be integrated into prior knowledge 
to elucidate new situations. It is adapted to represent continuous quanti-
ties and mentally manipulate them in analogical form. Conversely, it is not 
innately prepared to handle vast arrays of axioms or symbolic algorithms. 
For most people, to do so requires heavy doses of motivation, interest, and 
novelty. The Common Core State Standards for Mathematics shift away 
from a heavy emphasis on memorization to deeper understanding of fewer 
key concepts and applying that understanding to solve problems in real-
world situations.

The Adolescent Brain and Algebra

The adolescent brain’s heavy reliance on the frontal lobe for cog-
nitive processing may have an upside. One curious finding from fMRI 
studies is that adolescents could have an advantage over adults when 
learning algebra. The studies indicate that after several days of prac-
tice, adolescents, like adults, rely on the prefrontal cortex regions for 
retrieving algebraic rules to solve equations. however, unlike adults, 
after practice, adolescents decrease their reliance on the brain’s parietal 
region that is holding an image of the equation. To the researchers, this 
suggests that, compared with the brains of adults, the developing pre-
frontal regions of the adolescent brain are more plastic and thus change 
more with practice, resulting in an enhanced ability for learning algebra 
(Qin et al., 2004).

Another study found that Algebra I students who 
began the course with a good prior understanding of 
fractions and fraction magnitude achieved better in 
algebra than did those students with poor knowledge 
of fractions (Booth, newton, & Twiss-garrity, 2014). 
The researchers suggest that Algebra I teachers give 
incoming students a pretest to determine their prior 

knowledge of fractions and fraction magnitude. A brief reteaching of 
these topics could improve the achievement levels of all students in 
the class.

When used properly, showing students incorrect examples and explain-
ing why they are incorrect can improve students’ conceptual understand-
ing and procedural skills in algebra (Booth, Lange, Koedinger, & newton, 
2013). however, it is important to make certain that the students have a 
good understanding of the correct method before introducing the incor-
rect examples. Also, the incorrect examples should be presented as guided 
practice, with the teacher working through the explanation of the errors 
with students.

It seems that the adolescent brain 
may actually have an enhanced 
aptitude for learning algebra more 
easily than the adult brain.



133TeAChIng MATheMATICS TO The AdOLeSCenT BRAIn

 LEARNING STYLES AND 
MATHEMATICS CURRICULUM  n

Qualitative versus Quantitative Learning Styles
Cognitive researchers suggest that adolescent students approach the 

study of mathematics with different learning styles that run along a con-
tinuum from primarily quantitative to primarily qualitative (Augustyniak, 
Murphy, & Phillips, 2005; Farkas, 2003; Liston, 2009; Sharma, 2006). Students 
with a quantitative style approach mathematics in a linear, routine fashion. 
They prefer working with numbers over concrete models and may run 
into difficulty with solutions requiring multistep procedures. On the other 
hand, students with a qualitative style prefer concepts over routine steps 
and models over numbers. The implication of this research is that students 
are more likely to be successful in learning mathematics if teachers use 
instructional strategies that are compatible with their students’ cognitive 
styles, but exposure to both kinds of strategies can strengthen students’ 
weak areas.

99 Tables 6.2 and 6.3 illustrate teaching strategies appropriate for the 
mathematical behaviors exhibited by quantitative and qualitative 
learners, respectively. The strategies are meant to help teachers 
address specific mathematical behaviors they identify in individual 
students. Such strategies target specific needs and, with practice, can 
strengthen a student’s weak areas. It is unrealistic, however, to expect 
teachers to identify and select individual strategies for problems 
encountered by all their students during a single learning episode. By 

Mathematical Behaviors Teaching Strategies to Consider

Approaches situations using recipes emphasize the meaning of each 
concept or procedure in verbal terms.

Approaches mathematics in a 
mechanical, routine fashion

highlight the concept and overall 
goal of the learning.

emphasizes component parts rather 
than larger mathematical constructs

encourage explicit description of the 
overall conceptual framework. Look 
for ways to link parts to the whole.

Prefers numerical approach rather 
than concrete models

use a step-by-step approach to 
connect the model to the numerical 
procedure.

Prefers the linear approach to 
arithmetic concept

Start with the larger framework and 
use different approaches to reach the 
same concept.

has difficulty in situations requiring 
multistep tasks

Separate multiple tasks into smaller 
units, and explain the connections 
between the units.

Table 6.2 Teaching Strategies for Learners With Quantitative Style
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Mathematical Behaviors Teaching Strategies to Consider

Prefers concepts to algorithms 
(procedures for problem solving)

Connect models first to the concept and 
then to procedures before introducing 
algorithms.

Perceives overall shape of 
geometric structures but misses 
the individual components

emphasize how individual components 
contribute to the overall design of the 
geometric figure.

has difficulties with precise 
calculations and explaining 
procedure for finding the correct 
solution

encourage explicit description of each 
step used.

Can offer a variety of approaches 
or answers to a single problem

use simulations and real-world problems 
to show application of concept to 
different situations.

Prefers to set up problems but 
cannot always follow through to 
a solution

Provide opportunities for the student to 
work in multistyle cooperative learning 
groups. To ensure full participation, give 
one grade for problem approach and 
setup, and one grade for exact solution.

Benefits from manipulatives and 
enjoys topics related to geometry

Provide a variety of manipulatives and 
models (e.g., Cuisenaire rods, tokens, or 
blocks) to support numerical operations. 
Look for geometric links to new concepts.

Table 6.3  Teaching Strategies for Learners With Qualitative Style

understanding the different approaches to the learning of mathemat-
ics, teachers are more likely to select instructional strategies that will 
result in successful learning for all students.

Developing Mathematical Reasoning
As teenage brains mature over the course of adolescence, teachers 

should present challenging mathematical problems involving increas-
ingly complex reasoning. Inductive and deductive reasoning are among 
the most common types of reasoning used in mathematics. Inductive rea-
soning, sometimes called the bottom-up approach, moves from parts to a 
whole or from the specific to the general. In inductive reasoning, we begin 
with specific observations and measures, look for patterns and regularities, 
formulate some tentative hypotheses we can explore, and develop general 
conclusions or theories. “The sun rose today, yesterday, the day before, and 
so on. I conclude the sun will rise tomorrow.”

In deductive reasoning, sometimes called the top-down approach, one 
draws a conclusion from principles (or premises) that are already known 
or hypothesized. “Triangle A has three 60-degree angles. Triangles with 
three 60-degree angles are called equilateral triangles. Therefore, Triangle 
A must be an equilateral triangle.” Inductive reasoning is often used to 
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make a guess at a property, and deductive reasoning is then used to prove 
that the property must hold for all cases or for some set of cases.

Table 6.4 suggests a sequence for using inductive and deductive 
approaches when introducing a new mathematical concept. The order first 
accommodates qualitative learners and then moves to techniques for quan-
titative learners.

Instructional Choices in Mathematics
We have already discussed in earlier chapters the irony that although 

people are born with number sense, many feel that they are not able to 
learn or remember basic mathematical operations. This feeling of incom-
petence is particularly evident in high school classrooms and poses a sig-
nificant obstacle for both students and teachers to overcome. Motivation, 
of course, has a lot to do with this attitude, and plenty of research studies 
show that low motivation leads to low achievement in mathematics, as in 
other subjects.

educators for years have explored strategies and models to help moti-
vate students to higher achievement levels. Kathie nunley (2004, 2006, 
2011) has developed a student-centered teaching method based on research 

Steps for the 
Inductive 
Approach for 
Qualitative 
Learners 

99 explain the linguistic aspects of the concept.

99 Introduce the general principle or law that supports the 
concept.

99 Provide students opportunities to use concrete materials 
to investigate and discover proof of the connection 
between the principle and the concept.

99 give many specific examples of the concept’s validity 
using concrete materials.

99 Allow students to discuss with each other what they 
discovered about how the concept works.

99 demonstrate how these individual experiences can be 
integrated into a general principle or rule that applies 
equally to each example.

Steps for the 
Deductive 
Approach for 
Quantitative 
Learners

99 Reemphasize the general principle or law that the 
concept relates to.

99 demonstrate how several specific examples obey the 
general principle or law.

99 Allow students to state the principle and suggest 
specific examples that follow it.

99 Ask students to explain the linguistic elements of the 
concept.

Table 6.4  Inductive to deductive Approach for Introducing a new Concept in 
Mathematics
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in cognitive neuroscience. her model is called Layered 
Curriculum and consists of three layers of differentiated 
instruction that enhance student motivation and encour-
age complex thinking.

nunley notes that mathematics teachers who strive 
for brain-compatible classrooms share three basic 
goals. First, they want to increase student motivation 

by engaging students emotionally in their learning. Second, they want 
to enable students to master mathematics skills to a level of proficiency 
that allows practical use of the skill, thus creating meaning. And third, 
they look for ways to encourage higher-level thinking and connect new 
learning to prior knowledge in a complex manner. engaging students is 
first and foremost, because without engagement and motivation, teachers 
cannot begin to address the other two goals. Improving motivation and 
engagement in students requires only that teachers add one simple thing 
to their classroom—choice.

Lack of motivation, nunley suggests, remains one of the major reasons 
students do not succeed in mathematics, or any other subject (Legault, 
Pelletier, & green-demers, 2006; Pintrich, 2003). In mathematics class, stu-
dents may feel that they lack the ability to be successful, or they may feel that 
they cannot sustain the effort long enough for success, or they may simply 
be bored and unable to concentrate on the task. Some students experience 
lack of motivation due to learned helplessness—the feeling that no amount 
of effort will ever lead to success, so there is no point in trying. Other unmo-
tivated students simply have placed no personal value on the learning task. 
Whatever the cause, they all share one common thread: students without 
self-determined motivation are generally not successful in school.

To be motivated, nunley continues, students must see a relationship 
between their behavior and the outcome. This requires that they perceive 
they have some sense of control in their environment. With a sense of 
control comes a sense of responsibility. unfortunately, traditional teach-
er-centered, autocratic classrooms do little to encourage responsibility in 
students. If the teacher makes all the decisions regarding rules and instruc-
tion, the student is immune from all responsibility.

Thus, we see the shift in education to student-centered classrooms. 
In student-centered classrooms, students are allowed some choice and 
decision making through differentiated instruction. Studies reveal that 
student-centered classrooms have higher-achieving students, higher stan-
dardized test scores, fewer classroom-management problems, more on-task 
behavior, and fewer dropouts (Pekrun, Maier, & elliot, 2006). So mathe-
matics teachers want to create classrooms of motivated learners because 
motivated learners actively process information, have better conceptual 
understanding of material, and show greater problem-solving skills. Such 
an approach is also consistent with what we know about how today’s stu-
dents want to participate actively in their own learning (Sousa, 2011a).

Three Steps to Layering the Curriculum

Layering the curriculum is a simple way to differentiate instruction, 
encourage higher-level thinking, prepare students for adult-world decision 
making, and hold them accountable for learning. Any lesson plan can be 
converted into a layered unit with three easy steps (nunley, 2004, 2006, 2011).

Layered Curriculum consists of 
three layers of differentiated 
instruction that enhance student 
motivation and encourage complex 
teaching.
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99 Step 1: Add some choice. Choice transforms a classroom instantly. 
Choice suddenly turns unmotivated students into motivated ones, 
ensures student attention, and gives students the perception of con-
trol. Choice is the centerpiece to student-centered, differentiated 
classrooms. Traditionally, mathematics teachers have seen their sub-
ject as so regimented and sequential that it leaves little room for 
student choice. But within even the tightest-structured curriculum, 
some student choice is possible.

9• Take your teaching objectives and offer two or three assignment 
choices as to how students can learn those objectives. not all 
objectives need to be taught through choices, but offer as many as 
you can. These assignment options could include teacher lecture, 
small-group peer instruction, hands-on tactile projects, or inde-
pendent study.

9• For example, if your objective is that students be able to deter-
mine the area of a triangle, you may offer a quick chalk/white 
board lesson on that topic. Then allow the students to do some 
practice problems themselves, work in small groups, play a com-
puter game that practices that concept, or complete a task using 
manipulatives.

9• One suggestion worth considering is to make your lectures 
optional and award points for attending them. Tell the students 
that they can either listen to your lecture (direct instruction) or 
work on another assignment from the unit instead. What you 
will discover is that all students will probably listen to the lec-
ture. But the fact that it is now their decision, rather than the 
teacher’s mandate, changes the whole perception of the task and 
increases attention. Recording lectures or lessons has another 
benefit. In addition to allowing you to offer them as an elected 
assignment, it also gives you the freedom to move the placement 
of your lectures.

9• Because technology now allows teachers to make better use of 
the time spent in the school day, many are moving to flipped or 
inverted classrooms. These terms refer to the idea of taking the 
traditional classroom of the past century—where we lectured to 
students during class time and then assigned homework to be 
done at home—and flip the whole thing. In a flipped classroom, 
instruction is recorded and uploaded online. Students watch 
these recordings at home outside the school day. Then the 
actual class time is spent on interaction between students and 
teachers—asking questions, providing answers, and doing 
assignment drills.

however, an objection to the flipped classroom is that having 
every student watch recorded instruction at night for class discus-
sion the next day is one giant step backward in differentiating for 
the needs of our diverse learners. These mediated lessons should 
not be relegated and mandated as homework for all. This ignores 
too many of our students who have different learning modalities, 
presents problems for students without access to technology out-
side of school, and creates too much distance between receiving 
the lesson and student questions and feedback.
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In a Layered Curriculum classroom, teachers have the option to 
go to a more practical plan in what nunley (2013) calls a sideways 
classroom. Rather than flipping the classroom completely on its head 
(which, let’s face it, gives us the same lesson, just upside down), we 
instead tip it sideways a bit and let things flow broadly from side 
to side. So the teacher records the instruction but uses the recorded 
lessons not for homework but, rather, as one of the classroom day 
assignment options. These can easily be added into the C Layer of the 
Layered Curriculum unit (explained further in Step 3).

There are many advantages of using this sideways Layered 
Curriculum classroom, especially for mathematics. Students who 
might benefit from listening to a lecture or watching a demonstra-
tion can make use of the opportunity. Teacher class time is then 
freed up to work with students individually. Students are near a 
teacher during and directly after the instruction for questions and 
clarification. Another advantage is that students can catch the les-
son missed from a day of absence, or just watch it more than once 
for a relearning opportunity or for study. And best of all, the class-
room learning environment remains open and accessible to a wide 
variety of learners.

99 Step 2: Hold students accountable for learning. One of the unfortu-
nate developments in our traditional grading system is the wide 
variation in how grading points are awarded in our classrooms. 
Some teachers award points simply for practicing a skill, some for 
just doing assignments, and of course some points are eventually 
awarded for demonstrating mastery in the test. Because grading 
schemes are nearly as numerous and varied as the number of teach-
ers, a heavy weight is frequently put on the points awarded for doing 
assignments. This means that students can earn enough points to 
pass a course without actually learning much at all. In fact, so many 
points have been awarded for doing classwork and homework that 
many students never understand that the purpose of doing an 
assignment is actually to learn something from it. They say, “I did it. 
doesn’t that count?”

9• A key to layering the curriculum is to award grade points for 
the actual learning of the objective rather than for the assign-
ment that was chosen for the learning. For example, if our objec-
tive is that students learn how to determine the area of a 
triangle, then points are awarded for the assignment based on 
whether or not the student can do that. Whether they chose to 
do the bookwork, a manipulative exercise, or a computer game 
is immaterial. What is important is that they learned the objec-
tive. This can be done through oral defense, small-group discus-
sions, or unannounced quizzes. have sample problems on 
index cards that you or their classmates can pull at random. 
Two or three sample problems can easily check for the skill. 
Award points for acquiring the skill rather than for the journey 
chosen to get there.
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99 Step 3: Encourage higher-level thinking. One of the main compo-
nents of brain-compatible learning is helping students make complex 
connections with new information—finding relationships, hooking 
new learning to previous knowledge, and cross-connecting between 
memory networks. These are the keys to real learning. Layering the 
curriculum encourages more complex learning by dividing the instruc-
tional unit into three layers: (1) basic rote information, (2) application 
and manipulation of that information, and (3) critical analysis of a real-
world issue. Rather than just calling them Layer 1, Layer 2, and Layer 
3, the complexity of the learning is tied into the actual grade a student 
will earn, so the layers are called C Layer, B Layer, and A Layer.

9• The C Layer consists of all the objectives that have to do with the 
lower levels of Bloom’s taxonomy. This layer consists of rote 
learning and concrete facts. All students begin in this layer. even 
the highest-ability students can add to their current bank of 
knowledge; so the entire class starts here.

9• After students complete the C Layer, they move to the B Layer, 
which asks them to connect the new information gained in the C 
Layer to prior knowledge. This layer includes assignments that 
require problem solving, application, demonstration of mastery, 
or unique creations. The purpose of this layer is to attach new 
knowledge to prior knowledge to make a more complex picture 
or network in the student’s brain. Interdisciplinary assignments 
work beautifully in this layer. A student who satisfactorily com-
pletes the C and B Layers will earn the grade of B on this unit.

9• Finally, the A Layer asks students to mix the facts and basic infor-
mation they have learned with more sophisticated brain concepts 
such as values, morality, and personal reflection to form an opin-
ion on a real-world issue or current event. This layer asks for 
critical thinking and prepares students for their roles as voters 
and decision makers in the adult world. Many educators may 
refer to this area as the essential question. A student who success-
fully completes this layer will earn the grade of A on this unit.

All students are expected to complete the three layers. Many students 
may not be able to show sufficient mastery of a skill or handle an A-Layer 
issue with the sophistication needed to gain enough points for a letter 
grade of A or B. nonetheless, they all must still tackle the three layers. We 
are preparing these students for an adult world that will ask them to 
gather and manipulate information, and make community decisions based 
on that information. Thus, all students need to practice these types of 
thinking. At the outset, teachers help students walk through all the layers 
so they experience success and understand the process. As the year pro-
gresses, units may be left more open in their structure so students are free 
to move among the layers as they are ready.

Examples of Layered Curriculum Units

99 Eighth-Grade Layered Curriculum Unit Content: Understanding 
Graphs and Data-Analysis Objectives
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9• Collect, organize, analyze, and display data (including scatter 
plots) to solve problems.

9• Approximate a line of best fit for a given scatter plot; explain 
the meaning of the line as it relates to the problem, and make 
predictions.

9• Identify misuses of statistical and numerical data.

C Layer:

1. Listen to the teacher “chalk talk” lesson each day. (5 points/day)

2. Book practice problems: Choose one from each section. (10 points 
each)

a. Page 235, numbers 1 to 20, any seven problems
b. Page 238, numbers 1 to 21, any seven problems
c. Page 240, numbers 1 to 17, any six problems

3. Choose one of the lab analysis projects. With one or two classmates, 
calculate mean, median, mode, and range, and draw a linear regres-
sion line. Answer the prediction questions. (10 points each)

B Layer: Choose one (20 points)

1. What will be the price of gasoline in the year 2018? Research a 
10-year history of gas prices, plot the data, and use them for your 
prediction.

2. What will be the price of school lunches in the year 2018? Research 
a 10-year history as in Question 1 above.

3. What’s the value of a scatter plot? Surf the Internet. Find 30 Internet 
sites that use scatter plots to make predictions or explain situations. 
Compile an annotated bibliography of your findings.

A Layer: Choose one (20 points)

1. do you feel that politicians misuse statistical data? If yes, find three 
to five pieces of evidence to support your argument. If no, choose 
another question.

2. The media often misuse graphs and data. Find three to five examples, 
and make an argument for being an educated consumer of media.

3. how many people will die on our highways next year? Find the 
research to support your answer. Are our laws helping reduce high-
way deaths? What else could be done?

99 Sample of a Layered Curriculum Unit in Algebra: Polynomials in 
the Real World

C Layer: evaluating, adding, subtracting polynomials (50 points)

1. I have an understanding of the following terms. (Pass the quiz, 10 
points)

 _____ monomial _____ binomial _____ trinomial _____ polynomial
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Suggestions of how to learn these terms (try two):

a. Listen to the lecture on day 1.
b. Read about them in your textbook.
c. divide a white sheet into four parts, and fill each part with samples 

of these.

2. I know and can identify these parts of a polynomial. (Pass quiz, 10 
points)

_____ leading term _____ constant term _____ coefficients _____ 
identify degrees

Suggestions on how to learn these parts (try two):

a. Listen to the lecture on day 1.
b. Read about them in a textbook.
c. Look them up on Purplemath.com, and explain them to a family 

member.

3. ____ I can evaluate polynomials! (15 points)

 how can I learn to evaluate polynomials? Suggestions (try two):

a. Listen to the lecture on day 2.
b. Build two versions of a cube. Build two versions of a square. Build 

a row for each. Write it “mathematically” on a piece of paper, or 
dictate it to a friend to write.

c. do some practice paper problems (in sheet bin).
d. Watch Mr. Keegan evaluate them using Sketchup.com.

4. ____ I can add polynomials! (20 points)

a. Listen to the lecture on day 3 or read about it on Purplemath.com.
b. Add together the two problems you built for Question 3b. Write 

it out.
c. do some practice paper problems (in sheet bin).

B Layer: (30 points)
Model a section of a warehouse where iPods are stacked in cubes of 64 

(x = 4). You start on Monday with 6 cubes (6x3). On Friday you have 8 iPods 
left. You sell them in flats (x2), quads (x), and single units. Show how this 
could have happened (choose one).

9• use Sketchup.com.
9• use our plastic cube station.
9• draw it on a poster (showing three dimensions).
9• Write a story.

A Layer: (20 points)
I need a barn for my two milk cows. I want a place to store hay, store 

feed, milk the cows, and park a tractor. Materials come in ($30) cubes, ($20) 
squares, ($15) rows, and ($10) single, 2-ft blocks. The cubes are the cheapest 
cost per foot, and it goes up from there.
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1. With a partner, design my barn using Sketchup.com. What’s it 
going to cost me? defend your design.

2. using the materials in the shoe boxes, with a partner or alone, build 
the above barn. defend your design.

99 Sample of a Layered Curriculum Unit in Calculus Content: Introduc-
ing Derivatives

C Layer:

day 1—Topic: define derivatives and rules for finding derivatives

1. Lecture (5 points)

2. Practice: Choose one (5-point quiz)

a. Problem Set 3.1, numbers 1 to 9
b. Work derivatives unit on our Journey Through Calculus software.

day 2—Topic: derivatives of trigonometric functions

1. Lecture (5 points)

2. Practice: Choose one (5-point quiz)

a. Problem Set 3.2, numbers 1 to 10
b. Find a website that teaches this topic. Create a mini-lesson, and 

teach it to two classmates.

day 3—Topic: The chain rule

1. Lecture (5 points)

2. Practice: Choose one (5-point quiz)

a. Problem Set 3.3, numbers 1 to 12
b. Make a poster that teaches the chain rule. give a mini-lesson to 

two classmates.

B Layer: Choose one (10 points)

1. Write a one-page library report on tides, and explain how deriva-
tives are used to predict high tide and low tide.

2. Write a one-page library report on the actual use of derivatives in 
business transactions and corporate risk management.

3. Solve these three problems:

 a. A rectangular piece of paper measures 20 cm by 28 cm. equal-
sized squares are to be cut out from each corner of the paper, and 
the remaining flaps are to be folded up to make an open-topped 
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box. Find the dimensions of the square that should be cut out to 
maximize the volume of the box.

 b. A metal cylindrical soda can is to be constructed to have a known 
volume, V. What is the ratio of the diameter of the can to the height 
of the can if the amount of metal used in the construction of the 
can is to be a minimum? Assume that the metal used is of uniform 
thickness.

 c. A norman window, formed by placing a semicircle on top of a 
rectangle, still remains a popular architectural feature. If the 
perimeter of the window is 300 cm, find the radius of the semi-
circle that will maximize the window’s area and let in the most 
light.

A Layer: Choose one. Find and summarize three pieces of research on 
your topic. Write a two-paragraph opinion using the research as a basis. 
(15 points)

1. Asteroid A2004 Mn4 is heading toward earth and projected to 
impact our planet in 2029. Impact dates continue to be revised. 
how do they calculate this event? Should we be worried?

2. When hurricane Katrina hit new Orleans in 2005, how did the tide 
position at the time the hurricane made landfall impact the devasta-
tion of new Orleans? Would a change in tidal position have made 
the impact worse or better? how much importance should be 
placed on tidal position during coastal storms for making evacuation 
decisions?

You will also have a 50-point quiz over this unit.

For more information on nunley’s Layered Curriculum, see the 
Resources section at the end of this book.

Graphic Organizers
We mentioned in Chapter 5 that today’s adolescents have grown up 

in a visual world. They are surrounded by television, computer screens, 
movies, portable dVd players, and cell phones with screen images. using 
visual tools in all mathematics classrooms, then, makes a lot of sense. A 
graphic organizer is one type of visual tool that not only gets students’ 
attention but is also a valuable device for improving understanding, mean-
ing, and retention.

Many different types of graphic organizers are available in books and 
on the Internet (see websites provided in the Resources section of this 
book). The following are just a few examples created by dale graham and 
Linda Meyer (2007) for use in high school mathematics classes, used here 
with their permission.
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How to Determine if a Function Is Continuous

f(x) is continuous
at x = a if three

conditions are met:

1st: f(a) exists
if the value a is substituted for x,

the function has a value

2nd: lim f(x) exists

The limit of the function as x approaches
a can be found

x → a

3rd: lim f(x) = f(a)

The value of the limit is the same as the
value of the functions

when x equals a

x → a

SOuRCe: graham and Meyer (2007). Adapted with permission of the authors.
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How to Graph Quadratic Functions

x = b + c
2

Find and plot the x-
intercepts and the vertex.

Example

Using symmetry,
find two other

points on the curve
and plot them.

Connect the points
with a smooth curve.

f(x) = 0.5(x  + 5)(x − 4)

f(x) = a(x − b)(x − c)

Intercept Form

Your Turn

f (x) = −½(x − 3)(x + 1)

Find and sketch the axis
of symmetry.

Make a table of values
using two values of x

higher than the vertex.
Plot these points.

 

y

x

 

y

x

SOuRCe: graham and Meyer (2007). Adapted with permission of the authors.
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How to Prove Triangles Congruent

AAS

ASA

SSS

SAS

HL

How to
Prove

Triangles
Congruent

SOuRCe: graham and Meyer (2007). Adapted with permission of the authors.
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run x2−x1

Given Example Your Turn

Slope and y-intercept

Use the slope intercept form of 
the equation:  
y = mx + b

Substitute for m and b

Slope = 3/4, y-intercept = −2 Slope = −1/2, y-intercept = 5

Slope and a Point

Use the point-slope form of the 
equation:

y − y1 = m(x – x1)

Substitute for m, x1, and y1.

Solve for y.

Solve for y.

Slope = −3, Point = (−2, 4) Slope = 4, Point = (−6, −4)

Two Points

Use the slope formula and the 
coordinates of the two points to 

find the slope.

m = rise = 
y2−y1

Use this slope and one of the 
given points to write the 

equation of the line following 
the Slope and a Point method 

above.

Points are (−6, 3) and (2, −7) Points are (−9, −2) and (1, −8) 

How to Write the Equation of a Line

SOuRCe: graham and Meyer (2007). Adapted with permission of the authors.
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× ÷+ INTEGERS

Subtract and
take the sign
of the largest

absolute value

Add and take
the sign

Change it to
addition by:

“Keep-
change-flip”

Answer is
positive

Answer is
negative

−2 + (−4) = −6
4 + 6 = 10

−4 + 8 = 4
6 + (−12) = −6

(−9) − (−2) =
(−9) + (+2) = −7

8 × 6 = 48

(−45) ÷ (−9) = 5

9 × (−3) = 27

(−72) ÷ 12 = −6

LIKE signs
DIFFERENT

signs
DIFFERENT

signs
LIKE signs −

SOuRCe: graham and Meyer (2007). Adapted with permission of the authors.

Integer Rules
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Interpreting Word Problems
even students who are proficient at solving mathematical expressions 

can have difficulty interpreting the meaning of word problems. Barton and 
heidema (2002) suggest that authors of mathematics texts do not always 
follow the principles of writing that students have learned in their lan-
guage arts classes. For example, students learn that an author’s main idea 
usually appears in the passage’s opening sentences. In mathematics prob-
lems, however, the main idea often appears in the last sentence. here’s a 
typical example:

Billy is sorting out blue, green, and yellow marbles into single color 
groups. he has 58 marbles altogether. There are twice as many blue 
marbles as green marbles, and three more yellow marbles than 
blue marbles. how many marbles of each color does Billy have?

Students must wade through numerous details before they get to the 
point of the problem: “how many marbles of each color does Billy have?” 
Teachers can help students interpret word problems by using strategies 
designed to focus on what the problem is asking and then select a solution.

The SQRQCQ Process

99 One way to help students get to important information in a word 
problem is through a six-step process called SQRQCQ (Barton & 
heidema, 2002; heidema, 2009). This strategy is designed to help 
students think through what the problem is asking and to determine 
the method for solving it. The six steps are as follows.
9• Survey:  Read the problem quickly to get a general under-

standing of it.
9• Question:  Ask what information the problem requires.
9• Read:  Reread the problem to identify relevant informa-

tion, facts, and the details needed to solve it.
9• Question:  Ask what must be done to solve the problem. “What 

operations must be performed and in what order?”
9• Compute: do the computations or construct a solution.
9• Question:  Ask whether the solution process seems correct and 

the answer reasonable.

here is a simple example:

Problem:  Billy has 26 apples. His friend Patrick gives him 9 more apples. 
Billy now has 13 more apples than Michael. How many apples 
does Michael have?

Following the SQRQCQ process, the student’s thinking should go 
like this:

Survey:  Billy had 26 apples, but Patrick gave him 9 more, so he has 13 
more than Michael.

Question: I need to find out how many apples Michael has.
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Reread: I can see that Michael will have fewer apples than Billy.

Question:  If I know that Billy started out with 26 apples and that Patrick 
gave him 9 more, then I have to add 9 to the 26 to find out 
Billy’s new total number of apples. Then, to find out how many 
apples Michael has, I need to subtract 13 from Billy’s total 
number of apples.

Compute: 26 + 9 = 35—This is Billy’s new total.

 35 −913 = 22—This is how many apples Michael has.

Question:  Is it true that 26 plus 9 minus 13 is 22? Yes, so the answer 
must be correct.

note that in this strategy, the student is specifically told to reread the 
problem. Students often rely on their working memory to retain all the 
relevant information after one quick reading. Rereading the problem (a 
form of rehearsal) increases the likelihood that important details will be 
found, processed, and retained in working memory, while unimportant 
items will be set aside. This methodical process has been particularly effec-
tive for improving recording abilities, study habits, and thinking skills 
among students who have learning difficulties and also with english lan-
guage learners.

This process can be used in cooperative learning groups so students 
talk each other through the six steps. each step builds on the previous one 
and gives students the opportunity to look deeper into the meaning of each 
problem.

Word Problem Roulette

Another successful strategy for working with word problems, sug-
gested by heidema (2009), is known as Word Problem Roulette. In this 
process, the students work in small groups and collaborate on solving a 
word problem. Then they report out to the whole group orally and in writ-
ing the processes they went through to solve the problem. The students 
benefit from communicating their own thinking to others and from hear-
ing how other students think about the problem they are solving. here is 
how it works:

1. Students get into groups of three or four. each student has a copy 
of the word problem for the group. The teacher explains that they 
are to solve this problem as a group.

2. The students discuss ways to solve the word problem. They talk 
about what the problem is asking and orally (no writing at this 
time) suggest ideas for solving the problem. Then the students 
agree on a solution method and the steps they will use to solve the 
problem.

3. After the students agree on a solution, they take turns writing the 
steps to the solution in words, not in mathematical symbols. each 
student writes one step or sentence and passes the paper to the next 
student, who then adds the following step or sentence (this is the 



151TeAChIng MATheMATICS TO The AdOLeSCenT BRAIn

roulette part). Although the students can confer on what individu-
als write, the solution paper should have contributions from every-
one in the group.

4. When all the groups have finished writing down their solutions, 
each group in turn presents its solution to the class. While one 
member of a group reads the solution steps, another group mem-
ber writes the symbolic representation of the solution on the board.

5. If all the groups had the same problem, then the teacher compares 
the methods and results of the different groups. If the groups have 
different problems, volunteers from other groups can be asked to 
review and comment on another group’s solution.

here is a sample problem to try with Word Problem Roulette:

A family of three adults and four children goes to an amusement park 
where an adult’s admission is twice as much as a child’s admission. The 
total cost of admissions for the family is $260. How much is an adult’s 
admission? How much is a child’s admission?

Making Mathematics Meaningful to Teenagers
As mentioned in Chapter 3, it is important for students to find meaning 

in what they are learning because meaning is one of the criteria the brain 
uses to identify information for long-term storage. One way to help learners 
find meaning is to connect what they are learning to their daily lives. Yet, 
too often, students in secondary-school mathematics classes have difficulty 
seeing the practical and concrete applications of mathematics to everyday 
living. here are just a few suggestions for how mathematical concepts can 
be meaningfully related to common experiences.

Probability

99 Determining odds. Millions of people visit casinos, buy lottery tick-
ets, play the stock market, join in the office football pool, and meet 
with friends for a game of poker. They invest their money in chance, 
believing they can beat the odds. The mathematical principle of 
probability can tell us how often we are likely to win, helping us 
decide whether to risk the odds and our money.

how do we determine probability? Let’s say there are 12 apples 
in a fruit basket. Five are red and seven are green. If you close your 
eyes, reach into the basket, and grab one apple, what is the probabil-
ity that it will be a red apple? Five of the 12 apples are red, so your 
chances of picking a red apple are 5 out of 12 or, as a fraction, 5/12, 
which is about 42 percent. Or let’s say you are choosing between two 
colleges, one in Texas and one in Connecticut. You decide to flip a 
coin. The chances are one out of two, or 1/2, of getting heads or tails. 
The odds are 50 percent for each.

What are your odds for winning the state lottery if you buy only 
one ticket?
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99 Does gambling pay off? Odds in roulette. Is roulette a good bet 
at a casino? Actually, the casino will win more often than the 
player. here’s why: The roulette wheel is divided into 38 num-
bered slots. Two of these slots are green, 18 are red, and 18 are 
black. To begin the round, the wheel is spun, and a ball is dropped 
onto its outside edge. When the wheel stops, the ball drops into 
one of the 38 slots. Players bet on which slot they believe the ball 
will land in. If you bet your money that the ball will land in any of 
the 18 red slots, your chances of winning are 18 out of 38, or about 
47 percent. If you bet your money on a certain number, such as the 
red slot numbered with a 10, your chances of winning fall to 1 in 
38, or 2.6 percent.

The mathematics of probability guarantees that the roulette 
wheel will make money even if the casino doesn’t win every time. 
Remember, there are 18 each of the red and black slots. There are also 
2 green slots. Whenever the ball lands in one of those green slots, the 
house wins everything that was bet on that round. So again, let’s say 
you bet that the ball will land in a red or black slot. This is the safest 
possible bet in roulette, since the odds are 18 out of 38 (47 percent) 
that you will win. But there are 20 out of 38 chances (53 percent) that 
you will lose.

Calculating Interest on Buying a Car

99 How much are you actually paying when you finance a car pur-
chase? understanding interest can help you manage your money 
and help you determine how much it will cost you to borrow money 
to pay for your car purchase. Interest is expressed as a rate, such as 
3 percent or 18 percent. The dollar amount of the interest you pay on 
a loan is figured by multiplying the money you borrow (called the 
principal) by the rate of interest.

Suppose you want to buy a used car for $10,000. The car sales-
man says that the dealership will finance your car at a rate of 8.4 
percent and estimates your monthly payments at about $200 over a 
period of 5 years. how much money are you actually paying back 
to the dealer over the term of the loan? Is this a good deal, or should 
you shop around? What if a bank offered to loan you the $10,000 at a 
rate of 9.0 percent for 4 years? Which offer is better?

Exponential Changes/Progressions

99 Population growth. In 2014, the world population was estimated at 
7.2 billion people. The number of people living on the earth has 
grown dramatically in the past few centuries. There are now 10 
times more people on our planet than there were 300 years ago. 
how can population grow so fast? Think of a family tree. At the top 
are two parents, and beneath them are the children they had. Listed 
beneath those children are the children they had, and so on down 
through many generations. As long as the family continues to repro-
duce, the tree will increase in size, getting larger with each passing 
generation. This same idea applies to the world’s population.
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new members of the population eventually produce other new 
members so that the population increases exponentially as time passes. 
Population increases cannot continue forever. Living creatures are con-
strained by the availability of food, water, land, and other vital resources. 
Once those resources are depleted, population growth will plateau, or even 
decline, as a result of disease or malnutrition.

how fast will the population grow? Arriving at a reasonable estimate 
of how the world’s population will grow in the next 50 years requires a 
look at the rates at which people are born and die in any given period. 
If birth and death rates stayed the same across the years in all parts of 
the world, population growth could be determined with a fairly simple 
formula. But birth and death rates are not constant across countries and 
through time because disease or disaster can cause death rates to increase 
for a certain period. A booming economy might mean higher birth rates for 
a given period.

The rate of the earth’s population growth is slowing down. Throughout 
the 1960s, the world’s population was growing at a rate of about 2 percent 
per year. By 2010, that rate was down to 1.14 percent and is estimated to 
drop to less than 1 percent by the year 2020. Family planning initiatives, 
an aging population, and the effects of diseases such as AIdS are some of 
the factors behind this rate decrease. even at these very low rates of pop-
ulation growth, the numbers are staggering. Can you estimate how many 
people will be living on the earth in 2020? By 2050? Can the planet support 
this population? When will we reach the limit of our resources? how could 
this affect the lifestyle of your children or grandchildren?

99 Is this job offer a good deal? Looking to make a million dollars? 
Let us examine a plan for earning a million dollars based on a con-
tract between an employee and an employer. First, let’s agree on a 
contract.

Contract for employment

employee ____________ (Your name)

employer ____________ (A company agreeing with these terms)

Points of Agreement

1. The employee will work a 5-day workweek.

2. The employee will be paid for the week’s wages each Friday.

3. The employee will be hired for a minimum of 30 workdays.

4. The salary schedule is as follows:

9• The base pay for day 1 is one penny.
9• each subsequent day, the salary is double that of the previous 

day.

Signed ____________________________ (employee)

Signed ____________________________ (employer)

date: ______________________________
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Is this a good deal? Take a guess how much money this employee will 
have earned in the 30 working days. My guess: $__________________. 
Calculate the amount one would earn working 6 weeks (40 hours a week) 
at minimum wage. Minimum-wage salary (before taxes and other deduc-
tions): $___________. now let’s calculate the earnings for this contract and 
see whether the employer or the employee has made the better deal. In 
Week 1, the wages would be as follows: Monday, 1 cent; Tuesday, 2 cents; 
Wednesday, 4 cents; Thursday, 8 cents; and Friday, 16 cents, for total 
weekly earnings of 31 cents. doesn’t seem like much does it? now con-
tinue calculating the daily wages for the next 5 weeks.

There is a formula that allows one to calculate a particular day’s wages 
without having to calculate every step. This is an example of a geometric 
progression, a sequence of numbers in which the ratio of any number to 
the number before it is a constant amount, called the common ratio. For 
example, the sequence of numbers 1, 2, 4, 8, 16, . . . has a common ratio 
of 2. A geometric progression may be described by calling the first term 
in the progression X (in this example, X = 1 cent), the common ratio R (in 
this example, R = 2), and, in a finite progression, the number of terms n. 
Then the nth term of a geometric progression is given by the expression, 
Xn = X1R

n — 1.
Questions about this job:

1. how does the total amount of money earned compare with your 
original guess?

2. Suppose you wanted to buy a car. On which day could you pur-
chase your car and pay in cash?

3. Can you develop a formula for the daily salary? (Answer: daily 
Salary = 2n — 1X, where n = the number of days you’ve been working 
and X = your base pay on day 1.)

This counting principle can also be applied to social causes. efforts to 
address social issues are often started by just a scant few individuals who 
are committed to a cause. Suppose you tell one person a day about your 
issue. A one-on-one plea will be much more effective in convincing the lis-
tener. On the second day, there will be two of you who can approach two 
more people. On the third day, there are four of you to approach four more 
people. On the fifth day, the eight of you convince eight more people, and 
so on. By the twelfth day, more than 2,000 people know about your cause, 
and by the thirtieth day, more than 1 billion people are talking about the 
issue that is so close to your heart! Yet you personally talked to only 30 peo-
ple. By the way, now you know how unfounded rumors spread so quickly.

Ratio/Proportion

99 The challenges of cooking: Altering recipes. Recipes involve mix-
ing together ingredients that have relationships to one another. In 
mathematics, this relationship between two quantities is called a 
ratio. If a recipe calls for 1 egg and 2 cups of flour, the relationship 
of eggs to cups of flour is 1 to 2. In mathematical language, that rela-
tionship can be written in two ways: 1/2 or 1:2.
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All recipes are written to serve a certain number of people or yield a 
certain amount of food. For example, suppose you have a cookie recipe 
that makes 2 dozen cookies. What if you want 1 dozen or 4 dozen cookies? 
understanding how to increase or decrease the yield without spoiling the 
ratio of ingredients is a valuable skill for any cook.

Let’s look at the cookie recipe:

1 cup flour 1/2 tsp. baking soda

1/2 tsp. salt 1/2 cup butter

1/3 cup brown sugar  1/3 cup sugar

1 egg 1/2 tsp. vanilla

1 cup chocolate chips

This recipe yields 3 dozen cookies. If you want 9 dozen cookies, you 
will have to increase the amount of each ingredient in the recipe while 
ensuring that the relationship between the ingredients stays the same. To 
do this, you will need to understand proportion. A proportion exists when 
you have two equal ratios, such as 2:4 and 4:8. Two unequal ratios, such as 
3:16 and 1:3, do not result in a proportion. The ratios must be equal.

In the cookie recipe, you will need to set up a proportion to make sure 
you get the correct ratios to make 9 dozen. Start by figuring out how much 
flour you will need to make 9 dozen cookies by setting up this proportion:

1 (cup) / 3 (dozen) = X (cups) / 9 (dozen)

To find X (number of cups of flour needed in the new recipe), multiply 
the numbers like this: X times 3 = 1 times 9, or 3X = 9. now find the value 
of X by dividing both sides of the equation by 3. The result is X = 3. To 
extend the recipe to make 9 dozen cookies, you will need 3 cups of flour. 
Follow the same process to determine how much of each ingredient is 
needed for 9 dozen cookies.

Other Meaningful Activities

99 Cell phone plans. Advertisers often use mathematics to confuse 
rather than educate the public, and cell phone network companies 
are no exception. Ask students to collect advertisements for different 
cell phone network providers. Their task is to compare the various 
plans offered by these companies and determine which plan is the 
most economical. They should also note what variables are import-
ant, such as number of lines, roll-over minutes, optional texting, and 
so on, and decide which would be the most appropriate for their 
individual situation. If they currently have a cell phone plan, how 
does it compare to what they have discovered in this activity?
99 Choosing an environmentally friendly car. The news is full of stories 
about how much car exhaust emissions contribute to polluting the 
atmosphere. environmental and governmental groups are calling on 
car buyers to choose “green” cars, those that produce low emissions. 
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If students want to be eco-friendly when they buy a car, what infor-
mation will they need to decide which make/model is the greenest? 
What statistics should they gather? (note: www.fueleconomy.gov  
is a valuable source for this information.)
99 Discovering a famous mathematician. Contrary to some students’ 
beliefs, mathematics is a human endeavor. There are famous mathe-
maticians just as there are famous rap, movie, and sports stars. Ask 
each student to conduct research on a famous mathematician. 
Websites can be valuable sources for finding these individuals. They 
should prepare a presentation for the class that includes at least the 
person’s name, place of birth, dates of birth and death, education, at 
least two interesting facts, why the person is famous, and an exam-
ple of this person’s work.

These are just a few examples of activities that can help make seem-
ingly abstract mathematical operations more interesting and practical to 
students. For suggestions on where to find more examples, see some of the 
websites in the Resources section of this book.

n  WHAT’S COMING?

Although many students have occasional difficulties learning mathemat-
ics, they often find ways to overcome them. Math anxiety is an example of 
a stumbling block that can be overcome with simple interventions. But 
some students have persistent difficulties with even simple arithmetic 
operations. The next chapter discusses how teachers can recognize those 
students who have persistent problems and what can be done to help them 
learn mathematics concepts.
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Chapter 6—Teaching 
Mathematics to the 
Adolescent Brain

QUESTIONS AND REFLECTIONS  n

Respond to the following questions, and jot down on this page key points, 
ideas, strategies, and resources you want to consider later. This sheet is 
your personal journal summary and will help jog your memory.

explain how the brain’s search for novelty can enhance instruction in 
mathematics. __________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

how do the qualitative and quantitative learning styles differ?

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

how can graphic organizers help in learning mathematics? ______________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________
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7
Recognizing  

and Addressing 
Mathematics 
Difficulties

Do not be troubled by your difficulties with Mathematics. I can assure 
you mine are much greater.

—Albert Einstein

Some children are adept at mathematical calculations, while others 
struggle despite much effort and motivation. In the past three decades, 

the percentage of school-age children who experience difficulties in learn-
ing mathematics has been growing steadily. Why is that? Is the brain’s abil-
ity to perform arithmetic calculations declining? If so, why? Does the brain 
get less arithmetic practice because technology has shifted computation 
from brain cells to inexpensive electronic calculators? What makes a child 
do poorly in mathematics? The answer to this question is complicated by 
at least two considerations:

1. We need to distinguish whether the poor achievement is due to 
inadequate instruction or some other environmental factor, or 
whether it is due to an actual cognitive disability.

2. Exactly how is mathematics being taught? Instructional approaches 
can determine whether a cognitive deficit is really a disability at all. 
For example, one instructional approach emphasizes conceptual 
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understanding while deemphasizing the learning of procedures 
and mathematical facts. Another approach places heavy emphasis 
on procedures and facts. A student with a deficit in retrieving arith-
metic facts might not be considered as having a learning disability 
in the first approach because of the deemphasis on memory-based 
information. However, that deficit would be a serious disability in 
the second approach. Recognizing this dichotomy, the Common 
Core State Standards for Mathematics (National Governors 
Association Center for Best Practices & Council of Chief State 
School Officers, 2010) have focused more on conceptual under-
standing than on memorization.

The growing number of students who are having trouble learning 
mathematics has spurred research interest in how the brain does calcula-
tions and the possible causes of mathematical difficulties. In this chapter, 
the term mathematics difficulties includes those students performing in the 
low average range, regardless of whether their difficulties are due to envi-
ronmental factors or cognitive deficits. It is important to remember that 
because mathematics achievement tests include many types of items, it is 
possible that students may demonstrate average performance in some 
areas of mathematics and show deficits in other areas.

n  DETECTING MATHEMATICS DIFFICULTIES

As with any learning difficulty, the earlier mathematics difficulties are 
detected, the better. Studies have shown that using intense tutoring with 
first graders who display problems with calculations significantly 
improved their end-of-year achievement in mathematics (Smith, Cobb, 
Farran, Corday, & Munter, 2013). The key, of course, is early detection so 
interventions can begin as soon as practicable.

Determining the Nature of the Problem
The first task facing educators who deal with students with mathe-

matics difficulties is to determine the nature of the problem. Obviously, 
environmental causes require different interventions than developmental 
causes. Low performance on a mathematics test may indicate that a prob-
lem exists, but tests do not provide information on the exact source of the 
poor performance. Standardized tests, such as the Brigance Comprehensive 
Inventory of Basic Skills—Revised, are available and provide more precise 
information on whether the problems stem from deficits in counting, num-
ber facts, or procedures.

Educators should examine the degree to which students with mathe-
matics difficulties possess the prerequisite skills for learning mathematical 
operations. What skills are weak, and what can we do about that? They also 
should look at the mathematics curriculum to determine how much math-
ematics is being taught and the types of instructional strategies teachers 
are using. Are we trying to cover too much? Are we using enough visual 
and manipulative aids? Are we developing student strengths and not just 
focusing on their weaknesses?
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Prerequisite Skills

Examining the nature of mathematics curriculum and instruction may 
reveal clues about how the school system approaches teaching these top-
ics. A good frame of reference is the recognition that students need to have 
mastered a certain number of skills before they can understand and apply 
the principles of more complex mathematical operations. Mathematics 
educators have suggested that the following seven skills are prerequisites 
to successfully learning mathematics (Sharma, 2006):

1. Following sequential directions

2. Recognizing patterns

3. Estimating by forming a reasonable guess about quantity, size, 
magnitude, and amount

4. Visualizing pictures in one’s mind and manipulating them

5. Having a good sense of spatial orientation and space organization, 
including telling left from right, compass directions, horizontal and 
vertical directions

6. Doing deductive reasoning—that is, reasoning from a general prin-
ciple to a particular instance or from a stated premise to a logical 
conclusion

7. Doing inductive reasoning—that is, coming to a natural under-
standing that is not the result of conscious attention or reasoning, 
easily detecting the patterns in different situations and the interre-
lationships between procedures and concepts

Students who are unable to follow sequential directions, for example, 
will have great difficulty understanding the concept of long division, 
which requires retention of several different processes performed in a par-
ticular sequence. First, one estimates, then multiplies, then compares, then 
subtracts, then brings down a number, and the cycle repeats. Those with 
directional difficulties will be unsure which number goes inside the divi-
sion sign or on top of the fraction. Moving through the division problem 
also presents other directional difficulties: One reads to the right, then 
records a number up, then multiplies the numbers diagonally, then records 
the product down below while watching for place value, then brings a 
number down, and so on.

Diagnostic Tools

Primary-Grades Assessments

Teachers in the primary grades, of course, often rely on their own 
observations of students’ performance to determine when a particu-
lar child is having problems with arithmetic computations. Although 
teacher observations are valuable, other measures should be considered 
as well. Research studies have shown that several measures are reliable in 
detecting and predicting how well young students are mastering number 
manipulation and basic arithmetic operations. Table 7.1 summarizes the 
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screening measures that can be used with kindergarten and first-grade 
students to determine whether mathematics difficulties exist (Gersten, 
Clarke, Haymond, & Jordan, 2011; Gersten, Jordan, & Flojo, 2005; Griffin, 
2002; Lembke & Foegen, 2005).

Postprimary-Grades Assessments

Past the primary grades, research studies suggest that five critical fac-
tors affect the learning of mathematics. Each factor can serve as a diag-
nostic tool for assessing the nature of any learning difficulties students 
may experience with mathematical processing (Augustyniak, Murphy, & 
Phillips, 2005; Bohlmann & Weinstein, 2013; Sharma, 2006). Here are the 
factors to consider:

99 Level of cognitive awareness. Students come to a learning situation 
with varying levels of cognitive awareness about that learning. The 
levels can range from no cognitive awareness to high levels. Your 
first task is to determine the students’ levels of cognitive awareness 
and the strategies each student brings to the mathematics task. This 
is not easy, but it can be accomplished by doing the following:

9• Interview the students individually and observe how each one 
approaches a mathematical problem that needs to be solved.

9• Ask, “What is the student thinking?” and “What formal and 
informal strategies is the student using?”

Measure Description

Digit span Student repeats a string of numbers either forward 
or backward

Fact retrieval Student solves simple problems in addition and 
subtraction

Magnitude comparison Student chooses the largest of four visually or 
verbally presented numbers

Missing number Student names a missing number from a sequence 
of numbers between 0 and 20

Number knowledge test Basic measure of number sense (see Chapter 5)

Numbers from dictation Student writes numbers from oral dictation

Number identification Student identifies numbers between 0 and 20 from 
printed numbers

Quantity array Student names the number of dots arrayed in a 
box

Quantity discrimination Student identifies the larger of two printed 
numbers

Table 7.1  Description of Selected Screening Measures in Early Mathematics

SOuRCES: Gersten et al. (2005, 2011); Griffin (2002); Lembke and Foegen (2005).
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9• Determine what prerequisite skills are in place and which are 
poor or missing.

9• Determine if a mathematics answer is correct or incorrect, and ask 
students to explain how they arrived at the answer.

Knowing the levels of the students’ cognitive awareness and prerequi-
site skills will give you valuable information for selecting and introducing 
new concepts and skills.

99 Mathematics learning profile. As discussed in Chapter 6, research-
ers agree that each person processes mathematics differently and that 
these differences run along a continuum from primarily quantitative 
to primarily qualitative. You will recall that quantitative learners pre-
fer entities with definite values, use procedural approaches to prob-
lem solving, and focus on deductive reasoning. Qualitative learners, 
on the other hand, prefer holistic and intuitive approaches, look for 
relationships between concepts and procedures, are social learners, 
and focus on visual–spatial aspects of mathematical information.

Because both types of learning profiles are present in mathematics 
classes, teachers need to incorporate multiple instructional strategies. 
Teaching to one style alone leaves out students with the other style, 
many of whom may do poorly in mathematics as a result. In fact, 
some may even exhibit the symptoms of mathematics difficulties.
99 Language of mathematics. Mathematical difficulties often arise 
when students fail to understand the language of mathematics, 
which has its own symbolic representations, syntax, and terminol-
ogy. Solving word problems requires the ability to translate the lan-
guage of English into the language of mathematics. The translation 
is likely to be successful if the student recognizes English language 
equivalents for each mathematical statement. For example, if  
the teacher asks the class to solve the problem “76 take away 8,” the 
students will correctly write the expression in the exact order stated: 
“76 – 8.” But if the teacher says, “Subtract 8 from 76,” a student 
following the language order could mistakenly write “8 – 76.” 
Learning to identify and correctly translate mathematical syntax 
becomes critical to student success in problem solving.

Language can be an obstacle in other ways. Students may learn a 
limited vocabulary for performing basic arithmetic operations, such 
as add and multiply, only to run into difficulties when they encounter 
expressions asking for the sum or product of numbers. You can avoid 
this problem by introducing synonyms for every function: “Let us 
multiply 6 and 5. We are finding the product of 6 and 5. The product 
of 6 times 5 is 30.”
99 Prerequisite skills. As noted earlier, the seven prerequisite skills for 
learning mathematics successfully are nonmathematical in nature. 
However, they must be mastered before even the most basic under-
standings of number concepts and arithmetic operations can be 
learned. You should assess the extent to which these seven skills are 
present in each student.

Consider using this simple profile diagram (see example on the 
next page) to assist in assessment of the seven skills. After assessing 
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the student’s level on each skill, analyze the results and decide on a 
plan of action that will address any areas needing improvement.

Students with four or more scores in the 1 to 2 range will have signifi-
cant problems learning the basic concepts of mathematics. They will need 
instruction and practice in mastering these skills before they can be 
expected to tackle mathematical content.

Prerequisite Skills Profile for Mathematics

Student’s Name: ________________________________ Date: ___________

Directions: On a scale of 1 (lowest) to 5 (highest), circle the number 
that indicates the degree to which the student displays mastery of 
each skill. Connect the circles to see the profile.

Skill

Follows sequential directions 5 4 3 2 1

Recognizes patterns 5 4 3 2 1

Can estimate quantities 5 4 3 2 1

Can visualize and manipulate mental pictures       5  4  3  2  1

Has sense of spatial orientation and organization  5  4  3  2  1

Is able to do deductive reasoning 5 4 3 2 1

Is able to do inductive reasoning 5 4 3 2 1

Action Plan: As a result of this profile, we will work together to

________________________________________________________________

________________________________________________________________

________________________________________________________________

by doing

________________________________________________________________.

99 Levels of learning mastery. How do you decide when a student has 
mastered a mathematical concept? Certainly, written tests of prob-
lem solving are one of the major devices for evaluating learning. 
However, they are useful tools only to the extent that they measure 
actual mastery rather than rote memory of formulas and proce-
dures. Cognitive research suggests that a person must move 
through the following six levels of mastery to truly learn and retain 
mathematical concepts:
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9• Level 1: Connects new knowledge to existing knowledge and expe-
riences (Example: Recognizes that three multiplied by four is the 
same as three plus three plus three plus three, and the same as four 
plus four plus four)

9• Level 2: Searches for concrete material to construct a model or show 
a manifestation of the concept (Example: uses manipulatives such 
as blocks or coins to lay out four groups of three objects or three 
groups of four objects)

9• Level 3: Illustrates the concept by drawing a diagram to connect the 
concrete example to a symbolic picture or representation (Example: 
Draws four groups of three objects or three groups of four objects, 
such as animals or stars)

9• Level 4: Translates the concept into mathematical notation using 
number symbols, operational signs, formulas, and equations 
(Example: Writes 3 × 4 = 3 + 3 + 3 + 3 = 12 or 3 × 4 = 4 + 4 + 4 = 12)

9• Level 5: Applies the concept correctly to real-world situations, proj-
ects, and story problems (Example: Solves prewritten or student- 
created story problems)

9• Level 6: Can teach the concept successfully to others, or can commu-
nicate it on a test (Example: Explains the concept orally to a peer or 
the class)

Too often, paper-and-pencil tests assess only Level 6. Thus, when the 
student’s results are poor, the teacher may not know where learning diffi-
culties lie. By designing separate assessments for each level, teachers will 
be in a much better position to determine what kind of remedial work will 
help each student.

ENVIRONMENTAL FACTORS  n

Students without cognitive deficits may still display dif-
ficulties with arithmetic and mathematical operations. 
Environmental factors, such as emotional responses to 
mathematics and instructional quality, can play a vital 
role in determining how well young students and ado-
lescents will achieve in their mathematics classes.

Student Attitudes About Mathematics
In modern American society, reading and writing have become the 

main measures of a good student. Mathematics ability has been regarded 
more as a specialized function than as a general indicator of intelligence. 
Consequently, the stigma of not being able to do mathematics has been 
reduced and has become socially acceptable. Just hearing their parents say, 
“I wasn’t very good at math,” allows children to embrace the social atti-
tudes that regard mathematics failure as acceptable and routine.

In recent years, schools have placed a heavy emphasis on raising 
standards in all curriculum areas. At the same time, the No Child Left 
Behind Act requirements included high-stakes assessments in reading 

Answer to Question 9. False: 
Students without cognitive deficits 
may still display difficulties with 
arithmetic and mathematical 
operations.
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and mathematics. Despite these initiatives, student attitudes about math-
ematics have not improved much. Surveys show that most students 
(including those who like mathematics) find making nonmathematical 
mistakes much more embarrassing than making mathematical mistakes. 
Furthermore, regardless of the efforts toward gender equity, female high 
school students still rate themselves as less confident in mathematics than 
do their male peers (Martinez & Guzman, 2013).

These findings are unsettling, especially because other research stud-
ies have shown that attitudes are formed by social forces and predict aca-
demic performance. Not surprisingly, students with positive attitudes 
about what they are learning are more motivated and therefore achieve 
more than students with poor attitudes (Bramlett & Herron, 2009; Glynn, 
Taasoobshirazi, & Brickman, 2007). Apparently, higher standards, the 
STEM (science, technology, engineering, and mathematics) initiative, and 
increased testing are not sufficient as yet to improve how students feel 
about learning mathematics. They do not yet view competency in mathe-
matics as a basic life skill. until this view changes, students will have little 
incentive to master mathematics and teachers will continue to have their 
work cut out for them.

Fear of Mathematics (Math Anxiety)
Anxiety about learning and doing mathematics (commonly referred 

to as math anxiety) has been around a long time. It can be described as a 
feeling of tension that interferes with the manipulation of numbers and 
the solving of mathematical problems in academic and ordinary-life situa-
tions. It occurs in many individuals regardless of age, race, or gender, and 
can prevail in the home, classroom, or society. Some studies suggest that 
more than 60 percent of secondary students have a fear of mathematics 
(National Mathematics Advisory Panel, 2008).

Students at all grade levels often develop a fear (or phobia) of mathe-
matics because of negative experiences in their past or current mathemat-
ics class, or they have a simple lack of self-confidence with numbers. Math 
anxiety appears to be more prevalent in girls than in boys (Devine, Fawcett, 
Szucs, & Dowker, 2012). It conjures up fear of some type; perhaps it is the 
fear that one won’t be able to do the calculations or that it’s too difficult, 
or the fear of failure that often stems from having a lack of confidence. In 
people with math anxiety, the fear of failure often causes their minds to 
draw a blank, leading to more frustration and more blanks. The added 
pressure of time limits on mathematics tests also raises the levels of anxi-
ety for many students (Popham, 2008; Tsui & Mazzocco, 2007). Ironically, 
when we ask a student to spell a new vocabulary word, we do not say to 
the student, “Spell that word as fast as you can.” Rather, we encourage the 
student to take the time needed to spell it correctly. Yet, so often, we insist 
that students solve mathematics problems as fast as possible. As a result, 
we produce students who rely more on rote memorization than on under-
standing concepts.

Typically, students with this phobia have a limited understanding of 
mathematical concepts. They may rely mainly on memorizing procedures, 
rules, and routines, without much conceptual understanding; so panic 
soon sets in. Mathematics phobia can be as challenging as any learning 
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disability, but it is important to remember that these students have normal 
neurological systems for computation. They need help primarily in replac-
ing the memory or fear of failure with the possibility of success. As we 
shall see later, students with mathematical disorders, on the other hand, 
have a neurological deficit that results in persistent difficulty in processing 
numbers.

Regardless of the source, the most prevalent consequences of this anx-
iety are poor achievement and poor grades in mathematics. One reason 
for the poor performance is biolog-
ical. Anxiety of any type causes the 
body to release the hormone corti-
sol into the bloodstream. Recall that 
cortisol’s main function is to refo-
cus the brain on the source of the 
anxiety and determine what action 
to take to relieve the stress (Figure 
7.1). Heart rate increases, and other 
physical indicators of worry appear. 
Meanwhile, the frontal lobe is no 
longer interested in learning or pro-
cessing mathematical operations 
because it has to deal with what 
may be a threat to the individual’s 
safety. As a result, the student can-
not focus on the learning task at 
hand and has to cope with the frus-
tration of inattention. Furthermore, 
the anxious feelings disrupt work-
ing memory’s ability to manipu-
late and retain numbers and numerical expressions (Trezise & Reeve, 2014; 
Vukovic, Kieffer, Bailey, & Harari, 2013).

Alleviating Math Anxiety in the Classroom

Researchers suggest that five areas contribute in one way or another to 
math anxiety: teachers’ attitudes, curriculum, instructional strategies, the 
classroom culture, and assessment (Figure 7.2). Let’s take a look at what 
research studies say about each of these five areas, as well as what can be 
done to lessen anxiety and improve student achievement in mathematics 
(Finlayson, 2014; Geist, 2010; Lyons & Beilock, 2012; Shields, 2005).

99 Teacher attitudes. Research studies confirm that teacher attitudes 
greatly influence math anxiety and represent the most dominating 
factor in molding student attitudes about mathematics (Beilock, 
Gunderson, Ramirez, & Levine, 2010; Brady & Bowd, 2005). Here 
are some things teachers can do to maintain a positive attitude in 
themselves as well as their students:

9• Present an agreeable disposition that shows mathematics to be a 
great human invention.

9• Show the value of mathematics by how it contributes to other 
disciplines as well as society.

Figure 7.1  Math anxiety causes the release of cortisol into 
the bloodstream. Cortisol refocuses the frontal lobe to deal 
with the anxiety. Meanwhile, any unrelated learning in 
working memory is disrupted and lost.
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9• Promote student confidence and curiosity by assigning appropri-
ate, interesting, and relevant tasks.

9• Focus on the goals and process of learning rather than just search-
ing for the correct answer.

9• Create opportunities for success. Teachers need to build in a sig-
nificant success rate for students to remain engaged with work 
that is challenging enough to demand effort but easy enough to 
expect success.

9• Resist the temptation to believe that males have a greater innate 
ability than females to do mathematics or that females have to put 
forth more effort than males to succeed.

9• Display confidence in your teaching. Teachers, especially at the 
elementary grade levels, who are math anxious themselves or 
who lack confidence with the subject often inadvertently transmit 
this fear to students.

99 Curriculum. Studies of mathematics curricula in kindergarten through 
Grade 8 reveal much repetition of subject matter. One comprehensive 
study of 183 mathematics topics taught in kindergarten through 
Grade 8 by more than 7,000 teachers in 27 states showed a consider-
able amount of redundancy (Polikoff, 2012). From 70 to 80 percent of 
instructional time in Grade 3 through middle school repeated mate-
rial taught in the previous grade. Thus, only 20 to 30 percent of time 
was devoted to new topics. The study also noted that the Common 
Core State Standards for Mathematics have even more redundancy in 
the early grades but much less repetition in middle school.

Despite this repetition, students in the primary grades usually rate 
mathematics as one of the subjects they like most. Through positive 

Figure 7.2  Math anxiety is a common problem with both students and adults. 
In schools, math anxiety can be lowered by making modifications in the five 
areas shown in this figure.
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learning experiences, the students believe that they have the compe-
tence to do mathematics and that hard work will bring success. But 
by fourth grade, math anxiety often surfaces because the curriculum 
shifts from using manipulatives and concrete applications to more rote 
memorization and abstract thinking. By middle school, the abstract 
nature of the curriculum content causes students to believe that suc-
cess in mathematics is due to innate ability and that effort matters lit-
tle. The material gets even more abstract in high school, and students 
realize that memorization is not sufficient to succeed. Teachers help 
students make this transition to abstract thinking when they

9• devote more time in the elementary and middle school grades to 
new material, discovery, and application;

9• provide activities that constantly train students to apply their 
knowledge to new ideas and to use mathematics as a tool for 
discovery;

9• prune the mathematics curriculum to eliminate the less important 
items so it focuses on a deeper understanding of major topics and 
enhances skills; and

9• avoid repeating the same topics annually unless they are critical 
to learning, applying, and discovering new opportunities in 
mathematics.

99 Instructional strategies. One critical factor in how well students 
learn mathematics is the quality of the teaching. Studies show that 
student achievement in mathematics is strongly linked to the teach-
er’s expertise in mathematics. Students of a teacher expert in math-
ematics perform better on achievement tests than do students of a 
teacher with limited training in mathematics (National Science 
Foundation, 2004). Teaching techniques that center on “explain–
practice–memorize” are among the main sources of math anxiety 
because the focus is on memorization rather than on understanding 
the concepts and reasoning involved. Students taught with this 
approach do not have the skills to deal successfully with material 
that goes beyond memorization. Students are more successful in 
mathematics classes where teachers

9• possess a mathematics skill level that goes beyond basic under-
standing;

9• show an awareness and understanding of student confusion and 
frustration;

9• pose questions in an effort to help students continuously learn;
9• limit the frequency of memorizing, doing rote practice, searching 

for one right answer, and making calculations that can be performed 
by computers and calculators;

9• develop meaning by showing practical applications that are 
related to students’ lives;

9• incorporate projects that allow students to explore solutions to 
problems individually and in groups;

9• encourage students to investigate and formulate questions involving 
mathematical relationships; and

9• provide opportunities for students to represent everyday situations 
verbally, numerically, graphically, and symbolically.
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99 Classroom culture. Classroom culture can be defined as the norms 
and behaviors that regularly guide classroom interactions. Structured, 
rigid classes where there is little opportunity for debate can become 
a source of math anxiety. If the culture includes that inevitable search 
for the one right answer, then students feel that there is no recogni-
tion or reward for the cognitive processes involved. The culture may 
also place a strong emphasis on answering quickly and on timed 
tests. Emphasizing speed does not encourage students to reflect on 
their thinking processes or to analyze their results. Math anxiety is 
likely to be lower in classrooms where teachers

9• create a culture where students can ask questions, discover learning, 
and explore ideas;

9• foster an environment where students can feel secure in taking 
risks and not feel embarrassed for giving wrong answers;

9• provide for a calming period so the emotional aspect of the anxi-
ety can abate and allow the rational thought processes to emerge;

9• discourage valuing speed over time for reflection; and
9• encourage students to make sense of what they are learning 

rather than just memorize steps or procedures. Remember that 
making sense is one of the criteria (along with meaning) that the 
brain uses to determine whether information is worth tagging for 
long-term storage.

Several researchers suggest that students can overcome math anxiety 
and find learning mathematics to be a rewarding and successful experi-
ence when teachers establish a classroom culture oriented toward making 
sense, rather than a more traditional culture oriented toward memorizing, 
being correct, recalling quickly, and listening (Flewelling & Higginson, 
2001; Martin, 2009; Rudduck & McIntyre, 2007). More specifically, their 
comparison of some of the characteristics of the sense-making classroom 
to the traditional classroom is shown in Table 7.2.

These researchers further suggest that changing the typical classroom 
culture to a sense-making culture in mathematics can be achieved by having 

Traditional Classroom Sense-Making Classroom

Mathematics is a collection of 
procedures

Mathematics is a way of thinking

Working with the inexplicable Working with things that make sense

Significance of material lost on 
learner

Material significant to learner

Student is passive Student is active

Validated by teacher Validated by student

Truth is as presented Truth is as constructed

Teacher owned Student owned

Table 7.2 Comparison of Sense-Making and Traditional Classroom Cultures
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students and their teacher focus on, engage in, and experience rich learn-
ing tasks. They need to see what learning looks and feels like and the kind 
of interaction that is involved when they are truly engaged. The research-
ers define rich learning tasks as those that give learners the opportunity to  
(1) use their knowledge in an integrated, creative, and purposeful fash-
ion to conduct investigations, inquiries, and experiments, and to solve 
problems; (2) acquire knowledge with understanding; and (3) develop the 
attitudes and habits of a lifelong sense maker. Rich learning tasks help stu-
dents recognize the role mathematics plays in their lives, and how math-
ematical reasoning can be an important tool for their decision making as 
students and adults. Table 7.3 offers a comparison of traditional and rich 
tasks that can be conducted in the mathematics classroom.

Table 7.3  Comparison of Traditional and Rich Tasks

Traditional Tasks Rich Tasks

Prepare for success in school Prepare for success outside of school

Address learning outcomes in 
mathematics

Address learning outcomes in 
mathematics and other subject areas

Focus on the use of relatively few 
skills

Provide an opportunity to use broad 
range of skills in an integrated and 
creative fashion

Are more artificial and out of context Are authentic and in context

Encourage recollection and practice Encourage thinking, reflection, and 
imagination

(Continued)

SOuRCES: Flewelling and Higginson (2001); Martin (2009); Rudduck and McIntyre (2007).

Traditional Classroom Sense-Making Classroom

Described/explained in teacher 
language

Described/explained in student language

Often forgotten, not retrievable Remembered, retrievable

Pops into existence Grows into being

Ignores student readiness Considers student readiness

Nonexperiential Experiential

Presented at beginning of lesson Developed at end of lesson

Reliance on memory aids Minimal reliance on memory aids

Isolated and superficial Connected and thorough

Follow procedures Develop procedures

Anxious about mathematics Sense of personal efficacy and confidence

Deadens the mind and spirit Enlivens the mind and spirit
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99 Assessment. Tests can be the primary source of students’ anxiety in 
any subject. But the anxiety may be greater in those subjects, such as 
mathematics, that are the basis for the high-stakes tests that have 
emerged since the adoption of curriculum standards and minimum 
competencies. Tests often diminish the students’ confidence because 
they have no flexibility in the testing process and, as a result, the 
tests do not stir their curiosity or inventiveness. Furthermore, tests 
are often used to determine which students will enter classes of 
advanced mathematics. One can question whether poor assessment 
techniques should be used to determine how students advance in 
the mathematics curriculum, especially since these decisions can 
affect their post–high school choices. Teachers can alleviate the math 
anxiety caused by testing when they do the following:

9• Limit class tests and do not time them. Timed tests increase the 
pressure on students, which disrupts processing in both working 
and long-term memory (Tsui & Mazzocco, 2007). This issue is 
controversial, and there may be occasions where this accommoda-
tion is not possible. However, it should be seriously considered 
whenever it can be implemented.

9• Reduce the weight given to tests in determining grades, ranking 
students, or measuring isolated skills.

9• Assess students on how they think about mathematics.
9• Include multiple methods of assessment, such as oral, written, or 

demonstration formats.
9• Provide feedback that focuses on a lack of effort rather than a lack 

of ability so students remain confident in their ability to improve 
(Dweck, 2006).

9• use the six National Council of Teachers of Mathematics (1995) 
assessment standards, which still make sense in today’s educa-
tional climate, as a guide for testing practices. In brief, these 
standards state that assessment should (1) include real-life activ-
ities, (2) enhance mathematics learning, (3) promote equity, (4) be 
an open process, (5) promote valid inferences about mathematics 
learning, and (6) be a coherent process.

Table 7.3 (Continued)

Traditional Tasks Rich Tasks

Allow for demonstration of a narrow 
range of performance

Allow for demonstration of a wide 
range of performance

usually require enrichment to be 
added after the task

Provide enrichment within the task

Permit the use of fewer teaching and 
learning strategies

Encourage the use of a wide variety 
of teaching and learning strategies

Keep students and teachers distanced 
from the task

Encourage greater engagement of 
students and teachers in the task

SOuRCES: Flewelling and Higginson (2001); Martin (2009); Rudduck and McIntyre (2007).
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We have already discussed how student performance in mathematics 
improves when anxiety is alleviated. Teachers ease that anxiety when they 
demonstrate excitement and confidence in the subject, develop a relevant 
mathematics curriculum, use effective instructional strategies, create class-
rooms centered on discovery and inquiry, and assess students in a mean-
ingful and fair manner.

NEUROLOGICAL AND OTHER FACTORS  n

Apart from environmental factors that can cause poor performance in 
mathematics, researchers look also at potential neurological causes. Just a 
few years ago, neuroscientists studied reading disabilities and were finally 
able to separate the factors that cause reading problems from those that are 
the consequences of these factors. Most researchers now agree that the major 
causal deficits in reading difficulties result from impairments in the brain 
regions responsible for phonological processing (Sousa, 2014).

The problem facing researchers in the field of mathematics disabilities 
is similar: distinguishing those factors that are causal from those that are 
consequential. Because students with moderate mathematical difficulties 
are often of average or higher intelligence and possess good reading skills, 
the brain regions involved in mathematics difficulties are likely localized or 
modular. In other words, the neurological causes of mathematics difficul-
ties can be limited and not affect other cognitive areas. As we have noted in 
previous chapters, there is already a substantial body of brain imaging and 
case studies research supporting the existence of number modules.

Dyscalculia
About 3 to 6 percent of school-age students have serious difficulty pro-

cessing mathematics (Butterworth, 2010). This is about the same number 
of students who have serious reading problems. However, because of the 
strong emphasis our society places on the need to learn reading, many more 
research studies have focused on problems in this area than on problems 
in mathematics. But that situation is slowly changing as neuroscientists 
get a deeper understanding of the various neural networks responsible for 
mathematical processing.

The condition that causes persistent problems with processing numerical 
calculations is referred to as dyscalculia (pronounced dis-kal-KOOL-ee-ah), 
from the Greek meaning “counting badly.” Dyscalculia is a difficulty in con-
ceptualizing numbers, number relationships, outcomes of numerical opera-
tions, and estimation—that is, what to expect as an outcome of an operation. 
If the condition is present from birth, it is called developmental dyscalculia. 
Genetic studies of twins reveal that developmental dyscalculia is moder-
ately inheritable (Tosto, Malykh, Voronin, Plomin, & Kovas, 2013). If the 
condition results from an injury to the brain after birth, it is called acquired 
dyscalculia. Whether developmental or acquired, for most individuals, this 
disorder is the result of specific disabilities in basic numerical processing 
and not necessarily the consequence of deficits in other cognitive abilities 
(Landerl, Göbel, & Moll, 2013). People with dyscalculia have difficulty
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9• mastering arithmetic facts by the traditional methods of teaching, 
particularly those involving counting;

9• learning abstract concepts of time and direction, telling and keeping 
track of time, and ordering the sequence of past and future events;

9• acquiring spatial orientation and space organization, including poor 
left/right orientation, trouble reading maps, and grappling with 
mechanical processes;

9• following directions in sports that demand sequencing or rules, and 
keeping track of scores and players during games such as cards and 
board games; and

9• following sequential directions and sequencing (including reading 
numbers out of sequence, substitutions, reversals, omissions, and 
doing operations backward), organizing detailed information, and 
remembering specific facts and formulas for completing their math-
ematical calculations.

The neurological basis of developmental dyscalculia is an impairment 
in the child’s innate ability to subitize. Because they cannot see the “two-
ness” or “threeness” of a group of objects, they learn to count differently 
than other students, relying heavily on sequencing and memorizing. 
They typically have no difficulty remembering the sequence of number 
words, and they can place those words in a one-to-one correspondence 
with objects in an array. But even when they say that four objects are 
present, they do not have an innate sense of the “fourness.” They simply 
have confidence that their counting process has led them to the correct 
answer.

We explained in Chapter 2 that after children learn 
to count, their brains will quickly associate a digit with 
a quantity; that is, the digit 5 automatically produces 
a mental image of five items. But in individuals with 
developmental dyscalculia, seeing the digit does not 
generate this mental representation of quantity, making 
it very difficult to perform mental arithmetic operations 
involving symbols. On the other hand, these individuals 

can still differentiate the number of objects contained in concrete (non-
symbolic) collections of objects. Apparently, it is the symbol (digit) that 
causes the problem (Mejias, Grégoire, & Noël, 2012). Dyscalculia can be (1) 
quantitative, which is a difficulty in counting and calculating; (2) qualita-
tive, which is a difficulty in the conceptualizing of mathematics processes 
and spatial sense; or (3) mixed, which is the inability to integrate quantity 
and space.

Some simple tests are available that could indicate the presence of 
dyscalculia. A common one is a reaction time test in which subjects are 
asked which is the larger of two numbers. You will recall from Chapter 1 
that as the distance between two numbers increases, most people find it 
easier to say which is larger. It is easier to recognize that 8 is larger than 3 
than to recognize that 4 is larger than 3. But the responses from people with 
dyscalculia are exactly the opposite. Because they cannot subitize, people 
with dyscalculia must rely on counting and sequencing. Counting from 3 
to 8 takes longer than counting from 3 to 4.

The neurological basis of 
developmental dyscalculia is an 
impairment in the child’s innate 
ability to subitize.



175RECOGNIzING AND ADDRESSING MATHEMATICS DIFFICuLTIES 

Possible Causes

The difficulty that individuals with developmental dyscalculia have in 
subitizing may be due to deficits in the number-processing regions of the 
brain. Several fMRI (functional magnetic resonance imaging) studies have 
found that the parts of the brain responsible for making the approxima-
tions necessary to subitize are much less activated in children with devel-
opmental dyscalculia than in typical children. However, brain activation 
during exact calculations was similar for both groups (Cappelletti & Price, 
2014; Castelli, Glaser, & Butterworth, 2006; Kucian et al., 2006). Figure 7.3 
shows only a small activated area in the brains of children with dyscalculia 
during approximate calculations, compared with the brains of typical chil-
dren, but a similar amount of activation during exact calculations.

Because the parietal lobe is heavily involved with number operations, 
damage to this area can result in mathematics difficulties. Studies of indi-
viduals with Gerstmann’s syndrome—the result of damage to the parietal 
lobe—showed that they had serious problems with mathematical calcu-
lations as well as right–left disorientation, but no problems with oral lan-
guage skills (Chen, Xu, Shang, Peng, & Luo, 2014; Lemer, Dehaene, Spelke, 
& Cohen, 2003; Roitman, Brannon, & Platt, 2012).

Individuals with visual-processing weaknesses almost always display 
difficulties with mathematics. This is probably because success in mathemat-
ics requires one to visualize numbers and mathematical situations, especially 
in algebra and geometry. Students with sequencing difficulties also may 
have dyscalculia because they cannot remember the order of mathematical 
operations or the specific formulas needed to complete a set of computations.

Figure 7.3  These representative fMRI scans show that during approximate 
calculations, the right (R) and left (L) hemispheres of children with dyscalculia 
are much less activated than those of typical children. During exact calculations, 
however, the activation is very similar in both groups (Kucian et al., 2006).
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Genetic factors also seem to play a significant role. Studies of identi-
cal twins reveal close mathematics scores. Children from families with a 
history of mathematical giftedness or learning disorders show common 
aptitudes with other family members. Girls born with Turner syndrome 
(a condition caused by the partial or complete absence of one of the two 
X chromosomes normally found in females) usually display dyscalculia, 
among other learning problems (Mazzocco & Hanich, 2010).

Types of Mathematical Disorders

The complexity of mathematics makes the study of mathematical 
disorders particularly challenging for researchers. Learning deficits can 
include difficulties in mastering basic number concepts, counting skills, 
and processing arithmetic operations, as well as procedural, retrieval, and 
visual–spatial deficits. As with any learning disability, each of these deficits 
can range from mild to severe.

Number Concept Difficulties. As discussed in Chapter 1, an under-
standing of small numbers and quantity appears to be present at birth. 
The understanding of larger numbers and place value, however, develops 
during the preschool and early elementary years. A poor understanding of 
the concepts involved in a mathematical procedure will delay the adoption 
of more sophisticated procedures and limit the child’s ability to detect pro-
cedural errors. Studies show that most children with mathematical disor-
ders nevertheless have their basic number competencies intact. However, 
they often are unable to use their number concept skills to solve arithmetic 
problems (Mussolin, Mejias, & Noël, 2010).

Counting Skill Deficits. Studies of children with mathematical dis-
orders show that they have deficits in counting knowledge and counting 
accuracy. Some may also have problems keeping numerical information 
in working memory while counting, resulting in counting errors (Moeller, 
Neuburger, Kaufmann, Landerl, & Nuerk, 2009).

Difficulties With Arithmetic Skills. Children with mathematical dis-
orders have trouble solving simple and complex arithmetic problems, and 
they rely heavily on finger counting. Their difficulties stem mainly from 
deficits in both numerical procedures (solving 6 + 5 or 4 × 4) and working 
memory. They tend to use developmentally immature procedures, such as 
counting all rather than counting on.

At the same time, they do not show the shift from procedure-based 
problem solving to memory-based problem solving that is found in typi-
cally achieving children, most likely because of difficulties in storing arith-
metic facts or retrieving them from long-term memory. Moreover, deficits 
in visual–spatial skills can lead to problems with arithmetic because of 
misalignment of numerals in multicolumn addition. Although procedural, 
memory, and visual–spatial deficits can occur separately, they are often inter-
connected.

Procedural Disorders. Students displaying this type of disorder

9• use arithmetic procedures (algorithms) that are developmentally 
immature;

9• have problems sequencing multistep procedures, such as 52 × 13 
and 317 + 298;
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9• have difficulty understanding the concepts associated with proce-
dures; and

9• make frequent mistakes when using procedures.

The exact cause of this disorder is unknown, but research studies have 
yielded some intriguing findings. Children with developmental or acquired 
dyscalculia can still count arrays of objects, say the correct sequence of 
number words while counting, and understand basic counting concepts, 
such as cardinality. However, they have difficulties in solving complex 
arithmetic problems. Researchers suspect one possible cause may be a 
dysfunction in the brain’s left hemisphere, which specializes in procedural 
tasks and working-memory deficits (Roşca, 2009).

Memory Disorders. Students displaying this type of disorder

9• have difficulty retrieving arithmetic facts,
9• have a high error rate when they do retrieve arithmetic facts,
9• retrieve incorrect facts associated with the correct facts, and
9• rely on finger counting because it reduces the demands on working 

memory.

This disorder likely involves the manipulation of information in the 
language system. Here again, a dysfunction of the left hemisphere is sus-
pected, mainly because these individuals frequently have reading disor-
ders as well (Ashkenazi, Black, Abrams, Hoeft, & Menon, 2013; D’Amico 
& Guarnera, 2005). This association further suggests that memory deficits 
may be inheritable.

Memory disorders can be caused by two separate problems. One 
involves disruptions in the ability to retrieve basic facts from long-term 
memory, resulting in many more errors than for typically achieving chil-
dren. Research findings indicate that this form of memory disorder is 
closely linked to the language-processing system and may indicate devel-
opmental or acquired deficits in the left hemisphere.

The second possibility involves disruption in the retrieval process 
caused by difficulties in inhibiting the retrieval of irrelevant associations. 
Thus, the student seems impulsive. For example, when asked what is 7 + 3,  
a student might quickly blurt out 8 or 4 because those numbers come next 
in counting (Passolunghi & Siegel, 2004). Solving arithmetic problems 
becomes much easier when irrelevant information is prevented from enter-
ing working memory. When irrelevant information is retrieved, it lowers 
working memory’s capacity and competes with correct information for 
the individual’s attention. This type of retrieval deficit may be caused by 
deficits in the brain’s executive areas of the prefrontal cortex responsible 
for inhibiting working-memory operations (Geary, Hoard, & Bailey, 2012; 
Peng, Congying, Beilei, & Sha, 2012).

Visual–Spatial Disorders. Students with this type of disorder

9• have difficulties in the spatial arrangement of their work, such as 
aligning the columns in multicolumn addition;

9• often misread numerical signs, rotate and transpose numbers,  
or both;
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9• misinterpret spatial placement of numerals, resulting in place value 
errors; and

9• have difficulty with problems involving space in areas, as required 
in algebra and geometry.

Studies indicate that this disorder is closely associated with deficits in 
the right parietal area, which specializes in visual–spatial tasks. Individuals 
with injuries to this area often show a deficit in spatial-orientation tasks 
and in the ability to generate and use a mental number line. Some studies 
suggest that the left parietal lobe also may be implicated (Ashkenazi, 
Rosenberg-Lee, Metcalfe, Swigart, & Menon, 2013; Szucs, Devine, Soltesz, 
Nobes, & Gabriel, 2013).

Many students eventually overcome procedural disorders as they 
mature and learn to rely on sequence diagrams and other tools to remem-
ber the steps of mathematical procedures. Those with visual–spatial dis-
orders also improve when they discover the benefits of graph paper and 
learn to solve certain algebra and geometry problems with logic rather 
than through spatial analysis alone. However, memory deficits do not 

seem to improve with maturity. Studies indicate that 
individuals with this problem will continue to have dif-
ficulties retrieving basic arithmetic facts throughout life. 
This finding may suggest that the memory problem not 
only exists for mathematical operations but also signals 
a more general deficit in retrieving information from 
memory.

Associating Dyscalculia With Other Disorders

Reading Disorders. Students with dyscalculia can also have develop-
mental reading difficulties, or dyslexia. Although these disorders do not 
appear to be genetically linked (Fletcher, 2005), nearly 50 percent of children 
with mathematics difficulties also have reading difficulties (Ashkenazi, 
Black, et al., 2013). No one knows for sure why these conditions appear 
simultaneously in so many children. Some research suggests that this 
comorbidity may be because both reading and mathematics share cerebral 
regions responsible for working memory, processing speed, and verbal 
comprehension (Willcutt et al., 2013). It is also possible that students with 
both disorders are less successful in solving mathematics problems than 
are those who have only dyscalculia because students in the former group 
have difficulty translating word problems into mathematical expressions.

Attention-Deficit Hyperactivity Disorder (ADHD). Because many 
children with ADHD have difficulty with mathematics, some research-
ers wondered if these two conditions had related genetic components, 
increasing the possibility that they would be inherited together. But studies 
show that these two disorders are transmitted independently and are con-
nected to distinctly different genetic regions (Hart et al., 2010; Monuteaux, 
Faraone, Herzig, Navsaria, & Biederman, 2005). These findings underscore 
the need for separate identification and treatment strategies for children 
with both conditions.

Nonverbal Learning Disability (NLD). This disability is thought to 
be caused by deficits in the brain’s right hemisphere, especially in the 

Children often outgrow procedural 
and visual–spatial difficulties, but 
memory problems may continue 
throughout life.
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occipital lobe (Semrud-Clikeman & Fine, 2011). Individuals with NLD 
have difficulty processing nonverbal information but are very good at 
processing verbal information. They tend to be excessively verbal and 
expressive, and show weaknesses in visual and spatial tasks and in tactile 
perception. Although there is little evidence that NLD is directly associ-
ated with dyscalculia, NLD affects one’s ability to manage and understand 
nonverbal learning assignments (Volden, 2013). Thus, students with NLD 
will have problems with handwriting, perceiving spatial relationships, 
drawing and copying geometric forms and designs, and grasping math-
ematics concepts and skills. We will discuss later in this chapter some of 
the strategies that can help these individuals.

ADDRESSING MATHEMATICS DIFFICULTIES  n

Research Findings
Numerous research studies have looked at the effectiveness of instruc-

tional strategies in improving achievement by students with mathematics 
difficulties. As expected, some strategies work better than others, and a 
particular strategy’s effectiveness can depend on the nature of the learning 
difficulties found in the individuals being studied.

Because of this wide range of effectiveness for instructional strate-
gies, it is usually helpful to rely on a meta-analysis of studies to determine 
which strategies have a significant impact on student achievement. This 
impact is often measured by effect size. As a general rule, an effect size of 
0.20 is considered a small effect, 0.40 a moderate effect, and 0.60 or above 
a large effect. The most recent meta-analysis of instructional interventions 
in mathematics for students with learning difficulties was conducted by 
Russell Gersten and his colleagues (2009). They looked at 42 different inter-
ventions and found that the following two had significantly important 
effect sizes: the use of explicit instruction and the use of heuristics (experi-
ence-based techniques for problem solving and discovery). Table 7.4 shows 
those strategies that yielded effect sizes of 0.20 or larger.

Among these studies, the use of heuristics had the largest effect size. A 
heuristic was any strategy that represented a generic approach to solving 
a problem. It could be as simple as asking the student to read the problem, 
underline key words, solve it, and then check the work. Heuristics are not 
problem specific. Instead, they show the student multiple ways to solve a 
problem, encourage reflection to assess alternate solutions, and direct them 
to select one to solve the problem. Explicit instruction also yielded a large 
effect size, a result found in earlier meta-analyses of similar studies. To be 
included in this meta-analysis, explicit instruction meant that the teacher 
demonstrated a step-by-step strategy for solving the problem that was spe-
cific for a set of similar problems and asked the students to use the same 
procedure to solve a given problem.

That student verbalization scored high as a strategy is not surprising. 
Verbally explaining thinking processes is a form of rehearsal that helps 
students find sense and meaning in what they are doing. It also gives 
teachers the opportunity to answer questions and correct student think-
ing, thereby leading them on a path to successfully solving a problem. 
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Cross-age tutoring also yielded an impressive effect size. In these studies, 
the tutors were well-trained upper-elementary students who tutored stu-
dents in lower grades. Their training focused on teaching lessons to the 
students as well as on what type of specific feedback they should give to 
students who had difficulty or made mistakes.

The large effect size for sequence and/or range of examples indicates 
how important it is for teachers to present mathematics examples to these 
students in a logical pattern. That pattern could be showing the distinctive 
features of a particular type of problem set, going from easy to progres-
sively more complex and difficult problems, or finding common features of 
outwardly dissimilar word problems. Visual representations during prob-
lem solving have long been shown to be effective with students who have 
difficulties in learning mathematics, mainly because these representations 
become tools for thought, calculation, and communication in mathematics. 
For these students, abstract concepts, such as fractions and proportions, 
are easier to understand with visual representations.

Feedback through formative assessments is a valuable tool for teachers to 
monitor student progress and make any needed adjustments to their instruc-
tional strategies. The teacher feedback could include progress plus options 
for addressing any additional instructional activities the students might 
need to improve their achievement. Providing feedback to the students is 
also helpful because it keeps them engaged by letting them know where they 
have been successful or unsuccessful in their learning of mathematics.

SOuRCE: Gersten et al. (2009).

Instructional Strategy Mean Effect Size

use of heuristics (general techniques for problem 
solving)

1.56

Explicit instruction 1.22

Student verbalizations 1.04

Cross-age tutoring 1.02

Sequence and/or range of examples 0.82

Visuals combined 0.47

Visuals for teacher and student 0.46

Visuals for teacher only 0.41

Teacher feedback plus options for addressing 
instructional needs

0.34

Teacher feedback combined 0.23

Student feedback 0.23

Teacher feedback 0.21

Table 7.4  Mean Effect Sizes of Strategies in Mathematics for Students With 
Learning Difficulties
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Meta-analyses such as this one show us that we do have instructional 
strategies that, when appropriately implemented, can significantly help 
students who have difficulties in learning mathematics.

Basic Guidelines
From the research findings we have discussed in previous chapters and 

those included in Table 7.4, we can develop some basic guidelines for strat-
egies that are likely to be effective with students who have difficulties in 
learning mathematics.

99Recalling that these students often have limitations with working 
memory, strategies should avoid including too much information or 
too many skills at one time. Allow the students to practice and achieve 
mastery in the current learnings before moving on to new material.

99use worksheets that are simple and clear, and avoid including too 
much visual information.

99use tactile, visual, and auditory examples as much as possible. 
Concrete manipulatives are an excellent way to help young students 
gain confidence when facing equations.

99Many students benefit from drawing to visualize a mathematics 
problem.

99Remember to use guided practice before independent practice so 
students do not practice incorrect procedures out of school.

99Whenever possible, use games involving a mathematical concept, 
such as probability, to maintain student interest and engagement.

99use real-world examples so students see the relevance and practicality 
of mathematics, and why learning mathematical skills is so important.

99Include technology when appropriate to encourage and maintain 
student motivation.

99use feedback and formative assessments so students can keep track 
of their progress.

99Enhance retention of learning by revisiting important concepts as 
part of distributed practice.

The Concrete–Representational–Abstract Approach
Students who have difficulties with mathematics can benefit signifi-

cantly from lessons that include multiple models that approach a concept 
at different cognitive levels. Mathematics educators have recognized a 
substantial body of research showing that the optimal presentation 
sequence for new mathematical content is concrete–representational–
abstract, or the CRA approach. This approach has also been referred 
to as concrete–pictorial–abstract or concrete–semiconcrete–abstract. 
Regardless of the name, the instructional approach is similar and origi-
nally based on the work of Jerome Bruner (1960). Concrete components 
include manipulatives (e.g., Cuisenaire rods, foam-rubber pie sections, 
and markers), measuring tools, or other objects the students can handle 
during the lesson. Pictorial representations include drawings, diagrams, 
charts, or graphs created by the students or provided for the students to 
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read and interpret. The abstract aspect refers to symbolic representations, 
such as numbers or letters that the student writes or interprets to demon-
strate understanding of a task. This approach is recommended by numer-
ous researchers because of its success with students who have difficulties 
learning mathematics (e.g., Allsopp et al., 2008; Fahsl, 2007; Mancl, Miller, 
& Kennedy, 2012).

When using the CRA approach, the sequencing of activities is critical. 
Activities with concrete materials should come first to impress on students 
that mathematical operations can be used to solve real-world problems. 
Pictorial examples show representations of the concrete manipulatives and 
help students visualize mathematical operations during problem solving. 
It is important here that the teacher explain how the pictorial examples 
relate to the concrete examples. Finally, formal work with symbols is used 
to demonstrate how they provide a shorter and more efficient way to rep-
resent numerical operations. ultimately, students need to reach that final 
abstract level by using symbols proficiently with many of the mathematical 
skills they master; however, the meanings of those symbols must be firmly 
rooted in experiences with real objects. Otherwise, their performance of the 
symbolic operations will simply be rote repetitions of meaningless memo-
rized procedures.

The CRA approach benefits all students but has been shown to be par-
ticularly effective with students who have mathematics difficulties, mainly 
because it moves gradually from actual objects to pictures and then to sym-
bols. These students often get frustrated when teachers present mathemat-
ics problems only in the abstract. Mathematics teachers need to organize 
content into concepts and provide instruction that allows students to pro-
cess the new learning in meaningful and efficient ways.

Research studies support the effectiveness of this approach. Witzel 
and his colleagues have conducted several studies of students identified 
as having difficulties in learning algebra. Students who learned how to 
solve algebra transformation equations through the CRA approach scored 
higher on postinstruction and follow-up tests than did the control peers 
receiving traditional instruction. Furthermore, students who used the CRA 
sequence of instruction performed fewer procedural errors when solving 
for algebraic variables (Witzel, 2005; Witzel, Mercer, & Miller, 2003).

Teachers of mathematics in elementary schools have recognized the 
importance of using concrete and pictorial activities when introducing 
new concepts. Yet despite newer research in cognitive neuroscience 
lending support to the CRA method, it is not in widespread use in mid-
dle and high school mathematics classrooms and is seldom mentioned 
in textbooks. Perhaps teachers at the secondary level feel that concrete 
objects may be perceived by students as too elementary, or it may be 
that the content demands of the curriculum push teachers directly to 
the abstract level to save time. But students with difficulties in learn-
ing mathematics are encouraged when concrete and pictorial represen-
tations eventually lead them to interpret abstract concepts accurately 
(Walkowiak, 2014).

Those teachers who want to try the CRA approach are left on their own 
with minimal or no guidance from textbooks. To help teachers with imple-
menting CRA, Witzel has developed a seven-step process that uses the 
mnemonic CRAMATH as a guide (Witzel, Riccomini, & Schneider, 2008).
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1. Choose a topic in mathematics. The teacher looks for a broad idea 
that may join apparently dissimilar items together. A middle 
school topic might involve working with algebraic equations, such 
as 24 = 10 – 4x.

2. Review procedures for solving the problem. For example, when 
solving equations, the teacher lists the steps, such as identifying the 
variable and coefficient, balancing across the equal sign, calculating 
according to the order of operations, continuing until the coefficient 
is 1, determining the answer, and, finally, checking the answer.

3. Adjust the steps to eliminate notation or calculation tricks. After 
presenting the steps, the teacher eliminates any tricks or shortcuts so 
students do not spend time learning tricks or shortcuts that work only 
in specific situations and not in others. For example, take the equa-
tion, x – 9 = 14. Students might assume that this can be easily solved 
by just adding nine to both sides. However, the first step should be to 
make the coefficient of the unknown equal to 1. Thus, the student 
should first divide each side of the equation by the coefficient of 1. 
Otherwise, when presented with the equation, 3x – 4 = 17, the teacher 
has to tell the students that if there is a coefficient greater than 1, they 
must divide by that coefficient after adding 4 to both sides.

4. Match the abstract steps to the appropriate concrete manipulative. 
The teacher should choose objects that apply to multiple skills to help 
students recognize the generalizability of the rules, procedures, and 
concepts in mathematics. For example, algebra blocks are helpful for 
simple equations involving whole-number coefficients, such as  
5x = 30, but not helpful for equations with fractional coefficients, 
such as 3/5 x = 18. Here, it is more useful to use concrete objects rep-
resenting groupings, such as containers. (See the Resources section 
at the end of this book for a website that suggests concrete/virtual 
representations for mathematics topics at different grade levels.)

5. Arrange concrete and representational lessons. After completing 
the work with concrete objects, the teacher creates pictorial repre-
sentations that mimic the concrete ones. For example, subtraction 
using toothpicks involves removing the toothpicks from the desk-
top. Pictorially, this could be represented by drawing an X over the 
toothpicks that were subtracted.

6. Teach each concrete, representational, and abstract lesson to mas-
tery. Teachers use frequent and accurate assessments to evaluate 
their students’ progress as they transition from one stage to the next 
toward mastering the learning objectives. Transitioning from the 
representational to the abstract stage is the most difficult for stu-
dents with learning difficulties in mathematics. Therefore, teachers 
should use clear and appropriate terminology and language related 
to the mathematical principle. For example, a coefficient may be 
called a cup in the concrete stage, a group in the representational 
stage, but a coefficient in the abstract stage.

7. Help students apply what they learned through word problems. 
Students with learning difficulties in mathematics do not usually 
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apply concepts or skills to new settings without appropriate 
guidance and explicit instruction. Teachers should present 
instructional activities that improve students’ ability to general-
ize across different scenarios. using real-world examples in word 
problems can help students recognize the practical applications 
of mathematics to new settings and understand the value of 
learning mathematics skills.

Concrete and pictorial representations should be used at all grade lev-
els. By using cognitive strategies such as CRA, teachers provide students 
with a technique for tackling mathematics problems rather than just 
searching for an answer. Here is a simple example of presenting an alge-
braic word problem at the three cognitive levels.

99 Example: Algebraic Word Problem

High school students Bob and John both work part-time on weekends 
at the local fast-food restaurant and are paid at the end of the day on 
Sunday. When they receive their pay, Bob gets $10 more than John. 
Together they have $130. How much money does each person have?

9• Concrete: Count out $130 in play money. Give Student A (Bob) $10. 
Then divide the rest of the money ($120) between Student A (Bob) 
and Student B (John). Find out how much money each student has. 
Bob has $70 and John has $60.

9• Representational/pictorial: Represent the $130 as $10 drawings on 
an overhead or a board.

$10 $10 $10 $10 $10 $10 $10 $10 $10 $10 $10 $10 $10

Identify the $10 for Bob (shown in bold italic).

($10) $10 $10 $10 $10 $10 $10 $10 $10 $10 $10 $10 $10

Count how much money is left ($120).

Divide the remaining money equally between Bob and John.

Bob: ($10) + $10 $10 $10 $10 $10 $10

John: $10 $10 $10 $10 $10 $10

Count how much money Bob has: $70.

Count how much money John has: $60.

9• Abstract:

Bob = x John = (x – $10)

x + (x – $10) = $130

2x – $10 = $130

2x = $130 + $10

2x = $140

x = $70 (Bob)

x – 10 = $60 (John)
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Figure 7.4 is an example of a simple planning worksheet that reminds 
teachers to select instructional strategies that address all three cognitive levels.

Numeracy Intervention Process
Many students with dyscalculia have difficulties with basic numerical 

knowledge and conceptual knowledge. Interventions designed to address 
these deficits can be effective in improving student achievement in basic 
arithmetic. Kaufmann, Handl, and Thöny (2003) reported the results of a 
pilot study that used an intervention program involving third-grade students 
with dyscalculia. The interventions were conducted three times weekly for a 
period of about 6 months. Figure 7.5 lists the components of the intervention 
program, which were conducted in semi-hierarchical order from the bottom 
up. Results from subtests administered before and after the interventions 
showed that the students with dyscalculia exhibited positive and partly sig-
nificant improvement in basic numerical knowledge, in conceptual knowl-
edge, and in arithmetic fact and procedural knowledge. Studies that have 
been carried out with kindergartners have had similar positive findings 
(Kaufmann, Delazer, Pohl, Semenza, & Dowker, 2005; Toll & Van Luit, 2013).

Students With Nonverbal Learning Disability
Students with nonverbal learning disability (NLD) have good verbal 

processing skills but will have problems comprehending the visual and 
spatial components of mathematics skills and concepts, especially when 
dealing with geometric shapes and designs. Although it may be difficult 
for students with NLD to understand mathematics concepts and solve 
problems, they may have no trouble applying a mathematical formula that 
has been explicitly taught. They generally learn verbal information quickly. 

Figure 7.4  A planning grid for selecting instructional strategies at three 
representational levels.

Planning Sheet for CRA Representational Levels

Mathematics Concept:

Level Instructional Strategy

Concrete

Representational

Abstract
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But when they look at a diagram for the first time, they look at a detailed 
piece of it. When they look a second time, they see a different piece, and 
another piece when they look for the third time. Because there is no visual 
overview, the diagram may not make sense. Additionally, due to their poor 
spatial-organization ability, they may have difficulty aligning problems on 
a page to solve them correctly (Gillis, Sevlever, & Roth, 2012).

Teachers of arithmetic and mathematics who work with students with 
NLD should consider the following strategies (Serlier-van den Bergh, 2006):

99 Rely heavily on the student’s verbal and analytic strengths. These 
students begin to work when speech is used, so use speech as the 
starting point. For example, have the student read the mathematics 
problem aloud before attempting to solve it.
99 Gain a commitment from the student to collaborate to improve visual 
and spatial weaknesses. Drawing diagrams and graphic organizers 

Figure 7.5  The modules in the intervention program are shown here. They 
were conducted in semi-hierarchical order from the bottom up (Kaufmann  
et al., 2003, 2005).

Procedural knowledge of division, inversion problems

Memory for arithmetic facts (multiplication)

Memory for arithmetic facts (subtraction), inversion problems

Memory for arithmetic facts (addition), inversion problems

Memorization of numerals that equal 10 (e.g., 1 + 9, 2 + 8, 3 + 7,...)

Understanding and use of written arithmetic symbols

Counting and counting principles

Acquisition and elaboration of the base-10 system
Complex counting sequences (counting in twos and threes)

Calculations involving numerals greater than 10
Complex multistep calculations
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that are related to mathematics concepts and problems may help 
considerably.
99 use words to describe visual and spatial information. Ask the stu-
dent to do the same while pointing to the corresponding places on 
the diagram or concrete model.
99 use language as the bridge to connect new learnings in mathematics 
to past learnings.
99 Teach the student mnemonic devices to help remember mathemati-
cal procedures.
99 Provide sequential verbal instructions for nonverbal tasks.
99 Break down tasks and procedures into manageable segments.
99 Young students with NLD may feel awkward handling manipula-
tives because their tactile sense is not developed. However, manip-
ulatives can help students develop mental images of geometric 
shapes and visualize spatial relationships, as well as improve their 
visual memory skills. Ask them to touch objects first with their 
dominant hand, then with their nondominant hand, and finally 
with both hands at once.
99 Minimize paper-and-pencil tasks, and substitute the computer 
where possible.
99 Encourage the student to slowly integrate sensory information: 
Read it, say it, hear it, see it, write it, do it.

Students With Both Mathematics  
and Reading Difficulties

Students who have both reading and mathematics difficulties are obvi-
ously at a double disadvantage. However, even though the reading and 
mathematical processing areas of the brain are separate from each other, 
these two cerebral regions interact whenever the learner must translate 
word problems into symbolic representations (Dehaene, 2010). Here are 
some strategies that are effective with these students.

99 Cue words in word problems. Help these students decode language 
into mathematical operations by alerting them to common phrases 
or cue words found in word problems that identify which operation 
to use. For example:

Common Phrases/Cue Words Example Operation

Add how many, altogether, 
in all, put together

When the apples were put 
together, how many were there?

Addition

Took away, take, left, give 
away

How many apples did they give 
away?

Subtraction

Problems that start with 
one and then ask for a total

Each rock weighed 6 pounds. 
How much did five rocks 
weigh?

Multiplication

Problems that start with 
many and then ask about 
one

Four boxes of the same cereal 
cost 12 dollars. How much did 
each box cost?

Division
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99 Word problem maps. Students with reading problems are often 
given a story map to help them highlight certain important aspects 
of the story, such as introduction, plot line, characters, timeline, and 
story climax. Gagnon and Maccini (2001) have developed a similar 
learning aid, called a word problem map, to help students with 
mathematics difficulties organize their thoughts as they tackle word 
problems. The map asks a series of questions to guide the student 
through the problem-solving process. It essentially becomes a scaf-
fold on which to build a better understanding of what the problem 
is asking them to solve. The map can be completed by an individual 
student or by students working together in groups of two or three. 
It also serves as an excellent study guide for future assessments on 
the mathematical material involved. Figure 7.6 shows one variation 
of the word problem map (Gagnon & Maccini, 2001).
99 The RIDD strategy. The RIDD strategy was developed by Fay Balch 
Jackson (2002) for students with learning disabilities. In practice, it 
has shown to be particularly helpful to students who have difficul-
ties in both reading and mathematics. RIDD stands for read, imagine, 
decide, and do. The following is a description of these four steps.

9• Step 1: Read the problem. Read the passage from beginning to 
end. This helps students focus on the entire task rather than just 
one line at a time. Good readers often skip words within a text, or 
they substitute another word and continue reading. In this step, 
students decide ahead of time what they will call a word they do 
not recognize. In mathematics word problems, substitutions can 
be made for long numbers rather than saying the entire number 
on the first reading. Teachers should model this substitution 
when they read the problem aloud to the class.

9• Step 2: Imagine the problem. In this step, the students create a 
mental picture of what they have read. using imagery when 
learning new material activates more brain regions and trans-
forms the learning into meaningful visual, auditory, or kinesthetic 
representations of information. This makes it easier for the new 
information to be stored in the students’ own knowledge base. 
Imagery helps students focus on the concept being presented and 
provides a way of monitoring their performance.

9• Step 3: Decide what to do. To generate a mental picture of the 
situation, this step encourages students to read the entire mathe-
matics problem without stopping. They then decide what to do 
and in what order to solve the problem. For example, in a word 
problem requiring addition and then subtraction, students would 
read the problem, create a mental picture, and then decide 
whether to add or subtract first. For young students, teachers can 
guide them through this step with appropriate questioning so the 
students can decide what procedures to use. Note how this step 
combines reading, visualization, and problem solving.

9• Step 4: Do the work. During this step the students actually com-
plete the task. Often, students start reading a mathematics problem, 
stop partway through it, and begin writing numerical expressions. 
This process can produce errors because the students do not have 
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all the information. By making this a separate step, students realize 
that there are things to do between reading the problem and writ-
ing it down. Jackson (2002) observed that when students used 
RIDD to solve mathematics problems, they liked this strategy 
because they perceived the last step as the only time they did work. 
Apparently, the students did not realize that what they did in the 
first three steps was all part of the process for solving problems.

Figure 7.6  This is one example of a word problem map that can help students 
with mathematics difficulties organize their approach to solving the problem.

Word Problem Map

Problem Number Page

What kind of problem is this?

What information is the problem asking for?

What cue words are used in the problem?

The cue words suggest what kind of operation?

Must I perform these operations in a special order?

Did I get an answer that seems correct?

Did I recheck the problem to make sure I understand it,
and is there anything I missed?

(Here the student attempts to solve the problem)
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RIDD is effective because it combines several strate-
gies, such as visualization, reflection, and thoughtful 
questioning, all of which serve to increase understand-
ing and retention of learning. Furthermore, RIDD allows 
the student to recognize that there are multiple cognitive 
processes involved between reading a problem and 
rushing to do the mathematics involved. This learning 
strategy, like most, is effective if used regularly, increas-

ing the likelihood that it will become a permanent part of the student’s 
study skills toolkit.

English Language Learners
English language learners (ELLs) are the fastest-growing population in 

u.S. public schools, the largest portion of them being native Spanish speak-
ers. ELL students have difficulty learning mathematics, as evidenced by 
their scores in Grades 4 and 8 on the National Assessment of Educational 
Progress (NAEP, 2013) over recent years: They are consistently lower than 
those of non-ELL students (Figure 7.7). Clearly, there is an achievement 
gap in mathematics that educators need to address.

The chart for Grade 4 indicates that, although the scores of ELL stu-
dents are lower than those of non-ELL students, the ELL scores have risen 
about the same amount as the non-ELL scores from 2005 to 2013. For 
Grade 8, however, the ELL students have made little progress over the 
same time period, while the non-ELL scores have risen. What are some of 
the issues involved, and what can be done to improve the achievement of 
ELL students in mathematics?

Language Issues

We already discussed in Chapter 1 how the brain relies on three cere-
bral systems—visual processing, symbolic processing, and language 

The RIDD Strategy

R Read the problem
I Imagine the problem
D Decide what to do
D Do the work

Figure 7.7  These charts compare the mathematics scores of ELL and Non-ELL 
students on the NAEP from 2005 to 2013 (NAEP, 2013).
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processing—when dealing with quantities. Still, many people, includ-
ing some educators, believe that mathematics is a nonverbal discipline. 
That mathematics processing relies heavily on language systems is rea-
son enough to allow ELL students, whenever possible, to master basic 
mathematics in their native language before trying to learn mathematics 
in English. Language is a major concern in mathematics teaching because 
most of the content is conveyed through oral language, as teachers tend to 
do the majority of the talking in mathematics classes. ELL students do not 
derive a significant portion of their learning from reading mathematics 
textbooks.

The language issue is becoming more significant now because the 
Common Core State Standards for Mathematics (National Governors 
Association Center for Best Practices & Council of Chief State School 
Officers, 2010) curriculum shifts instruction in mathematics from more 
emphasis on numbers to more emphasis on word problems. Consequently, 
to understand and be successful in mathematics, students need to be able 
to read, solve problems, and communicate using technical language in a 
specialized context—and to properly discuss and explain mathematics 
content, teachers must use technical language. Students lacking profi-
ciency in the English language and in the specialized language of mathe-
matics understandably frustrate teachers who are faced with an increasing 
number of ELL students in their classrooms.

Two Planning Objectives. Teachers also face challenges when work-
ing with ELL students. ELL teachers may not be well trained in mathemat-
ics, and mathematics teachers are typically not well trained in working 
with ELL students. Regardless, when planning a lesson, teachers need to 
decide on a language objective in addition to the mathematics content 
objective. While the language objective includes those English mathe-
matical terms and expressions that describe the problem and the opera-
tions, the content objective demonstrates the steps involved in solving it. 
understandably, the language of mathematics presents an array of challenges 
to ELL students.

Grammar and Vocabulary Issues. Features such as symbolic notation, 
graphs, technical vocabulary, and complex grammatical phrases all pose 
substantial barriers to understanding. For example, the phrase “7 multi-
plied by 12” is very different from “7 increased by 12.” Similarly, “divided 
by” and “divided into” will produce very different results. Even number 
notation can pose problems. For instance, some countries use a comma to 
separate whole units from decimals, instead of the period commonly used 
in North America, and use a period to separate thousands (e.g., 1 million 
dollars in Europe is written as $1.000.000,00). The difficulty of learning the 
already foreign language of mathematics is compounded when the instruc-
tion is also in a nonnative language.

The multiple meanings of words and the rules of English syntax allow 
us to interchange terms or expressions to identify the same mathematical 
concept. Teachers of mathematics are so accustomed to the content vocab-
ulary that they are often not aware of the multiple terms used to describe 
the same operation. Addition, for example, uses plus, total, add, combine, 
sum, put together, altogether, increase by, more than, and in all to indicate its 
operation. Subtraction has its own list: less, take away, difference, subtract, 
decrease by, minus, fewer than, are left, take from, and remain. As a result, an 
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ELL student who has learned only the words add and subtract will be con-
fused most of the time whenever a teacher uses other words to describe 
those operations.

Some words used in mathematics and in everyday life can overlap, but 
others are not found in daily usage. Words such as regroup, hypotenuse, coef-
ficient, and exponent, or more complex terms such as least common denomina-
tor, greatest common factor, and rational function are common in mathematics 
class but not in the ELL students’ social environs. However, many math-
ematical terms, such as product, foot, chance, table, plane, round, scale, and 
value, are deceptively familiar; thus, ELL students may believe that they 
comprehend the concepts these terms represent long before they really do. 
undoubtedly, one of the major challenges facing ELL students in learning 
mathematical language is that most of it has to be acquired in the class-
room because it does not occur in casual conversation.

Adolescent ELL Students. Complications from language issues are 
more pronounced for ELL adolescents. Carol Beal and her colleagues con-
ducted a study looking at the relationship of English language proficiency 
to mathematics problem solving and mathematics motivation in adoles-
cent ELL students (Beal, Adams, & Cohen, 2010). The sample was nearly 
450 ninth-grade students in Algebra I, about half of whom were English 
learners and half of whom spoke English as their primary language. 
The researchers used multiple measures of mathematics problem solv-
ing, including state achievement test scores, computer software pre- and 
posttest scores, and correct solutions to word problems recorded as stu-
dents worked with an online tutorial software for prealgebra review. Also, 
the students completed a survey of their mathematics self-concept and the 
perceived value of mathematics in their lives.

Many of these students were struggling with basic mathematics, and 
the teachers rated almost half their students as failing or at risk of failing 
algebra. Although overall mathematics performance was poor, there were 
significant variations related to English language proficiency. As expected, 
the ELL students scored lower in mathematics than did the native English-
speaking students. The ELL students’ reading skills in English were sig-
nificantly related to mathematics performance, whereas their English 
conversational proficiency (speaking and listening) was not. More surpris-
ingly, reading proficiency also predicted the ELL students’ self-concept in 
mathematics. Thus, the ability to read English seems critical for success in 
mathematics for adolescent ELL students.

Cognitive Issues

Because cognitive processing is so closely tied to language processing, 
mathematics teachers of ELL students are faced with trying to determine 
whether the students have mastered a concept even if they have difficulty 
expressing their understanding in English. One effective method for deal-
ing with this issue and assisting students in solving mathematics prob-
lems is called reciprocal teaching. In reciprocal teaching, students read in 
small groups, using cognitive strategies to comprehend the text. One study 
taught ELL students how to use four cognitive strategies to help them deal 
with the language challenge. The strategies were (1) clarifying the meaning 
of words and phrases so the students knew the basic components of the 
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problem, (2) questioning extensively to identify the key elements of the 
problem, (3) summarizing to each other the purpose of the problem, and 
(4) devising a plan to solve the problem (van Garderen, 2004). Student per-
formance improved when this strategy was used regularly.

Research Findings

Findings from research studies suggest that teachers of mathemat-
ics who have ELL students in their classes should consider the following 
instructional strategies (Burchinal, Field, López, Howes, & Pianta, 2012; 
Freeman & Crawford, 2008; Keengwe & Hussein, 2013; Kersaint, Thompson, 
& Petkova, 2013; Kim, Chang, & Kim, 2011; Orosco, 2014; Orosco, Swanson, 
O’Connor, & Lussier, 2011; Robinson, 2010; Sousa, 2011b; Stansfield, 2011):

99 Draw pictures and symbols. These students need considerable help 
in representing word problems through symbols and pictures. This 
includes providing the necessary pictures or having the students 
draw their own diagrams, which helps translate the word problem 
into a visual representation and facilitates a better understanding of 
vocabulary.
99 Create vocabulary lists. When introducing a new topic, prepare lists 
of mathematics vocabulary words and phrases ELL students will 
encounter, and be sure to provide simple, clear explanations of what 
they mean.
99 Help students select the correct operation. These students often are 
able to solve the arithmetic algorithm. Their difficulty arises in 
deciding which arithmetic operation to use, based on interpreting 
the language in the word problem.
99 Reinforce basic concepts. Do not assume that these students have a 
sound understanding of number relationships. Instruction should 
include activities that continuously reinforce basic concepts, such as 
manipulating the number line, estimating, evaluating answers, and 
representing number relationships.
99 Use all the information. Encourage these students to use all the 
information provided, including diagrams, to solve the problem.
99 Use manipulatives. Besides helping students construct physical 
models of abstract ideas, manipulatives also build understanding of 
mathematics vocabulary. They can be used to confirm a student’s 
reasoning before proceeding to solve the problem.
99 Rewrite problems. The language used in word problems is often 
more complex than it needs to be. Consider rewriting problems 
using simpler language. Also consider putting the question—that is, 
what the student is to solve—first. This helps the student’s attention 
system focus on only the information needed to solve the problem.
99 Design oral assessments. use oral assessment whenever possible to 
evaluate the students’ knowledge of mathematical concepts. This 
approach helps mediate for any lack of English proficiency the stu-
dents may have and lowers their test-related anxiety levels.
99 Take advantage of technology. Consider using computer programs, 
such as the HELP Math program, that are specifically designed to 
assist ELL students with mathematics and have met with success.
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99 Use students’ native language. When possible, allow students in 
small groups to discuss a mathematics topic in their native language 
to encourage their participation in a safe environment. Avoid 
assuming that a primary-grade student’s poor performance on a 
mathematics assessment in English is due to a mathematics deficit. 
It may be because of the language. Studies show that kindergarten 
and first-grade Hispanic students performed better on mathematics 
assessments when tested in Spanish instead of English.
99 Seek professional development opportunities. Professional devel-
opment programs should offer teachers of mathematics opportuni-
ties to learn about the needs of ELL students and the challenges they 
face when learning mathematics. Similarly, ELL specialists should 
have opportunities to enhance their knowledge about mathematical 
concepts and effective strategies for teaching mathematics.

The success ELL students will have in learning mathematics comes 
down, as always, to individual teachers. Teachers should have the infor-
mation and strategies they need to be effective in conveying mathematics 
concepts to these students, should understand how to implement them, 
and should have the necessary professional development and administra-
tive support to carry all this out.

n  WHAT’S COMING?

In Chapter 3, we discussed what the findings from research in cognitive 
neuroscience are telling us about how lessons should be planned and 
delivered so the new learning is likely to be remembered. How do we 
incorporate that information into lesson plans? To what degree do we 
include writing? How do we differentiate instruction to meet the needs of 
a diverse student population? How can integrating the arts into mathe-
matics lessons improve student motivation and achievement? These are 
some of the questions we will tackle in the next, and final, chapter.
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Chapter 7—Recognizing and 
Addressing  

Mathematics Difficulties

QUESTIONS AND REFLECTIONS  n

Respond to the following questions, and jot down on this page key points, 
ideas, strategies, and resources you want to consider later. This sheet is 
your personal journal summary and will help jog your memory.

What is math anxiety, and what can teachers do to reduce it? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

Briefly describe the concrete–representational–abstract approach as an 
instructional strategy. _________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

What are some other strategies research studies have shown to be effective 
with students who have learning difficulties in mathematics? ___________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________
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8
Putting It All 

Together
Planning Lessons in  

PreK–12 Mathematics

It is hard to convince a high-school student that he will encounter a lot 
of problems more difficult than those of Algebra and Geometry.

—Edgar W. Howe

At first glance, the title of this chapter could give the reader the impres-
sion that planning lessons in mathematics might be different from 

planning lessons in other subject areas. To some extent, it is. Studying 
mathematics requires not only the mastery of content but also the acqui-
sition and enhancement of certain process skills needed for that study to 
be successful and meaningful. Consequently, teachers planning lessons in 
mathematics at any grade level should consider whether those lessons will 
provide learners with both the content and requisite process skills.

QUESTIONS TO ASK WHEN PLANNING LESSONS  n

After deciding a lesson’s content objective, one of the next steps is to 
design the learning episode. When teachers keep in mind what is now 
known about how the brain learns, they are more likely to develop lessons 
wherein students learn and remember the content objective while they 
enhance their process skills. Here are some questions to keep in mind 
while planning for effective instruction.
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Is the Lesson Memory Compatible?
Do you remember the capacity and time limitations we discussed in 

Chapter 3? These limitations become very important when deciding how 
much and how long to present new learning to students.

99 Capacity limitations of working memory must be 
considered when planning lessons. The elementary-grade 
teacher who tells the class, “We have seven mathematical 
facts to learn today,” is already in trouble. So is the high 
school teacher who plans to cover eight different ideas in 
one lesson. By keeping the number of items in a lesson 
objective within the capacity limits of working memory, 
you increase the likelihood that students will remember 
more of what you presented. Less is more!

99 Time limitations mean that lessons in the elementary grades 
should be taught in 12- to 15-minute segments, and those in sec-
ondary grades in 15- to 20-minute segments. So, for example,  
one segment could be direct instruction and the next could be 
practice alone or in small groups, or computer work or research. 
These time restrictions are particularly critical in high schools that 
have block scheduling. In this format, periods are from 80 to 90 
minutes long. Teachers have already learned from experience that 
doing direct instruction (mainly through teacher talk) for this 

entire period of time is not generally effective. Breaking 
the 90-minute block into four segments of 20 minutes 
or so is much more productive because each new seg-
ment starts the time-limit clock all over again. Sometimes, 
incorporating a brief off-task activity between segments 
also serves to refresh the working-memory clock. Shorter 
is better!

Does the Lesson Include Cognitive Closure?
Cognitive closure describes the covert process whereby the learner’s 

working memory summarizes for itself its perception of what has been 
learned. It is during closure that a student often completes the rehearsal 
process and attaches sense and meaning to the new learning, thereby 
increasing the chances that the learning will be retained in long-term 
memory.

99 Initiating closure. The teacher gives directions that focus the stu-
dents on the new learning—for example, “I’m going to give you two 
minutes to think of what we learned today about how to multiply 
two double-digit numbers. Be prepared to talk about it with a part-
ner.” In this statement, the teacher tells the students how much quiet 
time they have to summarize mentally and identifies the overt activ-
ity (discussion) that will be used for student accountability. During 
the discussion, the teacher listens carefully, assesses the quality and 
accuracy of what occurred during closure, and makes any necessary 
adjustments in teaching.

Keep the number of items in a 
lesson objective within the capacity 
limits of working memory, and 
students are likely to remember 
more of what you presented. Less  
is more!

Teaching within the time limits of 
working memory will enable 
students to stay focused and 
remember more of what you 
presented. Shorter is better!
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99 Closure is different from review. In review, the teacher does most 
of the work, repeating key mathematics concepts introduced during 
the lesson and rechecking for student understanding. In closure, the 
student does most of the work by mentally rehearsing and summa-
rizing those concepts and deciding whether they make sense and 
have meaning. Closure also gives the students an opportunity to 
think of questions that can clarify any misunderstandings.
99 When to use closure. Closure can occur at various times in a lesson.

9• It can start a lesson: “Think of the steps we learned yesterday 
about adding fractions, and be prepared to discuss them.”

9• It can occur during the lesson (called procedural closure) when the 
teacher moves from one sublearning to the next: “review those 
two geometry rules in your mind before we learn the third rule.”

9• It should almost always take place at the end of the lesson (called 
terminal closure) to tie all the sublearnings 
together. remember, this may be the last oppor-
tunity the learner has to make sense and attach 
meaning to the new learning.

Cognitive closure is a small investment in time that 
can pay off dramatically in increased retention of learning.

Will the Primacy–Recency  
Effect Be Taken Into Account?

In Chapter 3, we discussed the impact of the primacy–recency effect 
on retention. This impact should be taken into account when planning and 
teaching a lesson. The learning episode begins when the learner focuses on 
the teacher with intent to learn (this is indicated by 0 in Figure 8.1). new 
information or a new skill should be taught first, during prime-time-1, 
because it is most likely to be remembered. Keep in mind that the stu-
dents will remember almost any information coming forth at this time. It 
is important, then, that only correct information be presented. This is not 
the time to be searching for what students might know about something. 
I remember watching a teacher of mathematics start a class with, “Today, 
we are going to learn the differences between the mean, 
the median, and the mode. Does anyone have any idea 
what the differences are?” After several wrong guesses, 
the teacher finally explained the differences. regrettably, 
those same wrong guesses appeared as answers in the fol-
low-up test. And why not? They were mentioned during 
the most powerful retention position, prime-time-1.

Presenting new material right at the beginning of the 
class without student input might seem to contradict other views of teach-
ing that encourage students to construct their own model of what they are 
learning. This “constructivist” approach is valid in some situations but not 
very useful if the students have little or no knowledge of the concept the 
teacher is introducing. We cannot construct a concept accurately with igno-
rance. Keep in mind, too, that nature did not prepare our brains for the vari-
ety of symbols, ratios, and abstract correlations that are found in advanced 

Cognitive closure is a small 
investment in time that can pay off 
dramatically in increased retention 
of learning.

When you have the students’ focus, 
teach the new information. Don’t 
let prime time get contaminated 
with incorrect information.
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algebra and calculus. Consequently, there 
are no intuitive constructs that the student 
can use to develop a model.

The new material being taught should 
be followed by practice or review during 
the downtime. At this point, the informa-
tion is no longer new, and the practice 
helps the learner organize it for further 
processing. Cognitive closure should take 
place during prime-time-2, since this is 
the second most powerful learning posi-
tion and an important opportunity for the 
learner to determine sense and meaning. 
Adding these activities to the graph in 
Figure 3.4 shows how we can take advan-
tage of research on retention to design a 
more effective lesson (see Figure 8.1).

Should a Lesson Start With Mathematics Homework?

A standard practice with many teachers of mathematics is to start a les-
son by reviewing the students’ homework from the previous day. This can 
be an effective strategy, but there are some cautions to be observed. Because 
this review is being carried out during prime-time-1, the teacher should 
emphasize the correct way to solve the homework problems. Spending too 
much time focusing on student errors during this powerful memory seg-
ment might cause students to remember the errors inadvertently. A discus-
sion of common errors and how to avoid them should occur only after the 
students have accurately and fully learned the correct method. Teachers 
should not use up valuable prime time if the homework review is merely 
casual (about the mechanics of doing it) rather than substantive (about its 
content). get on with today’s learning objective, and collect the homework 
during downtime.

Here is a summary of how teachers can take advantage of the primacy–
recency effect in the classroom:

99 Teach the new material first (after getting the students’ focus), 
during prime-time-1. This is the time of greatest retention. 
Alternatively, this would also be a good time to reteach any concept 
that students may be having difficulty understanding.
99 Avoid asking students at the beginning of the lesson if they know 
anything about a new topic being introduced. If it is a new topic, the 
assumption is that most students do not know it (this can be deter-
mined using a pretest). However, there are always some students 
eager to make a guess—no matter how unrelated. Because this is the 
time of greatest retention, almost anything that is said, including 
incorrect information, is likely to be remembered. The teacher 
should provide the information and examples to ensure that they 
are correct.
99 Avoid using precious prime-time periods for classroom manage-
ment tasks, such as collecting absence notes or taking attendance. 

Figure 8.1  new information should be presented in 
prime-time-1 and closure in prime-time-2. Practice is 
appropriate during downtime.
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Do these before getting focus, or during the downtime when stu-
dents are engaged in practice.
99 use the downtime portion to have students practice the new learn-
ing or to discuss it by relating it to past learnings. “How does what 
we learned today about calculating the area of a polygon tie into 
what we already learned about calculating the area of a triangle?” 
remember that retention of learning can occur during the down-
time, but it takes more effort and concentration.
99 Do cognitive closure during prime-time-2. This is the learner’s last 
opportunity to attach sense and meaning to the new learning, to 
make decisions about it, and to determine where and how it will be 
transferred to long-term memory. It is important, then, that the stu-
dents’ brains do the work at this time as in prime-time-1. If a review 
is desired, then it should be done before closure to increase the 
chances that the closure experience is accurate. But doing review 
instead of closure is of little value to retention.
99 When packaging lesson objectives (or sublearnings) into teaching 
episodes of about 20 minutes, link the sublearnings with procedural 
closure. This approach helps students recognize why these sub-
learnings should be integrated into the same memory network.

What About Practice?
We noted in Chapter 3 that practice makes permanent, not perfect. 

Practice is more likely to be effective when teachers do the following:

99 Start by selecting the smallest amount of material that will have 
maximum meaning for the learner. Stay within the capacity limits of 
working memory for the students’ age group. Excessive homework 
erodes motivation, builds frustration, and often leads to poor atti-
tudes about studying mathematics.
99 Model the application of the concept step-by-step. use concrete 
manipulatives whenever possible. This helps students develop 
visual and spatial representations of the concept or skill being 
taught. Studies show that the brain uses observation as a means for 
determining the spatial learning needed to master a skill (gatti  
et al., 2013).
99 Insist that the practice occur in your presence (guided practice) 
over a short period of time while the student is focused on the 
learning.
99 Watch the practice and provide the students with prompt and spe-
cific feedback on what variables need to be altered to correct and 
enhance the performance. When the guided practice is correct, then 
assign limited independent practice.

What Writing Will Be Involved?
Chapter 3 discussed how important writing is in communicating math-

ematical concepts. Adding this kinesthetic activity engages more brain 
areas and helps students organize their thoughts about the concept.
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Strategies for Using Writing in Mathematics

Here are some strategies for incorporating writing in the mathematics 
classroom that I think can be effective, along with some research recom-
mendations (Burns, 2004; Ediger, 2006):

99 Clarify the purpose. Students, especially in secondary schools, may 
not be thrilled about writing in mathematics class or see its purpose. 
Make clear that writing activities are a tool to help them gain under-
standing of the mathematical concepts involved in their lessons. 
Treating writing as a learning and memory tool and not as an assign-
ment to be graded helps students feel more comfortable with using 
writing in the mathematics classroom.
99 Review vocabulary. Before beginning the writing activity, review 
and explain any new vocabulary terms encountered in the lesson. 
Do they know the meaning of proper and improper fractions, or of 
complementary and supplementary angles? Posting a chart containing 
all the new words is also helpful.
99 Discuss before writing. By talking about their ideas in class before 
writing, students are able to formulate and clarify their thinking, select 
appropriate vocabulary, and decide on the main points to include in 
their writing sample. They can write about any mathematical idea 
they heard during the discussion, as long as they can explain it.
99 Work individually or in groups. Although writing is often done 
alone, some students may prefer to work in groups so they can dis-
cuss with others what they are writing. Working in groups also 
allows students to share their written ideas and to hear different 
points of view. Allow for both opportunities.
99 Add interest. Maintaining student interest is an important compo-
nent of motivation. Writing activities can be made interesting by 
including historical information, such as how the roman and Arabic 
number systems developed, the invention of the zero placeholder, or 
the introduction of negative numbers. People have been using 
geometry for thousands of years. How did it develop, and what was 
its impact on the growth of ancient societies?
99 Prompt when necessary. Sometimes younger students need prompts 
to get them started. Write some prompts on the board, such as, I 
think the answer is _____ because _______, or Today I learned __________. 
It is important to know this because _____________.
99 Avoid rewriting the textbook. Students are expected to use their 
own thoughts, phrasing, and vocabulary to write their sample, and 
not simply copy what is in their textbook. The point here is to get the 
brain to do elaborative rehearsal of the new concepts learned so as 
to increase the likelihood of retaining the learning.
99 Provide individual assistance. Some students, especially those in 
the elementary grades or English language learners, will no doubt 
have difficulty getting their thoughts down. Talk with these stu-
dents individually to ensure that they understand what they have 
learned and what they are expected to do in the writing activity. get 
them to talk to you by asking, “What have you learned about this 
idea? What do you think about other people’s ideas?” For younger 
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students, just the physical act of writing can be such an effort that 
they have difficulty keeping their thoughts in working memory. 
Suggest they recite silently to themselves what they intend to write 
before and while they are writing it down.
99 Use students’ ideas. Student writings can often provide useful ideas 
for clarifying or extending a mathematics concept. Sharing student 
notions in this manner places value on their work and provides 
motivation for future writing activities.

Writing as an Assessment Tool

99 Writing can be an effective assessment tool for both students and 
teachers. Because writing provides a permanent record of students’ 
thoughts, it documents the students’ progress in learning. Students 
reflect on their own learning when they return to their writing. once 
the writing is complete, students have a permanent record of their 
learning that can help them revise information or expand their appli-
cation of knowledge in the future. The writing can help teachers by

9• diagnosing error patterns,
9• giving insights about where instruction should begin or what 

topics need to be retaught,
9• providing evidence of where and why a student has failed to 

make connections, and
9• showing the beliefs and attitudes students hold about mathematics.

99 Consider keeping student writing samples in individual folders. 
They provide a chronological collection of each student’s thoughts 
and progress, and can be very helpful in parent conferences as well.

Are Multiple Intelligences Being Addressed?
Dozens of books are available that suggest specific activities in all sub-

ject areas for applying Howard gardner’s theory of multiple intelligences in 
the classroom. My purpose here is to offer some general activities that math-
ematics teachers can use to apply and strengthen the eight intelligences 
through instruction.

In Table 8.1, simply replace “MC” with the mathematical concept you 
are teaching. The variety of activities helps you differentiate instruction. 
Some activities serve as enrichment for students who have already mas-
tered the concept, while others serve to provide additional information 
to help students whose understanding of the concept may be shaky. of 
course, it might not be appropriate to require all students to practice all the 
activities, because they may not be suitable for students with a weakness in 
a particular area or for those who, for example, are not comfortable doing 
performance-style activities in some situations. Students should have some 
choice in selecting which of these activities to do.

Does the Lesson Provide for Differentiation?
Today’s teachers work in classrooms filled with a broad diversity of 

students. Besides their different learning capabilities, students come from 
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Intelligence Activity for the Mathematical Concept (MC)

Linguistic
“The word 
player”

9• use storytelling to explain the MC.
9• Write a poem, myth, legend, or news article about 

the MC.
9• give a presentation on the MC.
9• Lead a class discussion on the MC.
9• Create a talk-show radio program about the MC.

Logical/
mathematical
“The questioner”

9• Translate the MC into a mathematical formula.
9• Design a proof for the MC.
9• Make a strategy game that includes the MC.
9• Collect and interpret data related to the MC.
9• Write a computer program for the MC.

Spatial
“The visualizer”

9• Chart, map, or graph the MC.
9• Design a poster, bulletin board, or mural about the 

MC.
9• Create a piece of art that demonstrates the MC.
9• Make a film or advertisement of the MC.

Musical
“The music lover”

9• Write a song that explains the MC.
9• give a presentation on the MC with appropriate 

musical accompaniment.
9• Explain how the music of a song relates to the MC.
9• Create a musical game that relates to the MC.

Bodily/kinesthetic
“The mover”

9• rehearse and perform a play that explains the MC.
9• Choreograph a dance that shows the MC.
9• Build a model that explains the MC.
9• Plan and attend a field trip that will show or explain 

the MC.

Interpersonal
“The socializer”

9• Conduct a class meeting that discusses the MC.
9• organize or participate in a group that will deal with 

the MC.
9• Suggest ways to accommodate learning differences 

and the MC.
9• Participate in a service project that uses the MC.

Intrapersonal
“The individual”

9• Create a personal analogy for the MC.
9• Set a goal to accomplish the MC.
9• Describe how you feel about the MC.
9• use some form of emotional processing to 

understand the MC.

naturalist
“The nature 
lover”

9• Describe any patterns you detect in the MC.
9• Explain how the MC can be found in the 

environment.
9• Show how the MC could be applied in nature.
9• Demonstrate how this MC can be linked to other 

MCs we have learned.

Table 8.1  Activities for Multiple Intelligences
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different cultures, speak many languages, and possess varying learning 
styles. Direct instruction based mainly on a one-size-fits-all approach 
does not work effectively with such a diverse group. What can work is an 
approach whereby teachers differentiate their instruction by using a vari-
ety of techniques and strategies that address the varying needs of all their 
students. In differentiated instruction, teachers enhance learning by match-
ing their students’ characteristics to instruction and assessment. Teachers 
can differentiate content, process, and/or product for students (Sousa & 
Tomlinson, 2011).

9• Differentiation of content refers to a change in the material being 
learned by an individual student. For example, if the classroom objec-
tive is for all students to determine whether two triangles are congru-
ent, some students may learn this by working with diagrams of 
triangles, while others may learn it through solving word problems.

9• Differentiation of process describes the method by which a student 
accesses material. one student may explore a learning center, 
another may conduct an interview, and a third may collect informa-
tion from the Internet.

9• Differentiation of product refers to the way students demonstrate 
what they have learned. For instance, to demonstrate understanding 
of a geometric concept, one student may solve word problems while 
another builds a model.

When teachers commit themselves to using differentiated instruction, 
they switch their goal from teaching a collective class to teaching individ-
ual students. This is a major paradigm shift, and to do this successfully, 
teachers respond to an individual student’s readiness, interest, and learn-
ing profile. A teacher may differentiate based on any one of these factors 
or any combination of factors (Sousa & Tomlinson, 2011).

9• Readiness describes the student’s skill level and background knowl-
edge in mathematics. Some of this information can be gathered at the 
beginning of the year by reviewing student records, standardized test 
scores, and previous mathematics grades. Diagnostic assessments 
can also be used to determine student readiness. These assessments 
can be formal or informal. Teachers can give pretests or question stu-
dents about their background knowledge of a particular topic.

9• Interest refers to topics related to mathematics that the student may 
want to explore or that will motivate the student. Student interests 
can be determined by using interest inventories throughout the year. 
Teachers may discover, for example, that some students are inter-
ested in sports statistics or architecture. Including students in the 
lesson planning process is another way to explore interests. Teachers 
ask students what specific interests they have in a topic and then try 
to incorporate them into their lessons.

9• Learning profile includes the students’ learning style preferences  
(i.e., visual, auditory, tactile, or kinesthetic input), grouping preferences 
(i.e., individual, small group, or large group), and environmental 
preferences (i.e., lots of space or a quiet area to work). Learning styles 
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can be measured using learning style inventories. Teachers can also 
get information about student learning styles by asking students how 
they learn best and by observing student activities.

Some Guidelines for Differentiating Instruction

Dozens of books and Internet sites suggest specific ways to differen-
tiate instruction in mathematics at every grade level (see the Resources 
section at the end of this book). Here are some general guidelines:

99 If you are new to differentiation, start small. Try it first with one 
short unit, and then use your regular method for the next unit. 
reflect on what was successful and what needs improvement. 
Students also need to adjust to this method of learning; so do not get 
discouraged if at first it does not go as well as planned. Like any new 
strategy, learning to differentiate instruction is a process. To succeed, 
implement it gradually, and constantly revise what does not work.
99 Provide a variety of materials and opportunities for student projects. 
These can include reference books, manipulatives, construction and 
drawing materials, computers with Internet access, and other audio-
visual materials. Arrange the classroom so workstations can be 
quickly set up when needed.
99 Let students choose among several projects that cover the lesson 
objective. options should reflect various learning styles. For exam-
ple, visually preferred learners may want the option of showing a 
poster or brochure to present what they have learned, rather than 
just talking about it.
99 The assignment options should represent various levels of difficulty 
and complexity and involve different types of thinking skills. 
Bloom’s revised taxonomy remains an effective model for designing 
activities at different levels of cognitive thought (Sousa, 2011a).
99 Vary your lesson delivery style during each class period to appeal to 
different learning styles. For example, use discussions for auditorily 
preferred learners, provide handouts outlining the topic for visually 
preferred learners, and incorporate hands-on activities for kinesthet-
ically preferred learners. remember that all students benefit when 
they use a variety of modalities while learning.
99 For each project and activity, consider grouping students according to 
ability or interest. During units on percentages or graphing, for instance, 
several students may be interested in examining population growth.
99 Consider using a variety of assessment tools, and offer students sev-
eral assessment options. Design assessments with various skill lev-
els, learning styles, and thinking skills in mind. Show sample work, 
and share with students the rubric or scoring criteria you will use to 
evaluate open-ended assessments and projects.

n  INTEGRATING THE ARTS

Teachers of mathematics are no doubt familiar with the STEM initiative. 
STEM is an acronym for science, technology, engineering, and mathemat-
ics. Spurred by a report from the national Science Foundation and other 
agencies regarding the declining state of education in the STEM subjects, 
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the u.S. Congress in 2007 authorized funding for STEM initiatives from 
kindergarten through graduate school. numerous school districts have 
obtained funding to support increased instruction in the STEM areas. Yet, 
despite the funding and increased instruction, student progress in 
achievement in these areas has been slower than expected. Mathematics 
scores for high school seniors on the 2013 national Assessment of 
Educational Progress (nAEP) were unchanged from the 2009 scores.

one frequently heard explanation for the slow progress is that these 
subjects, especially science and mathematics, are still being taught in many 
schools with a heavy emphasis on rote memorization rather than the cre-
ative problem solving and analytical skills the nAEP and international 
tests measure. In other words, these courses still focus too much on fol-
lowing traditional curricula with a vast amount of content and not enough 
on the skills that students will need to successfully apply what they learn 
in STEM courses to real-life situations. These skills include creative prob-
lem solving, linear and spatial analysis, improved memory systems, per-
sistence, attention, and motor coordination. neither the Common Core 
State Standards for Mathematics (national governors Association Center 
for Best Practices & Council of Chief State School officers, 2010) nor the 
next generation Science Standards (national research Council, 2012) will 
do much to improve student achievement unless educators involved in the 
STEM subjects make a concerted effort to introduce activities that promote 
creativity and develop these important skills.

From STEM to STEAM
Mathematics and the arts are closely related. one interesting brain- 

imaging study found that when mathematicians looked at certain equa-
tions, the same region of the brain was activated as when people listen to 
beautiful music or look at beautiful artwork (Zeki, romaya, Benincasa, & 
Atiyah, 2014). Practicing mathematicians, scientists, and engineers recog-
nize that the arts are vital to their work, and they frequently use skills asso-
ciated with the arts as mathematical and scientific tools. These skills include 
the following (Sousa & Pilecki, 2013):

9• Capitalizing on curiosity
9• observing accurately
9• Working effectively with others
9• Constructing meaning
9• Expressing one’s observations accurately
9• Perceiving an object in a different form
9• Thinking spatially by rotating an object in one’s head
9• Perceiving kinesthetically how an object moves

These skills are not expressly taught in the STEM sub-
jects but are an integral part of music, visual art, dance, 
drama, and writing. Because of the potential for the arts to 
infuse the STEM subjects with their creative skills, a new 
initiative has emerged called STEAM, an expanded acro-
nym that adds the A for arts. In practice, there are no 
boundaries between the arts and the STEM subjects. 
Music, in fact, can be thought of as the artistic expression 

Answer to Question 10. False: 
Mathematics and the arts are 
closely related. The same region of 
the brain is activated when an 
individual is listening to music or 
examining a mathematical 
equation.
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of mathematics. Mathematics is everywhere in music: Frequency intervals in 
the notes of the scale, harmonic octaves, notation, tempo, and beat are all 
examples. With appropriate planning, activities that incorporate the skills of 
the arts can be integrated into STEM courses without a lot of additional work 
for the teacher. Very often, volunteer teacher artists are available to help guide 
this process. The STEAM initiative is gaining momentum. Several universi-
ties, such as the State university of new York at Potsdam, have developed 
STEAM curricula, and a number of school districts have included STEAM 
activities in their courses. Here are a few examples of successful teacher-tested 
lessons that integrate the arts in mathematics (Sousa & Pilecki, 2013).

Examples of How to Integrate the Arts  
in Mathematics Lessons

Kindergarten Lesson in Mathematics:  
Describe Shapes and Sizes

Traditional approach: The teacher would probably have the students 
work as a class to manipulate the shapes, lead a class discussion of the 
shapes, and then evaluate how well the students understood the different 
shapes and sizes.

Work as a
class

Manipulate
shapes

Discuss
differences
in shapes

Teacher
evaluates

Arts-integrated approach: This approach involves much more student 
engagement, including artistic activities that help students gain a deeper 
understanding of the attributes of the different shapes and sizes. It focuses 
more on showing how two-dimensional objects differ from three-dimensional 
objects, thereby developing these young students’ spatial reasoning and 
analysis skills.

Work �rst as a class,
then in groups

Class looks around,
identifying all 2-D and 3-
D shapes present, using
appropriate vocabulary

Individuals cut out small
pictures of 3-D shapes
and paste into journals

with cut-out names
to identify

Groups construct (from
prepared forms) 3-D
shapes and present

to other groups

Class views DVD
describing 3-D

shapes

Discuss and
analyze

observations

Class discusses what
they have learned
about shapes and

space

Create a large 2-D
shape for each

group

Groups discuss the
attributes of the

shape, then present
to other groups

Individuals cut out small
2-D shapes and paste
into journals with cut-
out names to identify
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Grade 6 Mathematics: Multiplication and  
Division of Fractions and Decimals

Traditional approach: The students work alone, and the teacher 
uses the textbook to present material in a lecture format. using work-
sheets, the students solve problems in multiplication and division of 
fractions and decimals, and then they are given a final test to evaluate 
their learning.

Work alone

Use lecture
format with
textbook to

present
information

Use
worksheets

Solve word
problems

Final test/
assessment

Arts-integrated approach: To add interest and engagement to this oth-
erwise ordinary learning objective, the teacher (and teaching artist, if avail-
able) decides to use games of chance to teach multiplication and division 
of fractions and decimals. The students are to design and create their own 
games of chance. They keep written (or computer) journals describing the 
process. When the games are ready, the students play all of them one at a 
time, explaining the fractions and decimals involved. Assessment tools can 
be built into the games, if desired. The teacher, of course, can also use any 
other assessments the curriculum requires.

Each group of students
plays a prepared card

game, betting 	ctitiously.
They discover game

involves operations with
fractions and decimals.

With the whole class,
teacher presents

material using textbook
and worksheets.

Teacher presents class
with idea of a carnival.
Class is divided into six
groups, each to create

a game of chance.

Students create game
during class with

input from teacher
(and teaching artist).

Students keep journals
to describe creating

and designing
the games.

When completed,
students play all the
games. Assessment
tools should also be

embedded in the games.

Students are
encouraged to

solve problems while
creating games and

all components.

no doubt some teachers will feel that integrating the arts into their 
lessons on mathematics may be too much to take on for a variety of rea-
sons. Teachers in the elementary grades are usually more receptive to arts 
integration because they recognize that they are already doing some of 
it, perhaps unwittingly, in many of their lessons. Secondary-level teach-
ers, however, are more cautious. They often say there is too much content 
material to cover to take time for arts integration. “remember, there are 
state tests coming in the spring,” is a common refrain. others believe they 



210 How tHe Brain Learns MatHeMatics

are not creative enough themselves to provoke students 
to be creative. Experience has shown these concerns to 
be unfounded. Teachers unconsciously make creative 
decisions every day, from choosing what they will wear 
for the day to the instructional strategies they select for 
their classes. As for testing, both the Common Core State 
Standards for Mathematics and the next generation 

Science Standards are focusing more on developing creative problem 
solving and analytical skills, and so will the resulting assessments.

Places Where Arts Integration in  
Mathematics Is at Work

Here are just a few recent examples of how educators are finding ways 
to integrate the arts into their mathematics classes, to get their students 
involved in real-world applications, and even to open schools dedicated to 
the STEAM concept.

9• Rockford, IL: Sixth-grade students at Kennedy Middle School with 
varying success in mathematics are designing and building different 
types of lamps to learn about ratios, proportions, and perimeters. 
Teachers report improved test scores in mathematics since this proj-
ect started (Kravets, 2014).

9• Buffalo, WY: Students at Clear Creek Middle School built sleds of 
cardboard and duct tape, and entered them in a tournament. The 
students used graph paper to design their sleds and calculate the 
surface area of various box designs. In science class, they learned 
about weight and friction on various types of snow, as well as the 
aerodynamics of the box designs (Stepenoff, 2014).

9• Daytona Beach, FL: A teaching artist is working with teachers and 
fifth-grade students at Turie T. Small Elementary School, using song 
and dance to help the students remember important mathematics 
facts. Test scores in mathematics for these students have gone up 
dramatically since this program began (Trimble, 2014).

9• Jersey City, NJ: Jersey City Public Schools will open a small high 
school in the fall of 2014 that will have a focus on STEAM. Its first 
class of 100 ninth graders will work with faculty from new Jersey 
City university in the STEAM subject areas (Jersey City Board of 
Education, 2014).

For more examples of mathematics/arts-integrated lessons, see the 
websites provided in the Resources section.

n  SIMPLIFIED INSTRUCTIONAL MODEL

Based on all I can gather from cognitive neuroscience, a reasonable model 
for teaching mathematics to children and adolescents proceeds through 
four major steps (Figure 8.2). Step 1 is to build on young children’s intu-
itions about numbers, subitizing, quantitative manipulations, and counting. 

Integrating the arts into 
mathematics instruction can 
enhance student engagement and 
motivation as well as improve 
student achievement.
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These innate talents are strongly rooted in developing neural networks and 
should be cultivated with concrete activities rather than stunted with paper 
worksheets. Activities and instruction should play to these students’ natural 
curiosity with amusing number puzzles and problems.

Step 2 is to introduce students to symbolic notation in mathematics, 
emphasizing how it offers a powerful and convenient shortcut when 
manipulating quantities. It is important at this point to continue to tie the 
symbolic knowledge to the quantitative intuitions. In this way, the sym-
bolic representations become part of the intuitive network instead of being 
memorized as a separate and unrelated language.

In Step 3, introduce the preadolescent brain to arithmetic axioms. 
Appropriate concrete manipulatives should be used here as much as pos-
sible, because we are moving into that critical time when students can be 
turned off by the increasingly abstract nature of symbolic mathematics. 
Later, in adolescence, the brain’s frontal lobe becomes more adept at higher- 
order thinking and logic. So in Step 4, introduce and explain mathemat-
ical and geometric axioms and theorems. But it is still necessary to show 

Figure 8.2  This is a simplified model of instructional considerations for 
teaching preK–12 mathematics. The main considerations are to keep tying new 
information to intuitive concepts about number and quantity, and to include 
concrete manipulatives and practical applications as much as possible.

Flow of Instructional Considerations in
PreK–12 Mathematics

For adolescents, introduce and explain geometric and other
mathematical axioms and theorems.

Show practical applications as much as possible.

For preadolescents, introduce and explain arithmetic axioms.
Use concrete manipulatives whenever possible because we are

approaching that critical time when students can be turned off by the
increasingly abstract nature of symbolic mathematics.

Gradually shift to introducing symbolic representations.
Show that the arithmetic symbols are merely shortcuts for doing

written arithmetic manipulation.
Continually link the symbolic knowledge to the quantitative intuitions.

Build on intuitions about number sense, subitizing, and counting.
Use puzzles and activities that play to students’ natural curiosity.
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practical applications whenever possible. remember, when students 
understand and recognize practical uses for what they are learning, they 
can attach meaning and thus increase their chances of retention.

I certainly recognize that this model may be simplistic. on the other 
hand, one reason students get turned off to mathematics is that we often 
do not try hard enough to keep relating what they are experiencing in the 
classroom to concrete and practical applications. There are few school sub-
jects in which teachers hear the lament, “Why do I have to know this?” 
more than in mathematics. That observation alone should be ample warn-
ing that we have to work harder at providing meaning.

n  REMEMBER ACTION RESEARCH

Sometimes teachers are reluctant to try out new strategies for fear that they 
will take up too much time or, even worse, not work. Several elementary 
teachers told me of their concerns about teaching the number-counting 
method based on the Asian system, outlined in Table 4.2 in Chapter 4. But 
everyone who did try it reported that this method helped students get a 
better understanding of the base-10 structure of mathematics. What these 
teachers did was a form of action research. They tried a strategy and assessed 
its effect on learning.

Action research is the systematic study of one’s actions to deter-
mine the effect of those actions. In the classroom, it means implement-
ing a strategy in a planned way, collecting and analyzing data resulting 
from using that strategy, and taking action based on the analysis. Action 
research can be done by just one teacher, but its impact and value grow 
significantly when it is the consistent effort of a teacher team, such as at 
a particular grade level, or subject-area group, such as the mathematics 
department in a middle or high school. The results should be reported to 
other teachers as part of a learning community. If several teachers carry 
out the same research, get similar results, and exchange data, then they 
will have evidence to support the continued use of the strategy.

n  CONCLUSION

As research in cognitive neuroscience expands, we are very likely to dis-
cover more about how the human brain grows, develops, and learns. These 
discoveries offer educators and parents exciting opportunities for deciding 
what kinds of learning experiences children and adolescents should have 
to develop to their full potential. research not only leads to new ideas but 
often validates some past practices and questions others. Effective teaching 
strategies cut across all content areas. For the teaching of mathematics,  
I have suggested that the following notions be kept in mind:

9• Everyone has the ability to do mathematical operations. We are born 
with it.

9• rote learning without meaning impedes long-term application of 
mathematical knowledge.
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9• Learning mathematics is easier when it makes sense and is meaningful 
to the learner.

9• Learning mathematics is easier when the learner can connect math-
ematical operations and concepts to solving problems in the real 
world.

9• Talking and writing about mathematics improves the depth of learn-
ing and recall.

9• Learning mathematics involves a progression from the concrete to 
the representational to the abstract.

9• People learn mathematics in different ways.

regardless of all the instructional strategies we develop, all the curric-
ulum reforms we write, and all the materials we buy, no component is as 
important as the teacher. How the teacher views the learning process will 
largely determine that teacher’s instructional practice and, consequently, 
how well his or her students will learn mathematics. My purpose here was 
to present research from cognitive neuroscience to inform teachers of what 
we are discovering about the learning process in general and the learning 
of mathematics in particular.

And why is mathematics even worth learning? our world is full of 
patterns. We find them in flowers, in snowflakes, in seashells, in the mark-
ings on animals such as zebras and leopards, in the distinctive songs of 
birds, and so on. If mathematics is truly the study of patterns, then teachers 
should help students recognize that the learning of mathematics not only 
will be useful in their future lives but also will give them a window into 
understanding the wonders and beauty of our magnificent world.
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Chapter 8—Putting It All 
Together: Planning Lessons 

in PreK–12 Mathematics

n  QUESTIONS AND REFLECTIONS

respond to the following questions, and jot down on this page key points, 
ideas, strategies, and resources you want to consider later. This sheet is 
your personal journal summary and will help jog your memory.

What questions should teachers consider when planning a lesson in 
mathematics? _______________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

What are some guidelines for differentiating instruction in mathematics? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

give an example of how a teacher could integrate the arts into a mathematics 
lesson/unit. ________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________
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Glossary

Abstraction. The process of extracting the underlying essence of a mathe-
matical concept, removing any dependence on real-world objects to which 
it might originally have been connected, and generalizing it so it has wider 
applications as, for example, the axioms of geometry

Action research. The systematic implementation of an instructional strat-
egy, followed by the collection and analysis of data to determine the effects 
of that strategy on learning

Algorithm. A process or set of rules used in calculations or other problem- 
solving operations

Arts integration. A teaching approach that uses skills from the arts to help 
students acquire another content area, such as mathematics (see also 
STEAM)

Associative memory. The brain’s ability to detect patterns and make asso-
ciations between working memory and past experiences

Associativity. A property of numbers whereby the sequence in which they are 
added or multiplied produces the same result. Thus, (a + b) + c = a + (b + c), 
or (a × b) × c = a × (b × c).

Cardinal principle (cardinality). The concept that the last number counted 
represents the size of the group in a collection

Cerebellum. A major part of the brain, located in the rear above the brain 
stem, that is largely responsible for coordinating muscle movement

Cerebrum. The largest of the major parts of the brain, it controls sensory 
interpretation, thinking, and memory.

Chunking. The ability of the brain to perceive a coherent group of items 
as a single item or chunk

Closure. The teaching strategy that allows learners quiet time in class to 
mentally reprocess what they have learned during a lesson

Cognitive overload. A condition where the flow of information exceeds 
the brain’s ability to process and store it

Commutativity. A property of numbers whereby they can be added or 
multiplied in any order. Thus, 8 + 5 = 5 + 8, or 4 × 7 = 7 × 4.
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Compensation. The idea that removing some items from one part of a 
collection and adding them to the other part leaves the whole quantity 
unchanged

Constructivism. A theory of learning stating that active learners use past 
experiences and chunking to construct sense and meaning from new learn-
ing, thereby building larger conceptual schemes

Corpus callosum. The bridge of nerve fibers that connects the left and 
right cerebral hemispheres and allows communication between them

Cortex. The thin layer of cells covering the cerebrum that contains all the 
neurons used for cognitive and motor processing

Covariation. The idea that a whole quantity increases (or decreases) if one 
of the parts is increased (or decreased)

Declarative memory. Knowledge of events and facts to which we have 
conscious access

Distributed practice. The repetition of a skill over increasingly longer 
periods of time to improve performance

Electroencephalograph (EEG). An instrument that charts fluctuations in 
the brain’s electrical activity via electrodes temporarily attached to the scalp

Episodic memory. Knowledge of events in our personal history to which 
we have conscious access

Feedback. The information gathered about a person’s performance that is 
shared with that person, with the goal of improving his or her performance

Formative assessment. Any process used during the learning episode to 
determine student progress toward achieving the learning objective

Frontal lobe. The front part of the brain that monitors higher-order think-
ing, directs problem solving, and regulates the excesses of the emotional 
(limbic) system

Functional magnetic resonance imaging (fMRI). An instrument that mea-
sures blood flow to the brain to record areas of high and low neuronal 
activity

Gray matter. The thin covering of the brain’s cerebrum, also known as the 
cerebral cortex

Guided practice. The repetition of a skill in the presence of the teacher, 
who can give immediate and specific feedback

Immediate memory. A temporary memory in which information is pro-
cessed briefly (in seconds) and subconsciously, then either blocked or 
passed on to working memory

Independent practice. The repetition of a skill on one’s own outside the 
presence of the teacher

Limbic area. The structures at the base of the cerebrum that control 
emotions

Long-term memory. The areas of the cerebrum where memories are stored 
permanently
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Massed practice. The repetition of a skill over short time intervals to gain 
initial competence

Mind-set. The beliefs one has about one’s intelligence, talents, and person-
ality. Those with a fixed mind-set believe their traits are inevitable and 
unchangeable. Those with a growth mind-set believe their traits can be 
developed through dedication and effort.

Mnemonic. A word or phrase used as a device for remembering information, 
patterns, rules, or procedures

Motivation. The influence of needs and desires on behavior

Motor cortex. The narrow band from ear to ear across the top of the brain 
that controls movement

Neural plasticity. The concept that the brain has an ability to change as a 
result of experiences

Neuron. The basic cell making up the brain and nervous system, consist-
ing of a cell body, a long fiber (axon) that transmits impulses, and many 
shorter fibers (dendrites) that receive them

Nondeclarative memory. Knowledge of motor and cognitive skills to 
which we have no conscious access, such as riding a bicycle

Number sense. In its limited form, this refers to our ability to recognize 
that an object has been added or removed from a collection

Numerosity. The perception of approximate numerical quantities, such as 
more than and less than, without assigning an exact number

Occipital lobe. A brain area located in the back of the cerebrum that is 
responsible for processing mainly visual information

Parietal lobe. A brain area of the cerebrum, lying between the occipital and 
frontal lobes, that is involved in processing sensory information, including 
touch, taste, and movement

Positron emission tomography (PET) scanner. An instrument that traces 
the metabolism of radioactively tagged sugar in brain tissue, producing a 
color image of cell activity

Practice. The repetition of a skill to gain speed and accuracy

Prefrontal cortex. The area of the brain just behind the forehead that con-
trols the planning, decision making, reasoning, and execution of behavior, 
and that integrates information in working memory

Primacy–recency effect. The phenomenon whereby one tends to remem-
ber best that which comes first in a learning episode and second best that 
which comes last

Prime time. The time in a learning episode when information or a skill is 
more likely to be remembered

Procedural memory. A form of nondeclarative memory that allows the 
learning of motor (e.g., riding a bicycle) and cognitive (e.g., learning to 
read) skills

Rehearsal. The reprocessing of information in working memory
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Semantic memory. Knowledge of facts and data that may not be related to 
any event

STEAM. An acronym for the teaching approach that integrates the arts 
into lessons in science, technology, engineering, and mathematics (STEM)

STEM. The acronym for a nationwide initiative to increase instruction in 
science, technology, engineering, and mathematics

Subitizing. The ability to determine the number of objects at a glance, 
without counting

Summative assessment. An assessment given at the end of the learning 
unit to determine whether the student has accomplished the learning 
objective

Temporal lobe. A brain area of the cerebrum located behind each ear, just 
under the parietal lobe, that is involved in the processing and interpretation 
mainly of sound and spoken language

Transfer. The influence past learning has on the acquisition of new learning, 
and the degree to which it will be useful in the learner’s future. If the past 
learning aids in the acquisition of new learning, it is called positive transfer; 
if it interferes, it is called negative transfer.

White matter. The support tissue that lies beneath the brain’s gray matter

Working memory. The temporary memory wherein information is 
processed consciously
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Resources

There are literally thousands of websites devoted to various aspects of 
teaching and learning mathematics. Obviously, some are better than oth-
ers. Deciding which sites to include here was not easy. Mainly, I relied on 
suggestions offered by teachers and supervisors of mathematics who 
assured me that the sites listed here were very helpful to them and their 
students. Many of these sites offer activities that can be downloaded to 
mobile devices.

Note: All websites were active at time of publication.

Algebra Help

www.algebrahelp.com

Here you will find a large collection of calculators, worksheets, and 
lessons focusing on concepts in algebra. The equation calculator will show 
how to solve an equation, and the worksheets will automatically grade the 
student’s answers.

Art of Problem Solving

www.artofproblemsolving.com/Videos/index.php

This site has more than 300 videos on how to solve problems in preal-
gebra, algebra, counting, and probability, listed by subject and topic.

Arts Integration in Mathematics

www.mathactivities.net/art.htm

This attractive site is for Grades 2–4, and contains numerous lessons 
that integrate the arts with mathematics.

Ask Dr. Math

mathforum.org/dr.math/

This site began as a project at Swarthmore College that used university 
students to answer questions in mathematics. The site is now sponsored 
by Drexel University, and there are hundreds of volunteers from colleges 
around the world who answer mathematics questions. The Frequently Asked 
Questions page makes interesting reading, especially “A Crash Course in 
Symbolic Logic.” There are links to many other mathematics sites as well.
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Assessment in Math and Science

www.learner.org/resources/series93.html

This site is sponsored by the Annenberg Foundation and contains free 
(with registration) online video workshops on mathematics topics sorted 
by grade level.

Calc101.com Automatic Calculus and Algebra Help

www.calc101.com

This site offers free and password-accessible ($25 for a year) help for 
finding derivatives, integrals, graphs, matrices, determinants, and systems 
of linear equations. The solutions are provided in simple terms and use 
standard mathematics notation, and show the steps used.

Calculus Help.com

www.calculus-help.com

This fun site for calculus includes a problem of the week, tutorials, 
an interactive cheat sheet, and calculus music (the touching “Quadratic 
Formula Song,” the catchy “Day Before Notebooks Are Due Blues,” 
and even calculus holiday carols). The site updates often with new 
material.

Cliffs Notes for Mathematics

www.cliffsnotes.com/math

This content-rich site is for students in Grades 2–12 (basic mathematics 
through calculus). It reviews mathematical operations in all areas in clear, 
step-by-step directions, and provides quizzes for practice.

Coping With Math Anxiety

www.mathacademy.com/pr/minitext/anxiety/index.asp

This site takes a constructive look at math anxiety, its causes, its effects, 
and how students can learn to manage it so it no longer hinders their study 
of mathematics. It includes special strategies for studying mathematics, 
doing homework, and taking exams.

Education World

www.educationworld.com/a_lesson/archives/math_practice_4_you 
.shtml

This site is essentially for elementary-grade mathematics and has 
a large collection of math fact worksheets, lesson plans, and calculator 
lessons. It also has links to sites that offer downloadable PDFs on crit-
ical thinking, hands-on mathematics activities, and related crossword 
puzzles.

Geometry Junkyard

www.ics.uci.edu/~eppstein/junkyard/
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Created by David Eppstein, a professor of computer science at the 
University of California–Irvine, this site contains clippings, web pointers, 
lecture notes, research excerpts, papers, abstracts, programs, problems, 
and other information related to discrete and computational geometry, 
presented in a unique and entertaining format.

Homework Help

www.math.com

This site offers practice lessons in many topics to help students with 
their mathematics homework. It also has different types of mathematical 
calculators and games.

Hooda Math

www.hoodamath.com/index.html

This site is designed to help K–12 students learn mathematical con-
cepts through colorful and interesting games. Each game notes which of 
the Common Core State Standards for Mathematics is addressed.

Illuminations from National Council of Teachers of Mathematics

illuminations.nctm.org

This site contains hundreds of activities for teachers of mathematics 
for Grades preK–12. The resources include lesson plans, mathematics 
games and puzzles, and online discussions for special interest groups. Also 
included are downloadable apps for desktop and mobile devices.

Interactive Math Activities

www.shodor.org/interactivate/activities/

From the Shodor Education Foundation, this site includes an impres-
sive list of graphs and games for geometry, algebra, calculus, probability, 
statistics, and modeling.

Interactive Mathematics Miscellany and Puzzles

www.cut-the-knot.org/content.shtml

This entertaining site presents hundreds of problems in all areas of 
mathematics in an interactive format.

Interactive Resources

www.globalclassroom.org/ecell00/javamath.html

This is a portal to interactive mathematics sites from around the world, 
designed for Grades 1–6. It includes algebra patterns and function, place 
value, money, arithmetic operations, time, graphing, measurement, frac-
tions, decimals, and geometry.

Khan Academy

www.khanacademy.org
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Started by Sal Khan, this site for teachers and students is supported 
by the Bill and Melinda Gates Foundation and other industry supporters. 
As a result, all the helpful videos and curriculum content are free to use, 
and range from kindergarten through college. All the major topics in the 
Common Core State Standards for Mathematics are covered.

Layered Curriculum

help4teachers.com

This is Kathie Nunley’s site, which offers information about her 
methods for layering the curriculum in mathematics and other subject 
areas. It includes plenty of teacher tips and suggestions for flipping the 
classroom.

MacTutor History of Mathematics

www-groups.dcs.st-and.ac.uk/~history/index.html

Maintained by the University of St. Andrews in Scotland, this site is 
an excellent source of material on the history of mathematics. It has an 
extensive list of biographies of famous mathematicians and is rich in infor-
mation on a wide variety of topics, including ancient Babylonian, Chinese, 
and modern-day mathematics.

Math Cats

www.mathcats.com

This is a site for elementary-grade students that uses attractive anima-
tion to teach arithmetic operations, conversions, measurement, estimation, 
geometry, spatial reasoning, probability, statistics, real-life mathematics, 
and other related topics.

Math Pickle

www.mathpickle.com/K-12/Videos.html

This site for teachers and students has videos with mini-lessons to 
explain mathematical concepts for Grades K–12. It also has numerous 
games and discussion boards for support.

The Math Playground

www.mathplayground.com

This graphically appealing site offers elementary and middle school 
students an entertaining way to learn word problems, logic games, and 
mathematics games. The site also contains printable worksheets, interac-
tive quizzes, and practice facts.

Math VIDS (Video Instructional Development Source)—Struggling 
Learners

www.coedu.usf.edu/main/departments/sped/mathvids/

This site is for teachers of mathematics who have struggling learners. 
It offers videos of real teachers using research-supported instructional 
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techniques (such as the concrete–representational–abstract approach), and 
accommodations and modifications that can be made for specific learning 
difficulties.

Mathematical Interactivities—Puzzles, Games, and Other Online 
Educational Resources

mathematics.hellam.net/

On this interesting site, students can play unique mathematical games, 
find out how to do number tricks, and more. Some games are interactive. 
Teachers should preview the games before assigning them, because some 
of the sites are not self-explanatory and do not provide adequate feedback.

Math2.org

www.math2.org

This site features reference tables for K–12 courses, an English/Spanish 
mathematics dictionary, a collection of mathematical theorems and formu-
las, and links to other, similar sites.

National Council of Teachers of Mathematics: Principles and Standards

www.nctm.org/resources/default.aspx?id=230

The official site of the National Council of Teachers of Mathematics 
offers K–12 teachers of mathematics numerous teaching tips, sample les-
sons and themes, and many other resources.

Online Quizzes

www.softschools.com/quizzes

Here is an extensive collection of quizzes in mathematics (as well as 
other subject areas) for grades preK through middle school. Also included 
are free online calculators, games, and flashcards.

Patrick JMT

patrickjmt.com

Put together by a university mathematics teacher, this content-rich site 
offers hundreds of videos showing how to solve problems in arithmetic, 
algebra, calculus, trigonometry, probability, statistics, and more.

PBS Learning Media

www.pbslearningmedia.org

This is a curriculum data bank and collection of teaching videos in all 
areas of preK–12 mathematics (and other subjects) provided by the Public 
Broadcasting Service, with links to books, media, and online professional 
development courses.

Practical Uses of Math and Science (PUMAS), NASA

pumas.jpl.nasa.gov
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This site offers nearly 100 suggestions on how to show the practical and 
everyday uses of mathematics and science.

Professor Freedman’s Math Help

www.mathpower.com

This site was created by Ellen Freedman, a professor from Camden 
County College in New Jersey. It provides information about basic math-
ematics, algebra, study skills, math anxiety, and learning styles, and spe-
cifically addresses the needs of the community college adult learner. There 
are musical videos illustrating different mathematical operations, tutori-
als, homework assignments, interactive games, and links to many more 
resources.

Purplemath

www.purplemath.com

This site provides numerous reviews and links to sites offering lessons 
and tutoring, quizzes and worksheets, a collection of downloadable infor-
mation on mathematics, and a study skills survey.

STEAM (Science, Technology, Engineering, Arts, and Mathematics)

stemtosteam.org

This site is sponsored by the Rhode Island School of Design, which 
is providing resources to support the STEAM initiative. Included are 
research-based arguments for arts integration into the STEM areas, as well 
as links to related sites.

artsedge.kennedy-center.org/educators/how-to/growing-from-stem- 
to-steam

This site from the Kennedy Center offers numerous sample lessons on 
how to integrate the arts into the STEM subjects.

SuperKids Math Worksheet Creator

www.superkids.com/aweb/tools/math/index.shtml

This site helps teachers easily customize worksheets for arithmetic 
operations, fractions, percentages, greater than/less than, odd or even, 
rounding, averages, exponents, factorials, prime numbers, and telling time.

Virtual Manipulatives

nlvm.usu.edu/en/nav/siteinfo.html

This site is sponsored by Utah State University and contains a library 
of virtual manipulatives for preK–12 mathematics. These Java-based activ-
ities allow for exciting interactive approaches for learning mathematics 
concepts.

http://www.superkids.com/aweb/tools/math/index.shtml
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Language of mathematics, 154,  
163, 183

Laptops, 49, 50
Layered Curriculum Model, 135–143
Learning profile, 205–206
Learning styles, 65–66, 133–135,  

205–206
Limbic area, 97–98, 127
Logical-mathematical intelligence, 

29–30
Long-term memory

assessment and, 172
cognitive closure and, 198, 201
explained, 46
mathematical disorders and,  

176, 177
meaning and, 112
multiplication and, 38
patterns and, 39, 40
practice and, 123
preadolescents and, 100
rehearsal and, 51–52
transfer and, 116
types of, 55–57

Magnitude comparison measure, 162
Manipulatives

Concrete-Representational-Abstract 
approach and, 181–182

differentiating instruction and, 206
English language learners and, 193
layering the curriculum and, 137
mastery learning and, 165, 169,  

201, 211
nonverbal learning disability  

and, 187
preschoolers and kindergartners 

and, 80
qualitative style and, 134
question in student survey, 71
subitizing and, 81
use in equations, 181

Massed practice, 59–60, 123
Mastery of a concept, levels of, 164–165
Math anxiety

attention and, 167
classroom culture and, 170–172
curriculum and, 168–169
description of, 166–167
motivation and, 70
teacher attitudes and, 167–168
math anxiety and, 166, 169
ways to alleviate, 167–173

Mathematical difficulties. See 
Mathematical disorders

Mathematical disorders
arithmetic skills difficulties, 176
counting skill deficits, 176
creativity and, 171
dyscalculia, 173–176
genetic factors and, 176
memory problems, 177, 178, 181
number concept difficulties, 176
place value and, 176, 178
prefrontal cortex and, 177
procedural disorders, 176–177
reasoning and, 169, 171, 193
strategies for dealing with, 179–187
visual-spatial disorders, 177–178
word problems and, 178, 180, 187

Mathematicians, famous, project  
in, 156

Mathematics
arts integration and, 206–210
definition of, 1–2
gender differences in, 63–65
learning profile and, 163
“math wars” and, 2
motivating students in, 70–73
music and, 208
predicting patterns in, 116
prerequisite skills for learning, 161, 

163–164
reasoning in, 119–123, 134–135
stereotype threat in, 64–65
writing and, 62

Meaning
cognitive closure and, 101–102
long-term memory and, 112
music and, 12
teaching for, 99–102, 151–156

versus automatic response, 54–55
working memory and, 52–53

Measuring, 26, 108, 117–118
Memory

associative, 39
declarative, 55–56
disorders in mathematics, 177
episodic, 55
immediate, 46–47
multiplication and, 37–38
nondeclarative, 56–57
procedural, 56–57
rehearsal and, 50–52
semantic, 55
technology and, 48–50
understanding and, 38
working, 47–48

Mental number line
description of, 21–23
language and, 22
number-comparison experiments 

and, 21–22
Meyer, L., 124, 143
Mindsets, 62–63
Missing number measure, 162
Models, 23, 101, 118–119
Motivation

curriculum and, 132
novelty and, 131–132
strategies for, 71–73
students and, 70–73, 135–136
surveys in, 71
technology and, 72

Multiple intelligences, theory of, 29, 
66–67, 68, 203, 204

Multiplication
brain imaging and, 37
difficulty in learning, 37
memory and, 37–38, 40
reasoning and, 118
tables, 42–43
teaching of, 38–41
teaching with understanding, 117–119
word problems, 118

Music
declarative memory and, 55
meaning and, 12
multiple intelligences and, 29–30,  

68, 204
patterns in, 2
STEAM and, 207–208
temporal lobes and, 66

Myelin, 96

National Assessment of Educational 
Progress, 2–3, 25, 63, 190, 207

National Council of Teachers of 
Mathematics, 4, 172

National Mathematics Advisory  
Panel, 4

National Science Foundation, 206
Neuron, 96, 97, 129
New Guinea, 16
Newton, I., 2
No Child Left Behind Act, 165–166
Nondeclarative memory, 55, 56–57
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Nonverbal learning disability (NLD) 
and mathematics

description, 178–179
strategies for, 186–187

Novelty
adolescents and, 130–132
attention and, 131
curriculum and, 132
hemispheric specialization and,  

130–131
mathematics and, 131–132
motivation and, 131–132
preadolescents and, 98–99, 100
temporal lobe and, 131

Number concept difficulties, 176
Number knowledge

strategies to improve, 185
test for, 162

Number lines, 36–37
Number sense

animals and, 13–14
assessment of, 77, 105–106
definition of, 1
developing, 5–6
estimation and, 26–28
multidigit, 107–108
numerosity and, 13, 23, 25
purpose of, 14
teaching of, 25–28
understanding and, 24

Numbers from dictation measure, 162
Number identification measure, 162
Numeracy intervention process, 185
Numerical symbols, 23, 27, 85
Numerical words, 23, 117
Numerosity

brain development and, 96
counting and, 38, 86
described, 11–12, 17, 70
reasoning and, 12
number sense and, 13, 23, 25
number size and, 38
subitizing and, 14, 28
tactile tasks and, 90
visualization and, 83

Nunley, K., 135

Occipital lobe, 16, 23, 55, 179
Overestimating, 110

Parietal lobe
approximations and, 41–42
arithmetic in, 16
location in brain diagram, 16, 23, 55
mathematical difficulties and, 175
number module in, 23
visual-spatial operations and, 66, 70, 

97, 178
Participation preferences, 66
Pascal’s triangle, 116
Patterns

interference in, 40
music and, 2
long-term memory and, 39, 40
recognition of, 161
temporal lobe and, 39, 129

Perceptual subitizing, 15
Place value

base-10 blocks and, 119
declarative-based approach and, 114
estimation and, 109
learning principles of, 20
long division and, 161
mathematical disorders and,  

176, 178
new standards for, 79, 104
understanding in 8-year-olds, 36

Population growth, problem about, 
152–153

Practical applications of mathematics, 
211–212

Practice
assessment and, 60–61
conditions for successful, 58
defined, 58
distributed, 59–60, 181
effective use of, 123, 131, 201
guided, 58–59, 132, 181
independent, 58–59, 181
long-term memory, 123
massed, 59–60
working memory, 58, 60, 123, 201

Prime-time-1, 58, 199, 200
Prime-time-2, 58, 200
Preadolescents

algebraic thinking and, 120–121, 
122–123

brain development and, 96–98
cognitive closure with, 101–102
curriculum and, 102
declarative-based approach and, 

113–115
emotional behavior in, 97–98, 99
estimation and, 108–112
graphic organizers and, 124
long-term memory and, 100
mathematical reasoning and,  

119–123
multiplication and, 117–119
number sense and, 105–108
practice and, 123
rational behavior in, 97–98
reasoning and, 98, 119–123
spatial orientation and, 97
technology and, 125
using models with, 101
working memory, 99

Prefrontal cortex
adolescent brain and, 128
description, 54–55
learning algebra and,132
location in brain diagram, 55
mathematical disorders and, 177

Prerequisite skills for learning 
mathematics, 161, 163–164

Prerequisite skills profile, 164
Preschoolers

assessing number sense of, 77
attention of, 78
brain development of, 76
curriculum and, 78–79
emotional behavior of, 78

social behavior of, 78
word problems and, 76

Primacy-recency effect, 57–58, 199–201
Principles and Standards for School 

Mathematics, 4
Probability, word problems in,  

151–152, 181
Procedural disorders in mathematics, 

176–177
Procedural memory, 56–57, 112, 176
Professional development

assessment and, 61
English language learners and, 194
kindergarten instruction and, 79
technology and, 125
use of strategies in, 7

Proficiency levels in mathematics for 
2013, 2–3

Progressions, word problems in 
calculating. 152–154

Proportion, word problems in 
calculating, 154–155

Quadratic functions graph, 145
Qualitative learning style, 133–134
Quantitative learning style, 133–134
Quantity, 117–118
Quantity array measure, 162
Quantity discrimination measure, 162
Questioning

assessment and, 61
English language learners and, 193
enhancing understanding with, 116
mathematical thinking and, 87–89
RIDD strategy and, 188, 190
SQRQCQ process and, 149–150
understanding and, 61

Range-based estimations, 110
Ratio, word problems in calculating, 

154–155
Reading and mathematics disorders

described, 178
strategies for addressing,  

187–190
Reading on paper versus on screen, 

50–51
Readiness in mathematics, 205
Reasoning

adolescents and, 134–135
algebraic, 4
classifying and, 92
integrating the arts and, 208
kindergartners and, 80
language areas and, 42
mathematical, 134–135, 171
mathematical difficulties and, 169, 

171, 193
multiplication and, 118
numerosity and, 12
preadolescents and, 98, 119–123
process skills and, 105
technology and, 48, 125
See also Deductive reasoning; 

Inductive reasoning
Reciprocal teaching, 192–193
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Rehearsal
cognitive closure and, 198
described, 48
initial, 51
memory and, 50–52
practice and. 58, 59
rereading and, 150
secondary, 51
verbalization and, 179
writing and, 202
See also Elaborative rehearsal; Rote 

rehearsal
Repetition in mathematics curriculum, 

168–169
Rich tasks, 171–172
RIDD strategy, 188–190
Rockford, IL, arts integration, 210
Rote rehearsal, 51–52, 57, 129
Roulette, word problem about, 152

Sawyer, W. W., 2
Scharton, S. 113–116
Schmandt-Besserat, D., 17
Secondary rehearsal, 51
Semantic memory, 55, 57
Sense-making classroom culture,  

170–171
Sensing/intuitive preferences, 66
Sensory preferences, 65
Sorting, 89–91, 92, 93
Spatial orientation

dyscalculia and, 174, 178
preadolescents and, 97
prerequisite skills and, 161, 164

Spiral curriculum, 60
SQRQCQ process, 149–150
Starkey, P., 11
State University of New York at 

Potsdam, 208
STEAM initiative

creativity and, 210
origin of, 207
places using arts integration, 210
sample lessons in, 208–210
teacher reactions to, 209–210

STEM initiative, 166, 206–210
Stereotype threat in mathematics, 64–65
Subitizing

dyscalculia and, 174
estimation and, 14, 15
numerosity and, 14, 28
teaching of, 81–85, 211
types of, 15
visual processing system and, 14–15

Summative assessment, 61
Symbolic notation, 211, See also 

Numerical symbols

Teachers of mathematics
classroom culture and, 170–172
content knowledge of, 3–4, 169
number sense and, 24–25

preparation of, 3–4, 169
thinking about mathematics and, 

68–70
Teaching styles, 67–68
Technology

English language learners and, 193
effects on attention, 48–49, 50, 99, 100
effects on memory, 5, 48–50, 159
flipped classrooms and, 137
motivation and, 72, 181
preadolescents and, 97
reasoning and, 48, 125
STEM and, 166, 206
student survey of, 71
taking advantage of, 125
understanding, 49, 50

Temporal lobe
adolescents and, 129
creativity and, 66
language and, 41
location in brain diagram, 16, 23,  

55, 167
novelty and, 131
patterns and, 39, 129

Traditional classroom culture, 170–171
Traditional tasks, 171–172
Transfer

cognitive closure and, 201
described, 116
rehearsal and, 51, 52
whole-class discussion and, 115, 116

Turner syndrome, 176

Underestimating, 110
Understanding

arts integration and, 208
base-10 structure and, 20, 87–89, 212
cognitive closure and, 199
elaborative rehearsal and, 112, 114
elementary-grade arithmetic and, 36, 

91, 93, 112–113
English language learners and,  

191–193
equal sign and, 121–123
graphic organizers and, 143
higher-level mathematics and, 4
incorrect answers and, 132
math anxiety and, 166, 169
mathematical disorders and, 173, 

176–177, 182
memory and, 38
models and, 23, 101
motivation survey and, 71
multiple intelligences and, 203
multiplication and, 117–119
number sense and, 24–26, 42, 79,  

107, 108
prerequisite skills and, 163
questioning for, 61
RIDD strategy and, 190
teaching for, 56, 57, 104, 112–120, 

134, 205

technology and, 49, 50, 125
visualization, 116–117
writing and, 202

Unlearning a skill or process, 59

Verbalization, 179–180
Visualization

multiple intelligences and, 68
numerosity and, 84, 86
RIDD strategy and, 188, 190
subitizing and, 83
understanding and, 116–117

Visual-motor task, 128
Visual processing system, 14, 175,  

177–178

White matter, 96–97
Word problems

arts integration and, 209
automated response to, 55
Concrete-Representational-Abstract 

approach and, 183–184
differentiated instruction and, 205
English language learners and,  

192, 193
interpretation of, 149–151
language of mathematics and, 163
mathematical disorders and, 178, 

180, 187
multiplication and, 118
preschoolers and, 76
RIDD strategy and, 188–189
thinking across grade levels  

with, 104
working memory, 150

Word problem map, 187
Word problem roulette, 150–151
Working memory

adolescents and, 128–129
capacity (span) of, 19, 47, 49, 198
cultural variations in, 18
described, 46, 47–48
mathematical disorders and, 167, 

176, 177, 178, 181
meaning and, 52–53
multiplication and, 37–38, 40
preadolescents and, 99
practice and, 58, 60, 123, 201
primacy-recency effect and, 57
reading on paper versus screen and, 

50–51
rehearsal and, 51
word problems and, 150
writing and, 203

Writing
benefits of in mathematics, 62
elaborative rehearsal and, 202
strategies for using in lessons,  

201–203
understanding and, 202
versus laptops, 49
working memory, 203
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