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Introduction

“As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.”
Albert Einstein

We've all seen it. We've all experienced it, many times without knowing it. It’s in the
design of a beautiful stained-glass window in the middle of an Austrian cathedral. It’s
in the large and small workings of a car, computer, or space shuttle. It’s in the inno-
cent statement of a child asking, “How old are you?”

By now you’ve probably guessed what “it” is: mathematics.

Mathematics is everywhere. Sometimes it’s as subtle as the symmetry of a butter-
fly’s wings. Sometimes it’s as blatant as the U.S. debt figures displayed on a sign out-
side the Internal Revenue Service building in New York City.

Numbers sneak into our lives. They are used to determine a prescription for eye-
glasses; they reveal blood pressure, heart rate, and cholesterol levels, too. Numbers are
used so you can follow a bus, train, or plane schedule; or they can help you figure out
when your favorite store, restaurant, or library is open. In the home, numbers are
used for recipes, figuring out the voltage on a circuit in an electric switchbox, and
measuring a room for a carpet. Probably the most familiar connection we have to
numbers is in our daily use of money. Numbers, for instance, let you know whether
you're getting a fair deal on that morning cup of cappuccino.

The Handy Math Answer Book is your introduction to the world of numbers, from
their long history (and hints of the future) to how we use math in our everyday lives.
With more than 1,000 questions and answers in The Handy Math Answer Book (1,002,
to be mathematically precise) and over 100 photographs, 70 illustrations, and dozens
of equations to help explain or provide examples of fundamental mathematical princi-
ples, you'll cover a lot of ground in just one book!

Handy Math is split into four sections: “The History” includes famous (and some-
times infamous) people, places, and objects of mathematical importance; “The Basics”
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explains the various branches of mathematics, from fundamental arithmetic to com-
plex calculus; “Math in Science and Engineering” describes how relevant math is to
such fields as architecture, the natural sciences, and even art; and “Math All Around
Us” shows how much math is part of our daily lives, including everything from balanc-
ing a checkbook to playing the slots in Las Vegas.

The subject of math—and its many connections—is immense. After all, over two
thousand years ago the Greek mathematician Euclid wrote thirteen books about
geometry and other fields of mathematics (the famous Elements). It took him six of
those volumes just to describe elementary plane geometry. Today, even more is known
about mathematics, as you'll see in the list of resources described in the last chapter of
this book. Here we’ve provided you with everything from recommended print sources
to some of our favorite Web sites, such as “Dr. Math” and “SOS Math.” In this way,
Handy Math not only introduces you to the basics of math, but it also gives you the
resources to continue on your own mathematical journey.

Be warned: This journey is an extensive one. But you’ll soon learn that it’s satisfy-
ing and rewarding in every way. Not only will you understand what math is all about,
but you'll appreciate the mathematical beauty that surrounds you every day. Just as it
has astounded us, we’re sure you’ll be amazed by how numbers, equations, and sundry
other mathematical constructions continue to not only define, but also influence, the
world around us.
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HISTORY OF
MATHEMATICS

WHAT IS MATHEMATICS?

What is the origin of the word “mathematics™?

According to most sources, the word “mathematics” is derived from the Latin math-
maticus and from the Greek mathématikos, meaning “mathematical.” (Other forms
include mathéma, meaning “learning,” and manthanein, meaning “to learn.”)

In simple terms, what is mathematics?

Mathematics is often referred to as the science of quantity. The two traditional
branches of mathematics have been arithmetic and geometry, using the quantities of
numbers and shapes. And although arithmetic and geometry are still of major impor-
tance, modern mathematics expands the field into more complex branches by using a
greater variety of quantities.

Who were the first humans to use simple forms of mathematics?

No one really knows who first used simple forms of mathematics. It is thought that
the earliest peoples used something resembling mathematics because they would have
known the concepts of one, two, or many. Perhaps they even counted using items in
nature, such as 1, represented by the Sun or Moon; 2, their eyes or wings of a bird;
clover for 3; or legs of a fox for 4.

Archeologists have also found evidence of a crude form of mathematics in the tal-
lying systems of certain ancient populations. These include notches in wooden sticks
or bones and piles or lines of shells, sticks, or pebbles. This is an indication that cer-
tain prehistoric peoples had at least simple, visual ways of adding and subtracting
things, but they did not yet have a numbering system such as we have today.



EARLY COUNTING
AND NUMBERS

What are some examples of how
early peoples counted?

There were several different ways that
early civilizations recorded the numbers
of things. Some of the earliest archeo-
logical evidence of counting dates from
about 35000 to 20000 BCE, in which sev-
eral bones bear regularly spaced notch-
es. Most of these marked bones have
i been found in western Europe, includ-
Early humans used all sorts of images to represent . . .
numbers, including the fox, the image of which was ing in the Czech Republic and France.
used to indicate the number 4. Stone/Getty Images. The purpose of the notches is unclear,
but most scientists believe they do rep-
resent some method of counting. The marks may represent an early hunter’s num-
ber of kills; a way of keeping track of inventory (such as sheep or weapons); or a way
to track the movement of the Sun, Moon, or stars across the sky as a kind of crude
calendar.

Not as far back in time, shepherds in certain parts of West Africa counted the ani-
mals in their flocks by using shells and various colored straps. As each sheep passed,
the shepherd threaded a corresponding shell onto a white strap, until nine shells were
reached. As the tenth sheep went by, he would remove the white shells and put one on
a blue strap, representing ten. When 10 shells, representing 100 sheep, were on the
blue strap, a shell would then be placed on a red strap, a color that represented what
we would call the next decimal up. This would continue until the entire flock was
counted. This is also a good example of the use of base 10. (For more information
about bases, see “Math Basics.”)

Certain cultures also used gestures, such as pointing out parts of the body, to rep-
resent numbers. For example, in the former British New Guinea, the Bugilai culture
used the following gestures to represent numbers: 1, left hand little finger; 2, next fin-
ger; 3, middle finger; 4, index finger; 5, thumb; 6, wrist; 7, elbow; 8, shoulder; 9, left
breast; 10, right breast.

Another method of counting was accomplished with string or rope. For example,
in the early 16th century, the Incas used a complex form of string knots for account-
ing and sundry other reasons, such as calendars or messages. These recording strings
were called guipus, with units represented by knots on the strings. Special officers of
the king called quipucamayocs, or “keepers of the knots,” were responsible for mak-
ing and reading the quipus.



Why did the need for mathematics arise?

he reasons humans developed mathematics are the same reasons we use

math in our own modern lives: People needed to count items, keep track of
the seasons, and understand when to plant. Math may even have developed for
religious reasons, such as in recording or predicting natural or celestial phe-
nomena. For example, in ancient Egypt, flooding of the Nile River would wash
away all landmarks and markers. In order to keep track of people’s lands after
the floods, a way to measure the Earth had to be invented. The Greeks took
many of the Egyptian measurement ideas even further, creating mathematical
methods such as algebra and trigonometry.

How did certain ancient cultures count large numbers?

It is not surprising that one of the earliest ways to count was the most obvious: using
the hands. And because these “counting machines” were based on five digits on each
hand, most cultures invented numbering systems using base 10. Today, we call these
base numbers—or base of a number system—the numbers that determine place val-
ues. (For more information on base numbers, see “Math Basics.”)

However, not every group chose 10. Some cultures chose the number 12 (or base
12); the Mayans, Aztecs, Basques, and Celts chose base 20, adding the ten digits of the
feet. Still others, such as the Sumerians and Babylonians, used base 60 for reasons not
yet well understood.

The numbering systems based on 10 (or 12, 20, or 60) started when people
needed to represent large numbers using the smallest set of symbols. In order to do
this, one particular set would be given a special role. A regular sequence of numbers
would then be related to the chosen set. One can think of this as steps to various
floors of a building in which the steps are the various numbers—the steps to the
first floor are part of the “first order units”; the steps to the second floor are the
“second order units”; and so on. In today’s most common units (base 10), the first
order units are the numbers 1 through 9, the second order units are 10 through 19,
and so on.

What is the connection between counting and mathematics?

Although early counting is usually not considered to be mathematics, mathematics
began with counting. Ancient peoples apparently used counting to keep track of
sundry items, such as animals or lunar and solar movements. But it was only when
agriculture, business, and industry began that the true development of mathematics
became a necessity.
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What are the names of the various base systems?

he base 10 system is often referred to as the decimal system. The base 60 sys-

tem is called the sexagesimal system. (This should not be confused with the
sexadecimal system—also called the hexadecimal system—or the digital system
based on powers of 16.) A sexagesimal counting table is used to convert num-
bers using the 60 system into decimals, such as minutes and seconds.

The following table lists the common bases and corresponding number systems:

Base Number System

2 binary 9 nonary

3 ternary 10 decimal

4 quaternary 11 undenary
5 quinary 12 duodecimal
6 senary 16 hexadecimal
7 septenary 20 vigesimal

8 octal 60 sexagesimal

What is a numeral?

A numeral is a standard symbol for a number. For example, X is the Roman numeral
that corresponds to 10 in the standard Hindu-Arabic system.

What were the two fundamental ideas in the development of numerical symbols?

There were two basic principles in the development of numerical symbols: First, a cer-
tain standard sign for the unit is repeated over and over, with each sign representing
the number of units. For example, III is considered 3 in Roman numerals (see the
Greek and Roman Mathematics section below for an explanation of Roman numerals).
In the other principle, each number has its own distinct symbol. For example, “7” is the
symbol that represents seven units in the standard Hindu-Arabic numerals. (See below
for an explanation of Hindu-Arabic numbers; for more information, see “Math Basics.”)

MESOPOTAMIAN NUMBERS
AND MATHEMATICS

What was the Sumerian oral counting system?

The Sumerians—whose origins are debated, but who eventually settled in
Mesopotamia—used base 60 in their oral counting method. Because it required the



Who were the Mesopotamians?

he explanation of who the Mesopotamians were is not easy because there are

many historians who disagree on how to distinguish Mesopotamians from
other cultures and ethnic groups. In most texts, the label “Mesopotamian” refers
to most of the unrelated peoples who used cuneiform (a way of writing numbers;
see below), including the Sumerians, Persians, and so on. They are also often
referred to as Babylonians, after the city of Babylon, which was the center of
many of the surrounding empires that occupied the fertile plain between the
Tigris and Euphrates Rivers. But this area was also called Mesopotamia. There-
fore, the more correct label for these people is probably “Mesopotamians.”

In this text, Mesopotamians will be referred to by their various subdivisions
because each brought new ideas to the numbering systems and, eventually, math-
ematics. These divisions include the Sumerians, Akkadians, and Babylonians.

memorization of so many signs, the Sumerians also used base 10 like steps of a ladder
between the various orders of magnitude. For example, the numbers followed the
sequence 1, 60, 602, 603, and so on. Each one of the iterations had a specific name,
making the numbering system extremely complex.

No one truly knows why the Sumerians chose such a high base number. Theories
range from connections to the number of days in a year, weights and measurements,
and even that it was easier to use for their purposes. Today, this numbering system is
still visible in the way we tell time (hours, minutes, seconds) and in our definitions of
circular measurements (degrees, minutes, seconds).

How did the Sumerian written counting system change over time?

Around 3200 BCE, the Sumerians developed a written number system, attaching a spe-
cial graphical symbol to each of the larger numbers at various intervals (1, 10, 60,
3,600, etc.). Because of the rarity of stone, and the difficulty in preserving leather,
parchment, or wood, the Sumerians used a material that would not only last but
would be easy to imprint: clay. Each symbol was written on wet clay tablets, then
baked in the hot sunlight. This is why many of the tablets are still in existence today.

The Sumerian number system changed over the centuries. By about 3000 BCE, the
Sumerians decided to turn their numbering symbols counterclockwise by 90 degrees.
And by the 27th century BCE, the Sumerians began to physically write the numbers in
a different way, mainly because they changed writing utensils from the old stylus that
was cylindrical at one end and pointed at the other to a stylus that was flat. This
change in writing utensils, but not the clay, created the need for new symbols. The
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Who were the Akkadians?

he region of Mesopotamia was once the center of the Sumerian civilization, a

culture that flourished before 3500 BCE. Not only did the Sumerians have a
counting and writing system, but they were also a progressive culture, support-
ing irrigation systems, a legal system, and even a crude postal service. By about
2300 BCE, the Akkadians invaded the area, emerging as the dominant culture. As
most conquerors do, they imposed their own language on the area and even
used the Sumerians’ cuneiform system to spread their language and traditions
to the conquered culture.

Although the Akkadians brought a more backward culture into the mix, they
were responsible for inventing the abacus, an ancient counting tool. By 2150
BCE, the Sumerians had had enough: They revolted against the Akkadian rule,
eventually taking over again.

However, the Sumerians did not maintain their independence for long. By
2000 BCE their empire had collapsed, undermined by attacks from the west by
Amorites and from the east by Elamites. As the Sumerians disappeared, they
were replaced by the Assyro-Babylonians, who eventually established their capi-
tal at Babylon.

new way of writing numbers was called cuneiform script, which is from the Latin
cuneus, meaning “a wedge” and formis, meaning “like.”

Did any cultures use more than one base number in their numbering system?

Certain cultures may have used a particular base as their dominant numbering sys-
tem, such as the Sumerians’ base 60, but that doesn’t mean they didn’t use other base
numbers. For example, the Sumerians, Assyrians, and Babylonians used base 12,
mostly for use in their measurements. In addition, the Mesopotamian day was broken
into 12 equal parts; they also divided the circle, ecliptic, and zodiac into 12 sections of
30 degrees each.

What was the Babylonian numbering system?

The Babylonians were one of the first to use a positional system within their number-
ing system—the value of a sign depends on the position it occupies in a string of
signs. Neither the Sumerians nor the Akkadians used this system. The Babylonians
also divided the day into 24 hours, an hour into 60 minutes, and a minute into 60 sec-
onds, a way of telling time that has existed for the past 4,000 years. For example, the



What is the rule of position?

e are most familiar with the rule of position, or place value, as it is applied

to the Hindu-Arabic numerals 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. This is because
their values depend on the place or position they occupy in a written numerical
expression. For example, the number 5 represents 5 units, 50 is 5 tens, 500 is 5
hundreds, and so on. The values of the 5s depends upon their position in the
numerical expression. It is thought that the Chinese, Indian, Mayan, and
Mesopotamian (Babylonian) cultures were the first to develop this concept of
place value.

way we now write hours, minutes, and seconds is as follows: 6h, 20', 15"; the way the
Babylonians would have written this same expression (as sexagesimal fractions) was 6
20/60 15/3600.

Were there any problems with the Babylonian numbering system?

Yes. One in particular was the use of numbers that looked essentially the same. The
Babylonians conquered this problem by making sure the character spacing was differ-
ent for these numbers. This ended the confusion, but only as long as the scribes writ-
ing the characters bothered to leave the spaces.

Another problem with the early Babylonian numbering system was not having a
number to represent zero. The concept of zero in a numbering system did not exist at
that time. And with their sophistication, it is strange that the early Babylonians never
invented a symbol like zero to put into the empty positions in their numbering sys-
tem. The lack of this important placeholder no doubt hampered early Babylonian
astronomers and mathematicians from working out certain calculations.

Did the Babylonians finally use a symbol to indicate an empty space in
their numbers?

Yes, but it took centuries. In the meantime, scribes would not use a symbol repre-
senting an empty space in a text, but would use phrases such as “the grain is fin-
ished” at the end of a computation that indicated a zero. Apparently, the Babylonians
did comprehend the concepts of void and nothing, but they did not consider them to
be synonymous.

Around 400 BCE, the Babylonians began to record an empty space in their num-
bers, which were still represented in cuneiform. Interestingly, they did not seem to
view this space as a number—what we would call zero today—Dbut merely as a place-
holder.
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What happened to the Babylonians?

fter the Amorites (a Semitic people) founded Babylon, there were several

dynasties that ruled the area, including those associated with the famous
king and lawmaker, Hammurabi (1792-1750 BcE). It was periodically taken over,
including in 1594 BCE by the Kassites and in the 12th century BCE by the Assyri-
ans. Through all these conquests, most of the Babylonian culture retained its
own distinctiveness. With the fall of the Assyrian Empire in 612 BCE, the Baby-
lonian culture bloomed, at least until its conquest by Cyris of Persia in 539 BCE.
It eventually died out a short time after being conquered by Alexander the Great
(356-323 BCE) in 331 BCE (ironically, Alexander died in Babylon, unable to recov-
er from a fever he contracted).

Who invented the symbol for zero?

Although the Babylonians determined there to be an empty space in their numbers,
they did not have a symbol for zero. Archeologists believe that a crude symbol for zero
was invented either in Indochina or India around the 7th century and by the Mayans
independently about a hundred years earlier. What was the main problem with the
invention of zero by the Mayans? Unlike more mobile cultures, they were not able to
spread the word around the world. Thus, their claim as the first people to use the sym-
bol for zero took centuries to uncover. (For more information about zero, see “Mathe-
matics throughout History.”)

What do we know about Babylonian mathematical tables?

Archeologists know that the Babylonians invented tables to represent various mathe-
matical calculations. Evidence comes from two tables found in 1854 at Senkerah on
the Euphrates River (dating from 2000 BCE). One listed the squares of numbers up to
59, and the other the cubes of numbers up to 32.

The Babylonians also used a method of division based on tables and the equation
a/b = a X (1/b). With this equation, all that was necessary was a table of reciprocals;
thus, the discovery of tables with reciprocals of numbers up to several billion.

They also constructed tables for the equation n® + n? in order to solve certain cubic
equations. For example, in the equation ax3® + bx% = ¢ (note: this is in our modern alge-
braic notation; the Babylonians had their own symbols for such an equation), they
would multiply the equation by a2, then divide it by ° to get (ax/b)® + (ax/b)? = ca?/b.

If y = ax/b, then y* + y? = ca?/b*, which could now be solved by looking up the 73
+ n2 table for the value of n that satisfies n° + n? = ca?/b®. When a solution was found



for y, then x was found by x = by/a. And
the Babylonians did all this without the
knowledge of algebra or the notations we
are familiar with today.

What other significant mathematical
contributions did the Babylonians
make?

Throughout the centuries, the Babylonians
made many mathematical contributions.
They were the earliest people to know
about the Pythagorean theorem, although
it was not known by that name. In fact,
Pythagoras, in his travels to the east, may
have learned about the theorem that would
eventually carry his name from the Babylo-
nians. In additiOI’l, the Babylonians pos- Alexander the Great, depicted here in an 1899 paint-
sessed all the theorems of plane geometry ing of the Battle of Gaugamela, Iraq (331 BCE), by

. . ~ artist Benjamin Ide Wheeler, conquered much of the
that the Greeks ascribed to Thales’ includ known world and brought an end to the Babylonian

ing the theorem eventually named after ciyilization. The rise and fall of civilizations

him. They also may have been the most  throughout history did much to influence the devel-

skilled algebraists of their time. even opment of mathematics over the centuries. Library
) of Congress.

though the symbols and methods they

used were much different than our modern

algebraic notations and procedures.

EGYPTIAN NUMBERS
AND MATHEMATICS

Who were the Egyptians?

The Egyptians rose to prominence around 3000 BCE in the area we now call Egypt, but
their society was already advanced, urbanized, and expanding rapidly long before that
time. Although their civilization arose about the same time that words and numbers
were first written down in Mesopotamia, archeologists do not believe there was any
sharing between the two cultures. The Egyptians already had writing and written
numerals; plus, the Egyptian signs and symbols were taken exclusively from the flora
and fauna of the Nile River basin. In addition, the Egyptians developed the utensils for
writing signs about a thousand years earlier. 11
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What type of numerals did the
Egyptians use?

By about 3000 BCE, the Egyptians had a
writing system based on hieroglyphs, or
pictures that represented words. Their
numerals were also based on hieroglyphs.
They used a base-10 system of numerals:
one unit, one ten, one hundred, and so
on to one million. The main drawback to
this system was the number of symbols
needed to define the numbers.

Did the Egyptians eventually develop
different numerals?

Yes, the Egyptians used another number

Hieroglyphs can often be found on such Egyptian system called hieratic numerals after the
structures as the Obe.hsks gf Hatshepsut, Karnak invention of writin g on papyrus. This
Temple, near the ancient city of Thebes. Robert . A

Harding World Imagery/Getty Images. allowed larger numbers to be written in a

more compact form. For example, there
were separate symbols for 1 through 9; 10, 20, 30, and so on; 100, 200, 300, and so on;
and 1,000, 2000, 3,000, and so on.

The only drawback was that the system required memorization of more sym-
bols—many more than for hieroglyphic notation. It took four distinct hieratic sym-
bols to represent the number 3,577; it took no less than 22 symbols to represent the
same number in hieroglyphs, but most of those symbols were redundant (see illustra-
tion on p. 15).

Both hieroglyphic and hieratic numerals existed together for close to two thou-
sand years—from the third to the first millennium BCE. In general, hieroglyph numer-
als were used when carved on such objects as stone obelisks, palace and temple walls,
and tombs. The hieratic symbols were much faster and easier to scribe, and they were
written on papyrus for records, inventories, wills, or for mathematical, astronomical,
economic, legal—or even magical—works.

Even though it is thought that the hieratic symbols were developed from the
corresponding hieroglyphs, the shapes of the signs changed considerably. One rea-
son in particular came from the reed brushes used to write hieratic symbols; writing
on papyrus differed greatly from writing using stone carvings, thus the need to
change the symbols to fit the writing devices. And as kingdoms and dynasties
changed, the hieratic numerals changed, too, with users having to memorize the
many distinct signs.



What are some examples of Egyptian multiplication?

gyptian multiplication methods did not require a great deal of memorization,

just a knowledge of the two times tables. For a simple example, to multiply
12 times 16, they would start with 1 and 12. Then they would double each num-
ber in each row (1 X 2 and 12 X 2; 2 X 2 and 24 X 2; and so on) until the num-
ber 16, resulting in the answer 192:

1 12
2 24
4 48
8 96
16 192

Another example computes a number that is not a multiple in the row, such
as 37 times 19:

1 19
2 38
4 76
8 152
16 304
32 608

First, do the usual procedure by starting with 1 and 19, then doubling the
numbers until you get to 32 (if you double 32 [= 64], you’ve overshot the num-
ber 37). Because 37 is higher than 32, go back over the list on the left-hand side,
figure out which numbers, with 32, add up to 37 (1, 4, and 32); then add the
numbers that correspond to those numbers, to the right (19, 76, and 608),
which equals the answer: 703. And you didn’t even need a calculator!

Did the Egyptians use fractions?

Yes, the Egyptian numbering system dealt with fractions, albeit with symbols that do
not resemble modern notation. Fractions were written by placing the hieroglyph for
“mouth” over the hieroglyph for the numerical expression. For example, 1/5 and 1/10
would be seen as the first two illustrations represented in the box on p. 15. Other frac-
tions, such as the two symbols for 1/2 (see illustration on p. 15), also have special signs.

What were the problems with the Egyptian number system?

The Egyptian number system had several problems, the most obvious being that it
was not written with certain arithmetic calculations in mind. Similar to Roman
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numerals, Egyptian numbers could be
used for addition and subtraction, but not
for simple multiplication and division.

All was not lost, however, as the Egyp-
tians devised a way to do multiplication
and division that involved addition. Multi-
plying and dividing by 10 was easy with
hieroglyphics—just replace each symbol
in the given number by the sign for the
next higher order. To multiply and divide
by any other factor, Egyptians devised the
tabulations based on the two times tables,
or a sequence of duplications.

The Egyptian civilization did much to contribute to

mathematics, including developing a numbering Why did the Egyptians need to

system and using geometry in architecture to create

ics?
the famous pyramids and other buildings. Photfogra- develop mathematlcs.

pher’s Choice/Getty Images. Probably the most pressing reason for the

development of Egyptian mathematics
came from a periodic occurrence in nature: the flooding of the Nile River. With the
advent of agriculture in the Nile River valleys, flooding was important, not only to pro-
vide fertile soil and water for the irrigated fields, but also to know when the fields
would become dry. In addition, along with the growth of the Egyptian society came a
need for a more complex way of keeping track of taxes, dividing property, buying and
selling goods, and even amassing an army. Thus, the need for counting and mathe-
matics arose, along with the development of a written system of numbers to complete
and record the myriad of transactions.

Where does most of our knowledge of Egyptian mathematics originate?

Most of our knowledge of Egyptian mathematics comes from writings on papyrus, a
type of writing paper made in ancient Egypt from the pith and long stems of the
papyrus plant. Most papyri no longer exist, as the material is fragile and disintegrates
over time. But two major papyri associated with Egyptian mathematics have survived.

Named after Scottish Egyptologist A. Henry Rhind, the Rhind papyrus is about 19
feet (6 meters) long and 1 foot (1/3 meter) wide. It was written around 1650 BCE by
Ahmes, an Egyptian scribe who claimed he was copying a 200-year-old document
(thus the original information is from about 1850 BcE). This papyrus contains 87
mathematical problems; most of these are practical, but some teach manipulation of
the number system (though with no application in mind). For example, the first six
problems of the Rhind papyrus ask the following: problem 1. how to divide n loaves
between 10 men, in whichn = 1; in problem 2, n = 2 ; in problem 3, n = 6; in prob-
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The number 3,577 is represented above using hiero- The symbols for 1/5, 1/10, and 1/2 are represented
glyphs (top) and hieratic symbols (bottom). Notice above using hieroglyphs.
these numbers are read from right to left.

lem 4, n = 7; in problem 5, n = 8; and in problem 6, n = 9. In addition, 81 out of the
87 problems involve operating with fractions, while other problems involve quantities
and even geometry. Rhind purchased the papyrus in 1858 in Luxor; it resides in the
British Museum in London.

Written around the 12th Egyptian dynasty, and named after the Russian city, the
mathematical information on the Moscow papyrus is not ascribed to any one Egypt-
ian, as no name is recorded on the document. The papyrus contains 25 problems simi-
lar to those in the Rhind papyrus, and many that show the Egyptians had a good grasp
of geometry, including a formula for a truncated pyramid. It resides in the Museum of
Fine Arts in Moscow.

GREEK AND ROMAN MATHEMATICS

Why was mathematics so important to the Greeks?

With a numbering system in place and knowledge from the Babylonians, the Greeks
became masters of mathematics, with the most progress taking place between the
years of 300 BCE and 200 cE, although the Greek culture had been in existence long
before that time. The Greeks changed the nature and approach to math, and they con-
sidered it one of the—if not the most—important subjects in science. The main rea-
son for their proclivity towards mathematics is easy to understand: The Greeks pre-
ferred reasoning over any other activity. Mathematics is based on reasoning, unlike
many scientific endeavors that require experimentation and observation.

15
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Who were some of the most
influential lonian, Greek, and
Hellenic mathematicians?

The Ionians, Greeks, and Hellenics had
some of the most progressive mathemati-
cians of their time, including such math-
ematicians as Heron of Alexandria, Zeno
of Elea, Eudoxus of Cnidus, Hippocrates
of Chios, and Pappus. The following are
only a few of the more influential mathe-
maticians.

Thales of Miletus (c. 625—c. 550 BCE,
Ionian), besides being purportedly the
The distance between the Moon and Earth was cal- founder of a philosophy school and the
culated by Hipparchus of Rhodes using basic first recorded western philosopher known,
trigonometry. Stone/Getty Images. . K

made great contributions to Greek mathe-
matics, especially by presenting Babylonian mathematics to the Greek culture. His trav-
els as a merchant undoubtedly exposed him to the geometry involved in measurement.
Such concepts eventually helped him to introduce geometry to Greece, solving such
problems as the height of the pyramids (using shadows), the distance of ships from a
shoreline, and reportedly predicting a solar eclipse.

Hipparchus of Rhodes (c. 170—c. 125 BCE, Greek; also seen as Hipparchus of Nicaea)
was an astronomer and mathematician who is credited with creating some of the basics
of trigonometry. This helped immensely in his astronomical studies, including the
determination of the Moon’s distance from the Earth. Claudius Ptolemaeus (or Ptole-
my) (c. 100—c. 170, Hellenic) was one of the most influential Greeks, not only in the
field of astronomy, but also in geometry and cartography. Basing his works on Hip-
parchus, Ptolemy developed the idea of epicycles in which each planet revolves in a cir-
cular orbit, and each goes around an Earth-centered universe. The Ptolomaic way of
explaining the solar system—which we now know is incorrect—dominated astronomy
for more than a thousand years.

Diophantus (c. 210—c. 290) was considered by some scholars to be the “father of
algebra.” In his treatise Arithmetica, he solved equations in several variables for inte-
gral solutions, or what we call diophantine equations today. (For more about these
equations, see “Algebra.”) He also calculated negative numbers as solutions to some
equations, but he considered such answers absurd.

What were Archimedes’s greatest contributions to mathematics?

Historians consider Archimedes (c. 287-212 BcCE, Hellenic) to be one of the greatest
Greek mathematicians of the classic era. Known for his discovery of the hydrostatic



principle, he also excelled in the mechan-
ics of simple machines; computed close
limits on the value of “pi” by comparing
polygons inscribed in and circumscribed
about a circle; worked out the formula to
calculate the volume of a sphere and cylin-
der; and expanded on Eudoxus’s method of
exhaustion that would eventually lead to
integral calculus. He also created a way of
expressing any natural number, no matter
how large; this was something that was
not possible with Greek numerals. (For
more information about Archimedes, see
“Mathematical Analysis” and “Geometry
and Trigonometry.”)

What Greek mathematician made
major contributions to geometry?

Ptolemy (center), depicted in this 1632 engraving
discussing ideas with Aristotle (left) and Copernicus

The Greek mathematician Euclid (c. 325-
c. 270 BCE) contributed to the develop-
ment of arithmetic and the geometric

(right), discovered valuable concepts concerning
cartography, geometry, and astronomy. Library of
Congress.

theory of quadratic equations. Although

little is known about his life—except that he taught in Alexandria, Egypt—his contri-
butions to geometry are well understood. The elementary geometry many of us learn in
high school is still largely based on Euclid. His 13 books of geometry and other mathe-
matics, titled Elements (or Stoicheion in Greek), were classics of his day. The first six
volumes offer explanations of elementary plane geometry; the other books present the
theory of numbers, certain problems in arithmetic (on a geometric basis), and solid
geometry. He also defines basic terms such as point and line, certain related axioms
and postulates, and a number of statements logically deduced from definitions, axioms,
and postulates. (For more information on axioms and postulates, see “Foundations of
Mathematics”; for more information about Euclid, see “Geometry and Trigonometry.”)

What was Pythagoras’s importance to mathematics?

Although the Chinese and Mesopotamians had discovered it a thousand years before,
most people credit Greek mathematician and philosopher Pythagoras of Samos (c.
582—c. 507 BCE) with being the first to prove the Pythagorean Theorem. This is a
famous geometry theorem relating the length of a right-angled triangle’s hypotenuse
(h) to the lengths of the other two sides (@ and b).

In other words, for any right triangle, the square of the length of the hypotenuse
is equal to the sum of the squares of the lengths of the other two sides.
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What were Pythagoras’s other
leg contributions?

It is interesting that the Pythagorean
h -<--T Theorem was not Pythagoras’s only con-
b tribution. He is considered the first pure
mathematician. He also founded a school

that stressed a fourfold division of knowl-
edge, including number theory (deemed
the most important of the pursuits at the
e a school and using only the natural num-
Ieé 5 ) 5 bers), music, geometry, and astronomy
h =a-+ b (these subjects were called the quadrivi-

hypotenuse

um in the Middle Ages). Along with logic,

. grammar, and rhetoric, these studies col-
The Pythagorean Theorem is an easy way to deter- I velv f d wh d d th
mine the length of one side of a right triangle, given eCtlve. y formed what was deemed the
one knows the length of the other two sides. essential areas of knowledge for any well-
rounded person.

Pythagoras not only taught these subjects, but also reincarnation and mysti-
cism, establishing an order similar to, or perhaps influenced by, the earlier Orphic
cult. The true lives of Pythagoras and his followers (who worshipped Pythagoras as
a demigod) are a bit of a mystery, as they followed a strict code of secrecy and
regarded their mathematical studies as something of a black art. The fundamental
belief of the Pythagoreans was that “all is number,” or that the entire universe—
even abstract ethical concepts such as justice—could be explained in terms of
numbers. But they also had some interesting non-mathematical beliefs, including
an aversion to beans.

Although the Pythagoreans were influential in the fields of mathematics and
geometry, they also made important contributions to astronomy and medicine and
were the first to teach that the Earth revolved around a fixed point (the Sun). This idea
would be popularized centuries later by Polish astronomer Nicolaus Copernicus
(1473-1543). By the end of the 5th century BCE, the Pythagoreans had become social
outcasts; many of them were killed as people grew angry at the group’s interference
with traditional religious customs.

Who was the first recorded female mathematician’

The first known female mathematician was Hypatia of Alexandria (370-415), who was
probably taught by her mathematician and philosopher father, Theon of Alexandria.
Around 400, she became the head of the Platonist school at Alexandria, lecturing on
mathematics and philosophy. Little is known of her writings, and more legend is
known of her than any true facts. It is thought that she was eventually killed by a mob.



What is the story behind “Archimedes in the bathtub”?

0ne of the most famous stories of Archimedes involves royalty: Hiero II of Syra-
cuse, King of Sicily, wanted to determine if a crown (actually, a wreath) he had
ordered was truly pure gold or alloyed with silver—in other words, whether or not
the Royal Goldsmith had substituted some of the gold with silver. The king called
in Archimedes to solve the problem. The Greek mathematician knew that silver
was less dense than gold (in other words, silver was not as heavy as gold), but with-
out pounding the crown into an easily weighed cubic shape, he didn’t know how to
determine the relative density of the irregularly shaped crown.

Perplexed, the mathematician did what many people do to get good ideas: he
took a bath. As he entered the tub, he noticed how the water rose, which made
him realize that the volume of the water that fell out of the tub was equal to that of
the volume of his body. Legend has it that Archimedes ran naked through the
streets shouting “Eureka!” (“I have found it!”) He knew that a given weight of gold
represented a smaller volume than an equal weight of silver because gold is much
denser than silver, so not as much is needed to displace the water. In other words,
a specific amount of gold would displace less water than an equal weight of silver.

The next day, Archimedes submerged the crown and an amount of gold
equal to what was supposed to be in the crown. He found that Hiero’s crown dis-
placed less water than an equal weight of gold, thus proving the crown was
alloyed with a less dense material (the silver) and not pure gold. This eventually
led to the hydrostatic principle, as it is now called, presented in Archimedes’s
appropriately named treatise, On Floating Bodies. As for the goldsmith, he was
beheaded for stealing the king’s gold.

What is the origin of Roman numerals?

Because the history of Roman numerals is not well documented, their origin is highly
debated. It is thought that the numerals were developed around 500 BCE, partially
from primitive Greek alphabet symbols that were not incorporated into Latin. The
actual reasons for the seven standard symbols are also argued. Some researchers
believe the symbol for 1 (I) was derived from one digit on the hand; the symbol for 5
(V) may have developed because the outstretched hand held vertically forms a “V”
from the space between the thumb and first finger; the symbol for 10 (X) may have
been two Vs joined at the points, or it may have had to do with the way people or mer-
chants used their hands to count in a way that resembled an “X.” All the reasons
offered so far have merely been educated guesses.

How ever the symbols were developed, they were used with efficiency and with
remarkable aptitude by the Romans. Unlike the ancient Greeks, the Romans weren’t
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Why were early Greek calendars such a mess?

Unlike the Mesopotamian cultures, the early Greeks paid less attention to
astronomy and more to cosmology (they were interested in studying where
the Earth and other cosmic bodies stand in relation to the universe). Because of
this, their astronomical observations were not accurate, creating confusing cal-
endars. This also led to a major conundrum: Almost every Greek city kept time
differently. In fact, during the Greek and Hellenistic times, most dates were given
in terms of the Olympiads. This only created another time-keeping problem: If
something happened during the 10th Olympiad, it meant the event occurred
within a four-year span. Such notation creates headaches for historians, who end
up making educated guesses as to the actual dates of Greek events, important
people’s deaths and births, and other significant historical occurrences.

truly interested in “pure” math, such as abstract geometry. Instead, they concentrated
on “applied math,” using mathematics and their Roman numerals for more practical
purposes, such as building roads, temples, bridges, and aqueducts; for keeping mer-
chant accounts; and for managing supplies for their armies.

Centuries after the Roman Empire fell, various cultures continued to use Roman
numerals. Even today, the symbols are still in existence; they are used on certain time-
pieces, in formal documents, and for listing dates in the form of years. For example,
just watch the end credits of your favorite movie or television program and you will
often see the movie’s copyright date represented with Roman numerals.

What are the basic Roman numerals and how are they used?

There are only seven basic Roman numerals, as seen in the following chart:

Number Roman Numeral

1 I

5 \
10 X
50 L
100 C
500 D
1000 M

There are many rules, of course, to this method of writing numerals. For example,
although the way to write a large number like 8,000 would be “MMMMMMMM,” this is
very cumbersome. In order to work with such large numbers, one rule was to write a



What was the “House of Wisdom”?

Around 786, the fifth Caliph of the Abbasid Dynasty began with Caliph Harun
al-Rashid, a leader who encouraged learning, including the translation of
many major Greek treatises into Arabic, such as Euclid’s Elements. Al-Ma’'mun
(786-833), the next Caliph, was even more interested in scholarship, creating
the House of Wisdom in Baghdad, one of several scientific centers in the Islamic
Empire. Here, too, Greek works such as Galen’s medical writings and Ptolemy’s
astronomical treatises were translated, not by language experts ignorant of
mathematics, but by scientists and mathematicians such as Al-Kindi (801-873),
Muhammad ibn Musa al-Khuwarizmi (see below), and the famous translator
Hunayn ibn Ishaq (809-873).

bar over a numeral, meaning to multiply by 1,000. Thus, 8,000 would be VIII—equal
to our Hindu-Arabic number 8—with a bar over the entire Roman numeral.

OTHER CULTURES
AND EARLY MATHEMATICS

What did the Chinese add to the study of mathematics?

Despite the attention the Greeks have received concerning the development of mathe-
matics, the Chinese were by no means uninterested in it. About the year 200 BCE, the
Chinese developed place value notation, and 100 years later they began to use negative
numbers. By the turn of the millennium and a few centuries beyond, they were using
decimal fractions (even for the value of “pi” [n]) and the first magic squares (for more
information about math puzzles, see “Recreational Math”). By the time European cul-
tures had begun to decline—from about 530 to 1000 cE—the Chinese were contribut-
ing not only to the field of mathematics, but also to the study of magnetism, mechani-
cal clocks, physical laws, and astronomy.

What is the most famous Chinese mathematics book’

The Jiuzhang suanshu, or Nine Chapters on the Mathematical Art, is the most
famous mathematical book to come out of ancient China. This book dominated math-
ematical development for more than 1,500 years, with contributions by numerous
Chinese scholars such as Xu Yue (c. 160—c. 227), though his contributions were lost.
It contains 246 problems meant to provide methods to solve everyday questions con-
cerning engineering, trade, taxation, and surveying.

21
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Why is Omar Khayyam so famous?

mar Khayyam is not as well known for his contributions to math as he is for

being immortalized by Edward FitzGerald, the 19th-century English poet
who translated Khayyam’s own 600 short, four-line poems in the Rubaiyat.
However, FitzGerald’s translations were not exact, and most scholars agree that
Khayyam did not write the line “a jug of wine, a loaf of bread, and Thou.” Those
words were actually conceived by FitzGerald. Interestingly enough, versions of
the forms and verses used in the Rubaiyat existed in Persian literature long
before Khayydm, and only about 120 verses can be attributed to him directly.

Who was Aryabhata I?

Aryabhata I (c. 476-550) was an Indian mathematician. Around 499 he wrote a treatise
on quadratic equations and other scientific problems called Aryabhatiya in which he
also determined the value of 3.1416 for pi (). Although he developed some rules of
arithmetic, trigonometry, and algebra, not all of them were correct.

What were some of the contributions by the Arab world to mathematics?

From about 700 to 1300, the Islamic culture was one of the most advanced civiliza-
tions in the West. The contributions of Arabic scholars to mathematics were helped
not only by their contact with so many other cultures (mainly from India and China),
but also because of the Islamic Empire’s unifying, dominant Arabic language. Using
knowledge from the Greeks, Arabian mathematics grew; the introduction of Indian
numerals (often called Arabic numerals) also helped with mathematical calculations.

What are some familiar Arabic terms used in mathematics?

There are numerous Arabic terms we use today in our studies of mathematics. One of the
most familiar is the term “algebra,” which came from the title of the book Al jabr w’al
mugqgabalah by Persian mathematician Muhammad ibn Musa al-Khuwarizmi (783—c. 850;
also seen as al-Khowarizmi and al-Khwarizmi); he was the scholar who described the
rules needed to do mathematical calculations in the Hindu-Arabic numeration system.
The book, whose title is roughly translated as Transposition and Reduction, explains all
about the basics of algebra. (For more information, see “Algebra.”)

Another Arabic derivation is “algorithm,” which stems from the Latinized version
of Muhammad ibn Musa al-Khuwarizmi’s own name. Over time, his name evolved
from al-Khuwarizmi to Alchoarismi, then Algorismi, Algorismus, Algorisme, and
finally Algorithm.



Who was Omar Khayyam?

Omar Khayyam (1048-1131), who was actually known as al-Khayyami, was a Persian
mathematician, poet, and astronomer. He wrote the Treatise on Demonstration of
Problems of Algebra, a book that contains a complete classification of cubic equations
with geometric solutions, all of which are found by means of intersecting conic sec-
tions. He solved the general cubic equation hundreds of years before Niccol6 Tartaglia
in the 16th century, but his work only had positive roots, because it was completely
geometrical (see elsewhere in this chapter for more about Tartaglia). He also calculat-
ed the length of the year to be 365.24219858156 days—a remarkably accurate result
for his time—and proved that algebra was definitely related to geometry.

MATHEMATICS AFTER
THE MIDDLE AGES

Who first introduced Arabic notation and the concept of zero to Europe?

[talian mathematician Leonardo of Pisa (c. 1170—c. 1250, who was also known as
Fibonacci, or “son of Bonacci,” although some historians say there is no evidence that
he or his contemporaries ever used that name) brought the idea of Arabic notation
and the concept of zero to Europe. His book Liber abaci (The Book of the Abacus) not
only introduced zero but also the arithmetic and algebra he had learned in Arab coun-
tries. Another book, Liber quadratorum (The Book of the Square) was the first major
European advance in number theory in a thousand years. He is also responsible for
presenting the Fibonacci sequence. (For more information about Fibonacci and the
Fibonacci sequence, see “Math Basics.”)

What were the major reasons for 16th-century advances in European
mathematics?

There are several reasons for advances in mathematics at the end of the Middle Ages.
The major reason, of course, was the beginning of the Renaissance, a time when there
was a renewed interest in learning. Another important event that pushed mathematics
was the invention of printing, which made many mathematics books, along with use-
ful mathematical tables, available to a wide audience. Still another advancement was
the replacement of the clumsy Roman numeral system by Hindu-Arabic numerals.
(For more information about the Hindu-Arabic numerals, see “Math Basics.”)

Who was Scipione del Ferro?

There were several mathematicians in the 16th century who worked on algebraic solu-
tions to cubic and quartic equations. (For more information on cubic and quartic equa-
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tions, see “Algebra.”) One of the first was Scipione del Ferro (1465-1526), who in 1515
discovered a formula to solve cubic equations. He kept his work a complete secret until
just before his death, when he revealed the method to his student Antonio Maria Fiore.

Who was Adam Ries?

Adam Ries (1492-1559) was the first person to write several books teaching the arith-
metic method by the old abacus and new Indian methods; his books also presented the
basics of addition, subtraction, multiplication, and division. Unlike most books of his
time that were written in Latin and only understood by mathematicians, scientists,
and engineers, Ries’s works were written in his native German and were therefore
understood by the general public. The books were also printed, making them more
readily available to a wider audience.

Who was Francois Viete?

French mathematician Frangois Viete (or Franciscus Vieta, 1540-1603) is often called
the “founder of modern algebra.” He introduced the use of letters as algebraic symbols
(although Descartes [see below] introduced the convention of letters at the end of the
alphabet [x, v, ...] for unknowns and letters at the beginning of the alphabet [a, b, ...]
for knowns), and connected algebra with geometry and trigonometry. He also includ-
ed trigonometric tables in his Canon Mathematicus (1571), along with the theory
behind their construction. This book was originally meant to be a mathematical intro-
duction to his unpublished astronomical treatise, Ad harmonicon coeleste. (For more
about Viete, see “Algebra” and “Geometry and Trigonometry.”)

What century produced the greatest revolution in mathematics?

Many mathematicians and historians believe that the 17th century saw not only the
unprecedented growth of science but also the greatest revolution in mathematics.
This century included the discovery of logarithms, the study of probability, the inter-
actions between mathematics, physics, and astronomy, and the development of one of
the most profound mathematical studies of all: calculus.

Who explained the nature of logarithms?

Scottish mathematician John Napier (1550-1617) first conceived the idea of loga-
rithms in 1594. It took him 20 years, until 1614, to publish a canon of logarithms
called Mirifici logarithmorum canonis descripto (Description of the Wonderful Canon
of Logarithms). The canon explains the nature of logarithms, gives their rules of use,
and offers logarithmic tables. (For more about logarithms, see “Algebra.”)



What was the scandal between mathematicians
working on cubic and quartic equations?

he early work on cubic equations was a tale of telling secrets, all taking place

in Italy. No sooner had Antonio Maria Fiore (1526?—?)—considered a mediocre
mathematician by scholars—received the secret of solving the cubic equation
from Scipione del Ferro than he was spreading the rumor of its solution. A self-
taught Italian mathematical genius known as Niccol6 Tartaglia (1500-1557?;
nicknamed “the stutterer”) was already discovering how to solve many kinds of
cubic equations. Not to be outdone, Tartaglia pushed himself to solve the equa-
tion x* + mx? = n, bragging about it when he had accomplished the task.

Fiore was outraged, which proved to be a fortuitous event for the study of
cubic (and eventually quartic) equations. Demanding a public contest between
himself and Tartaglia, the mathematicians were to give each other 30 problems
with 40 to 50 days in which to solve them. Each problem solved earned a small
prize, but the winner would be the one to solve the most problems. In the space
of two hours, Tartaglia solved all Fiore’s problems, all of which were based on
x3 + mx? = n. Eight days before the end of the contest, Tartaglia had found the
general method for solving all types of cubic equations, while Fiore had solved
none of Tartaglia’s problems.

But the story does not end there. Around 1539, Italian physician and mathe-
matician Girolamo Cardano (1501-1576; known in English as Jerome Cardan)
stepped into the picture. Impressed with Tartaglia’s abilities, Cardano asked him
to visit. He also convinced Tartaglia to divulge his secret solution of the cubic
equation, with Cardano promising not to tell until Tartaglia published his results.

Apparently, keeping secrets was not a common practice in Italy at this time,
and Cardano beat Tartaglia to publication. Cardano eventually encouraged his
student Luigi (Ludovico) Ferrari (1522—?) to work on solving the quartic equa-
tion, or the general polynomial equation of the fourth degree. Ferrari did just
that, and in 1545 Cardano published his Latin treatise on algebra, Ars Magna
(The Great Art), which included a combination of Tartaglia’s and Ferrari’s works
in cubic and quartic equations.

Who originated Cartesian coordinates?

Cartesian coordinates are a way of finding the location of a point using distances from
perpendicular axes. (For more information about coordinates, see “Geometry and
Trigonometry.”) The first steps toward such a coordinate system were suggested by
French philosopher, mathematician, and scientist René Descartes (1596-1650; in
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Latin, Renatus Cartesius); he was the first to publish a work explaining how to use
coordinates for finding points in space. Around the same time, Pierre de Fermat devel-
oped the same idea independently (see below). Both Descartes’s and Fermat’s ideas
would lead to what is now known as Cartesian coordinates.

Descartes is also considered by some to be the founder of analytical geometry. He
contributed to the ideas involved in negative roots and exponent notation, explained
the phenomenon of rainbows and the formation of clouds, and even dabbled in psy-
chology.

Who was Pierre de Fermat?

French mathematician Pierre de Fermat (1601-1665) made many contributions to
early methods leading to differential calculus; he was also considered by some to be
the founder of modern number theory (see “Math Basics”) and did much to establish
coordinate geometry, eventually leading to Cartesian coordinates. He supposedly
proved a theorem eventually called “Fermat’s Last Theorem.” It states that the equa-
tion x* + y* = 2" has no non-zero integer solutions for x, y, and z when n is greater
than 2. But there is no proof of Fermat’s “proof,” making most mathematicians skepti-
cal about his supposed discovery.

Was Fermat’s last theorem finally solved?

Just before the end of the 19th century, German industrialist and amateur mathemati-
cian Paul Wolfskehl, on the brink of suicide, began to explore a book on Fermat’s Last
Theorem. Enchanted with the numbers, he forgot about dying and instead believed
that mathematics had saved him. To repay such a debt, he left 100,000 marks (about
$2 million in today’s money) to the Goéttingen Academy of Science as a prize to anyone
who could publish the complete proof of Fermat’s Last Theorem. Announced in 1906
after Wolfskehl’s death, thousands of incorrect proofs were turned in, but no true
proof was offered.

But people kept trying—and failing. Fermat’s Last Theorem was finally solved in
1994 by English mathematician Andrew John Wiles (1953-). Wiles was offered the
Wolfskehl prize in 1997. By that time, the original $2 million had been affected by not
only hyperinflation but also the devaluation of the mark, reducing its value to
$50,000. But for Wiles, it didn’t matter; his proving the Last Theorem had been a
childhood dream.

It is interesting to note that some mathematicians do not believe Wiles uncovered
the true proof of Fermat’s Last Theorem. Instead, because many of the mathematical
techniques used by Wiles were developed within recent decades (some even by Wiles
himself), Wiles’s proof—although a masterpiece of mathematics—could not possibly
be the same as Fermat’s. Still other mathematicians wonder about Fermat’s words in
claiming that he had found a proof. Was it really a proven or flawed proof he was talk-



ing about? Or was he such a genius that
he took the proof he was able to see, in
his time, to his grave? Like so many mys-
teries of history, we may never know.

Who began the mathematical study

of probability?

French scientist and religious philoso-
pher Blaise Pascal (1623-1662) is known
not only for the study of probability but
for many other mathematically oriented
advances, such as a calculation machine
(invented at age 19 to help his father with
tax calculations, but it performed only
additions), hydrostatics, and conic sec-
tions. He is also credited (along with Fer-
mat) as the founder of modern theory of
probability. (For more information about

Seventeenth-century scientist Blaise Pascal was the
founder of mathematical probability, as well as other
1 113 . : ”

prObablhty’ see Applled Mathematics. ) achievements, such as devising one of the first cal-

culating machines.

Who was Sir Isaac Newton?

Sir Isaac Newton (1642-1727) was an English mathematician and physicist considered
by some to be one of the greatest scientists who ever lived. He was credited with
inventing differential calculus in 1665 and integral calculus the following year. (For
more information about calculus, see “Mathematical Analysis.”) The list of his
achievements—mathematical and scientific—does not end there: He is also credited
as the discoverer of the general binomial theorem, he worked on infinite series, and he
even made advancements in optics and chemistry.

Some of Newton’s greatest contributions include the development of the law of
universal gravitation, rules of planetary orbits, and sundry other astronomical con-
cepts. By 1687, Newton had written one of his most famous books, The Principia or
Philosophiae naturalis principia mathematica (The Mathematical Principles of Nat-
ural Philosophy), which is often called the greatest scientific book ever written. In it
Newton presents his theories of motion, gravity, and mechanics. Although he had
developed calculus earlier, he still used the customary classical geometry to work out
physical problems within the book.

Who was Baron Gottfried Wilhelm Leibniz?

A contemporary of Isaac Newton, German philosopher and mathematician Baron Got-
tfried Wilhelm Leibniz (1646-1716) is considered by some to be a largely forgotten
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mathematician, although his contributions to the field were just as important as New-
ton’s in many ways. He is often called the founder of symbolic logic; he introduced the
terms coordinate, abscissas, and ordinate for the field of coordinate geometry; he
invented a machine that could do multiplication and division; he discovered the well-
known series for pi divided by 4 (rt/4) that bears his name; and he independently devel-
oped infinitesimal calculus and was the first to describe it in print. Because his work
on calculus was published three years before Isaac Newton’s, Leibniz’s system of nota-
tion was universally adopted.

Who was considered the first statistician?

English statistician and tradesman John Graunt (1620-1674) was the first true statis-
tician and wrote the first book on statistics, although statistics in a simpler form was
known long before that. Graunt, a draper by profession, was the first to use a compila-
tion of data, which in this case involved the records of bills of mortality, or the records
of how and when people died in London from 1604 to 1661. In his Natural and Politi-
cal Observations Made upon the Bills of Mortality, he determined certain inclinations,
such as more boys were born than girls, women tend to live longer than men, etc. He
also developed the first mortality table, which showed how long a person might expect
to live after a certain age, a concept very familiar to us today, especially in fields such
as insurance and health.

Why was the Bernoulli family important to mathematics?

The Bernoulli (also seen as Bernouilli) family of the 17th and 18th centuries is syn-
onymous with mathematics and science. One of the developers of ordinary calculus,
calculus of variations, and the first to use the word “integral” was Jacob Bernoulli
(1654-1705; also known as Jakob, Jacques, or James). He also wrote about the theory
of probability, is often credited for developing the field of statistics, and discovered a
series of numbers that bear his name: the coefficients of the exponential series expan-
sion of x/(1 — e™).

Not to be outdone, his brother Johann (1667-1748; also known as Jean or John)
contributed to the field of integral and exponential calculus, was the founder of calcu-
lus of variations, and worked on geodesics, complex numbers, and trigonometry. His
son was not far behind: Daniel Bernoulli (1700-1782) was considered the first mathe-
matical physicist, publishing Hydrodynamica in 1738, which included his now
famous principle named in his honor (Bernoulli’s principle); and he brought out two
ideas that were ahead of his time by many years: the law of conservation of energy and
the kinetic-molecular theory of gases.

The Bernoulli legacy did not end there, with family members continuing to make
great mathematical and scientific contributions. There were two Nicolaus Bernoullis:
one, the brother of Jacob and Johann (1662-1716), was professor of mathematics at St.



What was in Joseph-Louis Lagrange’s letter
to Jean le Rond d’Alembert?

talian-French astronomer and mathematician Comte Joseph-Louis Lagrange

(1736-1813) made significant discoveries in mathematical astronomy, includ-
ing many functions, theories, etc. that bear his name (for example, Lagrange
point, Lagrange’s equations, Lagrange’s theorem, Lagrangian function). His
mentor was none other than French scientist Jean le Rond d’Alembert (1717—
1783), a physicist who expanded on Newton’s laws of motion, contributed to the
field of fluid motion, described the regular changes in the Earth’s axis, and was
the first to use partial differential equations in mathematical physics. He even
had time to edit, along with French philosopher Denis Diderot (1713-1784), the
Encyclopedié, a 17-volume encyclopedia of scientific knowledge published from
1751 to 1772.

Apparently, living in the years of such mathematical enlightenment had its
drawbacks. In 1781 Lagrange wrote a letter to d’Alembert about his greatest fear:
that the field of mathematics had reached its limit. At that point in time,
Lagrange believed everything mathematical had been discovered, uncovered,
and calculated. Little did he realize that mathematics was only in its infancy.

Petersburg, Russia’s Academy of Sciences; the other, the son of Johann and brother of
Daniel (1695-1726), was also a mathematician. Another Johann Bernoulli (1710-1790)
was another son of Johann (and brother of Daniel), who succeeded his father in the chair
of mathematics at Basel, Switzerland, and also contributed to physics. The younger
Johann also had a son named Johann (1746-1807), who was astronomer royal in Berlin
and also studied mathematics and geography. Finally, Jacob Bernoulli (1759-1789), yet
another son of the younger Johann, succeeded his uncle Daniel in teaching mathematics
and physics at St. Petersburg, but he met an untimely death by drowning.

Who was one of the most prolific mathematicians who ever lived?

Swiss mathematician Leonhard Euler (1707-1783) is considered to be one of the most
prolific mathematicians who ever lived. In fact, his accomplishments are beyond the
scope of this text. Suffice it to say that his collected works number more than 70 vol-
umes, with contributions in pure and applied mathematics, including the calculus of
variations, analysis, number theory, algebra, geometry, trigonometry, analytical
mechanics, hydrodynamics, and the lunar theory (calculation of the motion of the
Moon). Euler was one of the first to develop the methods of the calculus on a wide scale.
His most famous book, Elements of Algebra, rapidly became a classic; and he wrote a
geometry textbook (Yale University was the first American college to use the text).
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Although half-blind for much of his life—and totally blind for his last 17 years—
he had a near-legendary skill at calculation. Among his discoveries are the differential
equation named for him (a formula relating the number of faces, edges, and vertices of
a polyhedron, although Euler’s formula was discovered earlier by René Descartes); and
a famous equation connecting five fundamental numbers in mathematics. Like many
in the Bernoulli family, Euler eventually worked at the Academy of Sciences in St.
Petersburg, Russia, a center of learning founded by Peter the Great.

Who was Karl Friedrich Gauss?

German mathematician, physicist, and astronomer Karl Friedrich Gauss (1777-1855;
also seen as Johann Carl [or Karl] Friedrich Gauss) was considered one of the greatest
mathematicians of his time; some have even compared him to Archimedes and Newton.
His greatest mathematical contributions were in the fields of higher arithmetic and num-
ber theory. He discovered the law of quadratic reciprocity, determined the method of least
squares (independently of French mathematician Adrien-Marie Legendre [1752-1833]),
popularized the symbol “i” as the square root of negative 1 (although Euler first used the
symbol), did extensive investigations in the theory of space curves and surfaces, made
contributions to differential geometry, and much more. In 1801, after the discovery (and
subsequent loss) of the first asteroid, Ceres, by Giuseppe Piazzi, he calculated the object’s
orbit with little data; the asteroid was found again thanks to his calculations. He further
calculated the orbits of asteroids found over the next few years.

When was non-Euclidean geometry first announced?

Non-Euclidean geometry—or a system of geometry different from that developed by
Euclid (see p. 17)—was first announced by Russian mathematician Nikolai Ivanovich
Lobachevski (1792-1856; also seen as Lobatchevsky) in 1826. This idea had already
been independently developed by the Hungarian Janos (or Johann) Bolyai (1802-1860)
in 1823 and by Karl Friedrich Gauss (1777-1855) in 1816, but Lobachevski was the first
to publish on the subject.

In 1854 German mathematician Georg Friedrich Bernhard Riemann (1826-1866)
presented several new general geometric principles. His suggestion of another form of
non-Euclidean geometry further established this new way of looking at geometry. Rie-
mann was also responsible for presenting the Riemann hypothesis (or zeta function), a
complex function that remains an unsolved issue in mathematics today. (For more
information about geometry and Riemann, see “Geometry and Trigonometry.”)

Who developed the first ideas on symbolic logic?

English mathematician George Boole (1815-1864) was the first to develop ideas on
symbolic logic, that is, the use of symbols to represent logical principles. He proposed



Why was non-Euclidean geometry important to Albert Einstein?

on-Euclidian geometry, especially the form suggested by Bernhard Rie-

mann, enabled Albert Einstein (1879-1955) to work on his general relativity
theory (1916), showing that the true geometry of space may be non-Euclidean.
(For more information about mathematics and Einstein, see “Math in the Physi-
cal Sciences.”)

this in his treatise, An Investigation of the Laws of Thought, on Which Are Founded
the Mathematical Theories of Logic and Probabilities (1854). Today, this is called
Boolean algebra. (For more information about Boole, see “Algebra”; for more informa-
tion about symbolic logic, see “Foundations of Mathematics.”)

MODERN MATHEMATICS

Who first developed set theory?

German mathematician George (Georg) Ferdinand Ludwig Philipp Cantor
(1845-1918) was not only known for his work on transfinite numbers, but also for his
development of set theory, which is the basis of modern mathematical analysis (for
more information on set theory, see “Foundations of Mathematics”). His Mathematis-
che Annalen was a basic introduction to set theory. Unlike most long evolutionary his-
tories of mathematical subjects, Cantor’s set theory was his creation alone. In the late
19th century, Cantor also developed the Continuum Hypothesis. He realized that
there were many different sized infinities, further conjecturing that two particular
infinities constructed by different processes were the same size.

What was the Principia Mathematica?

In 1910 the first volume of the Principia Mathematica was published by Welsh mathe-
matician and logician Bertrand Arthur William Russell (1872-1970) and English
mathematician and philosopher Alfred North Whitehead (1861-1947). This book was
an attempt to put mathematics on a logical foundation, developing logic theory as a
basis for mathematics. It gave detailed derivations of many major theorems in set the-
ory, examined finite and transfinite arithmetic, and presented elementary measure
theory. The two mathematicians published three volumes, but the fourth, on geome-
try, was never completed.

On their own, both men did a great deal to advance mathematics, too. Russell dis-
covered the Russell paradox (see below), introduced the theory of types, and popular-
ized first-order predicate calculus. Russell’s logic consisted of two main ideas: that all
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What was Bertrand Russell’s “great paradox”?

In the early 1900s, Bertrand Russell discovered what is known as the “great
paradox” as it applies to the set of all sets: The set either contains itself or it
does not, but if it does, then it does not, and vice versa. The reason that this
paradox became so important was its affect on mathematics. It created problems
for those people who tried to base mathematics on logic, and it also indicated
that something was wrong with Georg Cantor’s intuitive set theory, which at
that time was one of the backbones of set theory. (For more about Russell and
set theory, see “Foundations of Mathematics.”)

mathematical truths can be translated into logical truths (or that the vocabulary of
mathematics constitutes a proper subset of the vocabulary of logic) and that all math-
ematical proofs can be recast as logical proofs (or that the theorems of mathematics
constitute a proper subset logical theorems).

Whitehead excelled not only in mathematics and logic but also in the philosophy
of science and study of metaphysics. In mathematics, he extended the known range of
algebraic procedures, and he was a prolific writer. In philosophy, he criticized the tra-
ditional theories for their lack of integrating the direct relationship between matter,
space, and time; thus, he created a vocabulary of his own design, which he called the
“philosophy of organism.”

Who was Kurt Godel?

For about a hundred years, mathematicians such as Bertrand Russell were trying to
present axioms that would define the entire field of mathematics on an axiomatic
basis. Austrian-American mathematician and logician Kurt Godel (1906-1978) was
the first to suggest that any formal system strong enough to include the laws of math-
ematics is either incomplete or inconsistent; this was called “Godel’s Incompleteness
Theorem.” Thus, axioms could not define all of mathematics.

Godel also stated that the various branches of mathematics are based in part on
propositions that are not provable within the system itself, although they may be proved
by means of logical (metamathematical) systems external to mathematics. In other
words, nothing is as simple as it seems; and, interestingly enough, Godel’s idea also
implies that a computer can never be programmed to answer all mathematical questions.

What did David Hilbert propose in 1900?

In 1900 German mathematician David Hilbert (1862—1943) proposed 23 unsolved
mathematical problems for the new century, most of which only proved to bring up



What was the “Golden Age of Logic”?

urt Godel’s work led to what is often described as the Golden Age of Logic.
Spanning the years from about 1930 to the late 1970s, it was a time when
there was a great deal of work done in mathematical logic. From the beginning,
mathematicians broke into many camps that worked on various phases of logic
(for more information about logic, see “Foundations of Mathematics”), including:

Proof theory—In which the mathematical proofs started by Aristotle and
continued by Boole (see p. 30) were extensively studied, resulting in branches of
this mathematics being applied to computing (including artificial intelligence).

Model theory—In which mathematicians investigated the connection
between the truth in a mathematical structure and propositions about that
structure.

Set theory—In which a breakthrough in 1963 showed that certain mathe-
matical statements were undeterminable, a direct challenge to the major set
theories of the time. This showed that Cantor’s Continuum Hypothesis (see p.
31) is independent of the axioms of set theory, or that there are two mathemati-
cal possibilities: one that says the continuum hypothesis is true, one that says it
is false.

Computability theory—In which mathematicians worked out the abstract
theorems that would eventually help lead to computer technology. For example,
English mathematician Alan Turing proved an abstract theorem that established
the theoretical possibility of a single computing machine programmed to com-
plete any computation. (For more information about Turing and computers, see
p. 34 and “Math in Computing.”)

other problems. By the 1920s Hilbert gathered many mathematicians—called the for-
malists—to prove that mathematics was consistent. But all did not go well as mathe-
matical complications set in. By 1931 Kurt Godel’s Incompleteness Theorem dashed
any more efforts by the formalists by proving that mathematics is either inconsistent
or incomplete. (For more about Hilbert, see “Foundations of Mathematics.”)

When was quantum mechanics developed?

There was not one major year in which quantum mechanics was developed, or even
one major scientist who proposed the idea. This modern theory of physics evolved
over about 30 years, with many scientists contributing to it. Beginning about 1900
Max Planck proposed that energies of any harmonic oscillator (such as the atoms of a
black body radiator) are restricted to certain values. Mathematics came into play here,
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too, with each value an integral multiple of a basic, minimum value. Planck developed
the equation E = hv (or h times “nu”), in which E (the energy of the basic quantum)
is directly proportional to the v (the frequency of the oscillator) multiplied by h, or
Planck’s constant (6.63 X 1073* joule-second).

From there, mainly with the use of rigorous mathematics, others expanded or
added to Planck’s idea, including German scientist Albert Einstein (1879-1955),
who explained the photoelectric effect; New Zealand-born British physicist Ernest
Rutherford (1871-1937) and Danish physicist Neils Bohr (1885-1962), who
explained both atomic structure and spectra; Austrian physicist Erwin Schrodinger
(1887-1961), who developed wave mechanics; and German physicist Werner Karl
Heisenberg (1901-1976), who discovered the uncertainty principle. Out of these
studies came quantum mechanics (in the 1920s), quantum statistics, and quantum
field theory. Today, quantum mechanics and Einstein’s theory of relativity form the
foundation of modern physics. These theories continually change or are modified
as we get closer to understanding more about the physics—and mathematics—of
our universe.

Who was Alan Turing?

British mathematician Alan Mathison Turing (1912-1954) was the first person to pro-
pose the idea of a simple computer. Called the Turing machine, its operation was lim-
ited to reading and writing symbols on tape, moving the tape to the left or right to
read the symbols one at a time. This invention is often considered the start of the
computer age. In fact, the definition of the word “computable” is a problem that can
be solved by a Turing machine. Turing was also instrumental in interpreting and deci-
phering encrypted German messages using the Enigma cipher machine. (For more
information on computers, see “Math in Computing.”)

What is chaos theory?

Chaos theory is one of the “newest” ideas in mathematics. Developed in the last half of
the 20th century, it affects not only math, but also physics, geology, biology, meteorol-
ogy, and many other fields. Modern ideas about chaos began when theorists in various
scientific disciplines started to question the linear analysis used in classical applied
mathematics, most of which presumes an orderly periodicity that rarely occurs in
nature. In the search to discover regularities, the idea of disorder had been ignored. To
overcome this problem, chaos theorists developed deterministic, nonlinear dynamic
models that explain irregular, unpredictable behavior. By 1961, American meteorolo-
gist Edward Norton Lorenz (1917-) noticed that small variations in the initial values
of variables in his primitive computer weather model resulted in major divergent
weather patterns. His discovery of a simple mathematical system with chaotic behav-
ior led to the new mathematics of chaos theory.



Chaos theory recognizes the unpredictability of life, including the world’s highly complex weather system, which
can be influenced by a myriad of factors ranging from changes in temperature and humidity to alterations in
geology and agricultural development. Taxi/Getty Images.

The use of chaos theory has enabled scientists and mathematicians to reveal the
structure in aperiodic, unpredictable dynamic systems. For example, it has been used
to examine crystal growth, the expansion of pollution plumes in water and in the air,
and even to determine the formation of storm clouds. One of the reasons chaos theory
has come to the forefront of science and mathematics is because of advancements in
computers; high-end computers allow for a plethora of variables to enter into the
complex chaos equations.

Who invented catastrophe theory?

Catastrophe theory—or the study of gradually changing forces that lead to so-called
catastrophes (or abrupt changes)—was popularized by French mathematician René
Thom (1923-2002) in 1972. Unable to use differential calculus in certain situations,
Thom used other mathematical treatments of continuous action to produce a discon-
tinuous result. Although it is not as popular as it once was, it is often used in biologi-
cal and optical applications.

Who is Benoit Mandelbrot?

Benoit B. Mandelbrot (1924-) is the Polish-born, French mathematician who invented
a branch of mathematics called fractal geometry, which is designed to find order in
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Why is there no Nobel Prize for mathematics?

he Nobel Prizes were established at the bequest of Swedish chemical engi-

neer Alfred Bernhard Nobel (1833-1896), the discoverer of dynamite. First
awarded in 1901, the Nobel Prizes honor innovators in the fields of chemistry,
physics, physiology or medicine, literature, and peace; a prize in economics was
added in 1969, but there is no award for mathematics.

The lack of a mathematics prize has many stories attached, including one
that states that Nobel’s wife jilted him for Norwegian mathematician Magnus
Gosta Mittag-Leffler, a notion made less plausible by the fact that Nobel never
married. Most historians agree, however, that the reason has to do with Nobel’s
attitude toward mathematics: He simply did not consider mathematics suffi-
ciently practical. To fill the gap, the Fields Medal of the International Mathemat-
ical Congress was established in 1932; it has the equivalent prestige of the Nobel
with the limitation that it is only awarded for work done by mathematicians
younger than 40 years old, and the monetary value is a mere $15,000 in Canadi-
an dollars (or about $12,000 in U.S. dollars at press time).

But mathematics has not been left out of award-winning ceremonies. In 2003
Norway created the Abel Prize for mathematic achievement. Named after Norwe-
gian mathematician Niels Henrik Abel (1802-1829), who proved that solving fifth-
degree algebraic equations (quintics) is impossible, the award gives the winner a
prize of six million Norwegian kroners (about $935,000 in American currency).

apparently erratic shapes and processes. A largely self-taught mathematician who did
not like pure logical analysis, he was a pioneer of chaos theory, developing and finding
applications for fractal geometry. Unlike traditional geometry with its regular shapes
and whole-number dimensions, fractal geometry uses shapes found in nature with
non-integer (or fractal—thus the name) dimensions. For example, twigs, tree branch-
es, river systems, and shorelines can be examined using fractals. Today, fractals are
often applied not only to the natural world but also to the chemical industry, comput-
er graphics, and even the stock market.



MATHEMATICS
THROUGHOUT
HISTORY

THE CREATION OF ZERO AND PI

How did the concept of zero evolve over time?

The concept of zero developed because it was necessary to have a placeholder—or a
number that holds a place—to make it easier to designate numbers in the tens, hun-
dreds, thousands, etc. For example, the number 4,000 implies that the three places to
the right of the 4 are “empty”—with only the thousandths column containing any
value. Because zero technically means nothing, at first few people accepted the con-
cept of “nothing” between numbers. Not that all cultures ignored the possibility of
such an idea. For example, Hindu mathematicians, who wrote their math in verse,
used words similar to “nothing,” such as sunya (“void”) and akasa (“space”). It is
thought that the Babylonians were the first to have a placeholder in their numbering
system, but not a zero; instead, it appears they used other symbols, such as a double
hash-mark (also called wedges) as a placeholder.

Archeologists believe a crude symbol for zero probably started in Indochina or
India about the 7th century—and by the Mayans independently about a hundred years
earlier. While the isolated Mayans could not spread the idea of the zero, the Indians
seemed to have no problem. Around 650 CE, zero became a mathematically important
number in Indian mathematics—although the symbol was a bit different than today’s
zero. The familiar Hindu-Arabic symbol for zero—the open circle—would take several
more centuries to become more readily accepted. (For more about zero and Hindu-
Arabic symbols, see “History of Mathematics” and “Math Basics.”)

What is pi and why is it important?

Pi (pronounced “pie”; the symbol is x) is the ratio of the circumference to the diame-
ter of a circle. Another way of looking at pi is by the area of a circle: pi times the
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What are some special properties of zero?

here are many special properties of zero. For instance, you cannot divide by

zero (or have zero as the denominator [bottom number] of a fraction). This is
because, simply put, something cannot be divided by nothing. Thus, if some equa-
tion has a unit (usually a number) divided by zero, the answer is considered to be
“undefined.” But it is possible to have zero in the numerator (top number) of a
fraction; as long as it does not have zero in the denominator (called a legal frac-
tion), it will always be equal to zero. Other special properties of zero include: Zero
is considered an even number; any number ending in zero is considered an even
number; when zero is added to a number, the sum is the original number; and
when zero is subtracted from a number, the difference is the original number.

square of the length of the radius, or as it is often phrased “pi r squared.” There are
other ways to consider the value of pi: 2 pi (2m) in radians is 360 degrees; thus, pi radi-
ans is 180 degrees and 1/2 pi (1/2x) radians is 90 degrees. (For more about pi and radi-
ans, see “Geometry and Trigonometry.”)

What is the importance of pi? It was used in calculations to build the huge cathe-
drals of the Renaissance, to find basic Earth measurements, and it has been used to
solve a plethora of other mathematical problems throughout the ages. Even today it is
used in the calculations of items that surround everyone. To give just a few examples,
it is used in geometric problems, such as machining parts for aircraft, spacecraft, and
automobiles; in interpreting sine wave signals for radio, television, radar, telephones,
and other such equipment; in all areas of engineering, including simulations and the
modeling of a building’s structural loads, and even to determine global paths of air-
craft (airlines actually fly on an arc of a circle as they travel above the Earth).

What is the value of pi?

Pi is a number, a constant, and to 20 decimal places it is equal to 3.141592653589
79323846. But it doesn’t end there: Pi is an infinite decimal. In other words, it has an
infinite number of numbers to the right of the decimal point. Thus, no one will ever
know the “end” number for pi. Not that mathematicians will stop trying any time
soon. Today’s supercomputers continue to work out the value of pi, and to date,
researchers have taken the number to more than two hundred billion places. (For
more about pi and computers, see “Math in Computing.”)

Who first determined the value of pi?

People have been fascinated by pi throughout history. It was used by the Babylonians
and Egyptians; the Chinese thought it stood for one thousand years. Some even give



Advances in architecture during the European Renaissance would not have been possible without similar
advances in mathematics and a knowledge of the value of &t (pi). This cathedral in York, England, is a prime
example of what can be accomplished with mathematics. Taxi/Getty Images.

the Bible credit for mentioning the concept of pi (in which it apparently equaled 3): In
one Biblical version of I Kings 7: 23-26, it states “And he made a molten sea, ten
cubits from the one brim to the other: it was round all about, and his height was five
cubits: and a line of thirty cubits did compass it about.” The same verse is found in II
Chronicles 4: 2-5 in reference to a vessel (“sea”) made in the temple of Solomon,
which was built around 950 BCE.

No one truly knows the origins of pi, although many historians believe it was
probably figured out long ago. There are some clues as to its discovery, though. For
example, some people claim the Egyptian Rhind papyrus (also called Ahmes papyrus),
which was transcribed about 1650 BCE by Ahmes, an Egyptian scribe who claimed he
was copying a 200-year-old document, contains a notation that pi equals 3.16, which
is close to the real value of pi. (For more about the Rhind papyrus, see “History of
Mathematics.”)

But it was the Greeks who promoted the idea of pi the most: They were very
interested in the properties of circles, especially the ratio of a circle to its diameter.
In particular, Greek mathematician Archimedes (c. 287-212 BcE, Hellenic) computed
close limits of pi by comparing polygons inscribed in and circumscribed about a cir-
cle. He applied the method of exhaustion to approximate the area of a circle, which,
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Who first suggested the symbol for pi?

he symbol for pi (r) was used by English mathematician William Oughtred

(1575-1660) in 1647, to describe “periphery,” or the then-common term for
circumference. But the symbol also meant a number of other things, including a
point, a positive number, and various other representations. The symbol was
again used in 1697 by Scottish mathematician James Gregory (1638-1675), who
used it as m/r for the ratio of the circumference of a circle to its radius; but he
never truly wrote down his formulas containing pi. The modern use of &t didn’t
occur until 1706, when Welsh mathematician William Jones (1675-1749)
described it as “3.12159 andc. [sic] = &.” Even then, not everyone used it as a
standard symbol for pi. By 1737, Swiss mathematician Leonhard Euler (1707-
1783), one of the most prolific mathematicians who ever lived, adopted the sym-
bol in his work, making  a standard notation since that time.

in turn, led to a better approximation of pi (;t). Through his iterations, he determined
that 223/71 < & < 22/7; the average of his two numbers equals 3.141851 (and so on).
(For more about Archimedes, see “History of Mathematics” and “Geometry and Trig-
onometry.”)

How was the value of pi determined arithmetically?

One of the earliest mathematical formulas for pi was determined by English mathe-
matician John Wallis (1616-1703), who wrote the notation as:

2/m=(13.35.5.7....)/ (2.2.4.4.6.6. ...)

Another more commonly recognized notation for pi is often attributed to German
philosopher and mathematician Baron Gottfried Wilhelm Leibniz (1646-1716), but it
is more likely the work of Scottish mathematician James Gregory (1638-1675):

W4=1-13+15-17+ ...

Both are amazing examples of something that was not only figured out using geo-
metric methods but also arithmetic methods.

What are the measurements of a circle using pi?

There are many measurements of a circle. The perimeter of a circle is called the cir-
cumference; to calculate it, multiply pi (x) times the diameter, or ¢ = (nd), or pi ()
times twice the radius, (¢ = 2mr). The area (a) of a circle is calculated by multiplying
pi () times the radius squared, or a = mr2.



When did people first start using measurements?

o one knows for certain the who, where, or when of the first use of measure-

ments. No doubt people developed the first crude measurement systems out
of necessity. For example, knowing the height of a human, versus the height of a
lion, versus the height of the grass in which a human hid were probably some of
the first (intuitive and necessary) measurements.

The first indications of measurements being used date back to around 6000
BCE in what today encompasses the area from Syria to Iran. As populations grew
and the main source of food became farmland rather than wild game, new ways
of calculating crops for growing and storage became necessary. In addition, in
certain cultures during times of plenty, each person—depending on their status
(from adult men who received the most, to women, children, and slaves who
were given less)—received a specific measurement of food. During a famine, in
order to stretch supplies, a certain minimal measurement of food was divided
between each person. It is thought that the first true measuring was done by
hand—in particular, measuring grains by the handful. In fact, the half-pint, or
the contents of two hands cupped together, may be the only volume unit with a
natural explanation.

DEVELOPMENT OF
WEIGHTS AND MEASURES

What is measurement?

Measurement refers to the methods used to determine length, volume, distance, mass
(weight), or some other quantity or dimension. Each measurement is defined by spe-
cific units, such as inches and centimeters for length, or pounds and kilograms for
weight. Such measurements are an integral part of our world, from their importance
in travel and trade, to weather forecasting and engineering a bridge.

Is measurement tied to mathematics?

Yes, measurement is definitely tied to mathematics. In particular, the first steps
toward mathematics was using units (and eventually numbers) to describe physical
quantities. There had to be a way to add and subtract the quantities, and most of those
crude “calculations” were based on fundamental mathematics. For example, in order
to trade horses for gold, merchants had to agree on how much a certain amount of
gold (usually as weight) was worth, then translate that weight measurement into their
barter system. In other words, “x” amount of gold would equal “y” amount of horses.
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The advent of agriculture in human civilization necessitated the development of mathematical concepts so that
farmers could better predict times to plant and harvest. Gallo Images/Getty Images.

What are some standard measurement units and their definitions?

For a helpful list of standard measurement units and systems for converting them to
other types of units, see Appendix 1 in the back of this book.

Upon what system were ancient measurements based?

Initially, people used different measurement systems and methods depending on
where they lived. Most towns had their own measurement system, which was based on
the materials the residents had at hand. This made it difficult to trade from region to
region.

Measurements eventually became based on familiar and common items. But
that did not mean they were accurate. For example, length measurements were
often based on parts of the human body, such as the length of a foot or width of the
middle finger; longer lengths would be determined by strides or distances between
outstretched arms. Because people were of different heights and body types, this
meant the measurements changed depending on who did the measuring. Still, they
were close enough for the needs at the time. Even longer lengths were based on
familiar sights. For example, an acre was the amount of land that two oxen could
plow in a day.



What is the historical significance of
the barleycorn in measurement?

The barleycorn (just a grain of barley)
definitely had a significant historical role
in determining the length of an inch and
the English foot (for more about the inch
and foot, see below). In addition, in tradi-
tional English law, the various pound
weights all referred to multiples of the
“grain”: A single barleycorn’s weight
equaled a grain, and multiples of a grain
were important in weight measurement.
Thus, some researchers believe the lowly
barleycorn was actually at the origin of
both weight and distance units in the

Grains of barley, a common crop that was easy to
obtain, were a convenient but not very accurate
English system. standard to use for measuring items in England
before better standards were developed. Taxi/
Getty Images.

What were some early units used for
calculating length?

The earliest length measurements reach back into ancient time, and it is a convoluted
history. Some of the earliest measurements of length are the cubit, digit, inch, yard,
mile, furlong, and pace. One of the earliest recorded length units is the cubit. It was
invented by the Egyptians around 3000 BCE and was represented by the length of a
man’s arm from his elbow to his extended fingertips. Of course, not every person has
the same body proportions, so a cubit could be off by a few inches. This was something
the more precision-oriented Egyptians fixed by developing a standard royal cubit.
This was maintained on a black granite rod accessible to all, enabling the citizenry to
make their own measuring rods fit the royal standard.

The Egyptian cubit was not the only one. By 1700 BCE the Babylonians had
changed the measurement of a cubit, making it slightly longer. In our measurement
standards today, the Egyptian cubit would be equal to 524 millimeters (20.63 inches),
and the Babylonian cubit (cubit II) would be equal to 530 millimeters (20.87 inches;
the metric unit millimeters is used here, as it is an easier way to see the difference
between these two cubits).

As the name implies, a digif was measured by the width of a person’s middle finger
and was considered the smallest basic unit of length. The Egyptians divided the digit
into other units. For example, 28 digits equaled a cubit, four digits equaled a palm,
and five digits equaled a hand. They further divided three palms (or 12 digits) into a
small span, 14 digits (or a half cubit) into a large span, and 24 digits into a small cubit.
To get smaller measurements than a digit, the Egyptians used fractions.
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Over time, the measurement of an
inch was all over the measurement map.
For example, one inch was once defined as
the distance from the tip to the first joint
on a man’s finger. The ancient civilization
of the Harappan in the Punjab used the
“Indus inch”; based on ruler markings
found at excavation sites, it measured, in
modern terms, about 1.32 inches (3.35
centimeters; see below for more about the
Harappan). The inch was defined as one-
thirty-sixth of King Henry I of England’s
arm in the 11th century, and by the 14th
century, King Edward II of England ruled
A cubit was once a common standard of measurement. that one inch equaled three grains of bar-
One cubit equals the distance from a person’s finger- leycorn placed end to end lengthwise. (See

tips to the elbow. Of course, because different people box on p. 46 for more about both kings.)
have different body sizes, the length of a cubit would

vary from person to person. Stone/Getty Images. Longer measurements were often

measured by such units as yards, fur-
longs, and miles in Europe. At first, the yard was the length of a man’s belt (also called
a girdle). The yard became more “standard” for a while, when it was determined to be
the distance from King Henry I's nose to the thumb of his outstretched arm. The term
mile is derived from the Roman mille passus, or “1,000 double steps” (also called
paces). The mile was determined by measuring 1,000 double steps, with each double
step by a Roman soldier measuring five feet. Thus, 1,000 double steps equaled a mile,
or 5,000 feet (1,524 meters). The current measurement of feet in a mile came in 1595,
when, during the reign of England’s Queen Elizabeth I, it was agreed that 5,280 feet
(1,609 meters) would equal one mile. This was mainly chosen because of the populari-
ty of the furlong—eight furlongs equaled 5,280 feet.

Finally, the pace was once attached to the Roman mile (see above). Today, a pace
is a general measurement, defined as the length of one average step by an adult
human, or about 2.5 to 3 feet (0.76 to 0.19 meters).

What were the ancient definitions of a foot?

Not all feet (or the foot) are created equal. The term foof in measurement has had a
long history, with many stories claiming the origin-of-the-first-foot status. In fact, it
seems as if the foot has ranged in size over the years—from 9.84 to 13.39 inches (25 to
34 centimeters)—depending on the time period and/or civilization.

For example, the ancient Harappan civilization of the Punjab (from around 2500 to
1700 BCE) used a measurement interpreted by many to represent a foot—a very large



What was the first civilization to use a
decimal system of weights and measures?

etween 2500 and 1700 BCE, the Harappa (or Harappan) civilization of the

Punjab—now a province in Pakistan—developed the earliest known decimal
system of weights and measures (for more about decimals, see “Math Basics”).
The proof was first found in the modern Punjab region, where cubical (some say
hexahedral) weights in graduated sizes were uncovered at Harappa excavations.

Archaeologists believe that these weights were used as a standard Harappan
weight system, represented by the ratio 1:2:4:8:16:32:64. The small weights have
been found in many of the regional settlements and were probably used for trade
and/or collecting taxes. The smallest weight is 0.8375 grams (0.00185 pounds),
or as measured by the Harappa, 0.8525; the most common weight is approxi-
mately 13.4 grams (0.02954 pounds), or in Harappa, 13.64, the 16th ratio. Some
larger weights represent a decimal increase, or 100 times the most common
weight (the 16th ratio). Other weights correspond to ratios of 0.05, 0.1, 0.2, 0.5,
1,2, 5, 10, 20, 50, 100, 200, and 500.

There is also evidence that the Harappan civilization had some of the most
advanced length measurements of the time. For example, a bronze rod found at
an excavation was marked in units of precisely 0.367 inch (0.93 centimeter).
Such a measuring stick was perfect to plan roads, to construct drains for the
cities, and even to build homes. An ivory scale found at Lothal, once occupied by
the Harappan civilization, is the smallest division ever recorded on any measur-
ing stick yet found from the Bronze Age, with each division approximately
0.06709 inch (0.1704 centimeter) apart.

foot, at about 13.2 inches (33.5 centimeters; see above for more about the Harappan).
Around 1700 BCE, the Babylonians put their foot forward: A Babylonian foot was two-
thirds of a Babylonian cubit. There are even records from Mesopotamia and Egypt show-
ing yet another measurement system that included a foot of 11.0238 inches (300 mil-
limeters). This was also known as the Egyptian foot, and it was standard in Egypt from
predynastic times to the first millennium BCE. The Greek foot came close to today’s foot,
measuring about 12.1 inches (30.8 centimeters); a Roman foot measured in at 11.7
inches (29.6 centimeters). The list goes on, depending on the country and time period.

How was the standard foot determined?

Whatever the true story, the foot we are familiar with today is equal to 12 inches
(30.48 centimeters). The true standardization of the foot came late in the 19th centu-
ry, after the United States and Britain signed the “Treaty of the Meter.” In this treaty,
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Who developed the idea of a foot in measurement?

here is quite a mystery about who first developed the foot as a measurement

unit. One story, which most scholars believe is a legend, is that a foot was the
length of Charlemagne’s (742—-814) foot. Charlemagne (also known as Charles
the Great) was King of the Franks and Emperor of the Holy Roman Empire.
Standing at six feet four inches tall, he probably had a really big foot.

Still another story involves England’s King Henry I (1068-1135), in which
the length of an arm became important. Henry I ruled that the standard foot
would be one-third of his 36-inch-long arm. This thus became the origin of our
standardized unit of 12 inches to a foot, the inch being one thirty-sixth of a yard.
According to the Oxford English Dictionary, the first confirmed usage of the
word “foot” as a unit of measurement also occurred during the reign of Henry I.
In honor of his arm, he ordered that an “Iron Ulna” (the ulna being the longer,
inner bone in the forearm) be made. This iron stick represented the master stan-
dard yard for the entire kingdom.

But around 1324, in response to his subjects’ cries for an even more stan-
dard measurement, England’s King Edward II (1284-1327) changed things
again. Recognizing the “Iron Ulna” was not universally available, he declared
that “3 barleycorns, round and dry make an inch,” and that 12 inches (or 36 bar-
leycorns) would equal one foot.

It’s interesting to note that even shoe sizes were tied to King Edward IT and
barleycorns. He declared that the difference between one shoe size to the next
was the length of one barleycorn.

the foot was officially defined in terms of the new metric standards being adopted
overseas. In the United States, the Metric Act of 1866 further defined the foot as equal
to exactly 1200/3937 meter, or about 30.48006096 centimeters; this unit of measure-
ment is still used for geodetic surveying purposes in the United States, and is called
the survey foot. By 1959, the United States National Bureau of Standards redefined the
foot to equal exactly 30.48 centimeters, or about 0.999998 survey feet. This definition
was also adopted in Britain by the Weights and Measures Act of 1963; thus, a foot, or
30.48 centimeters, is also called an international foot.

What were some early measurements of weight?

Some of the early measurements of weight include the grain, pound, and fon. Ancient
peoples used stones, seeds, and beans to measure weight, but grain (such as wheat or
barleycorn) was a favorite. In fact, the grain (abbreviated “gr”) is still one of the small-
est units of weight used today (to compare, one pound equals 7,000 grains).



Why was the troy pound so
historically important to weight measurement?

One of the oldest English weight systems was based on the 12-ounce troy
pound. It was the basis by which coins were minted, and gold and silver
weighed for trade and commerce. (The troy pound equaled 5,760 grains, and thus,
in ounces, was 5,760/12 or 480 grains; 20 pennies weighed an ounce, and thus, a
pennyweight equaled 480/20 or 24 grains.) The troy pound—and the entire system
of connected weights—was used until the 19th century, mostly by jewelers and
druggists. One holdover of the troy ounce (a portion of the troy pound) is found in
today’s pharmaceutical market to measure certain drugs. It is also seen in the
financial markets, where it is used to interpret gold and silver prices.

The traditional pound as a unit of weight was used throughout the Roman
Empire. But like many other measurements over time, the number of ounces in a
pound seemed to shift and change. For example, the number of ounces in the Roman
pound was 12; European merchants used 16 ounces to the pound. Eventually, 16
ounces in a pound became standard (for more about ounces, see below).

Back in the 19th century, the Americans—who did not like the British larger
weights—decided that a hundredweight would equal 100 pounds (the British hun-
dredweight was 112). This meant a ton was equal to 20 hundredweight for the Ameri-
can ton (or the American’s short ton was 2,000 pounds), while the British long fon of
20 hundredweight was equal to 2,240 pounds. There were, of course, debates, but not
everyone disagreed with the American short ton. It became the favorite of British mer-
chants, who called it a cental. Eventually, the ton on the international market “went
metric,” and today a mefric ton is close to the original British long ton. It is equal to
1,000 kilograms, or approximately 2,204 pounds, and is officially called a fonne.
Although the International System (SI; see p. 50) standard uses tonne, the United
States government recommends using the metric ton.

Where did the pound (and its abbreviation, “Ib.”) originate?

The origin of the word “pound” comes from libra pondo, or “pound of weight.” The
common abbreviation for pound (lb.) originated from letters in the Latin word /ibra,
or balanced scales.

What is the difference between the various pounds and ounces?

The story behind the ounce is long and convoluted because historically people have
been dissatisfied with the unit. For example, in medieval times English merchants
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Gold bars are still measured using old-fashioned troy
ounces. Thus, a pound of gold is equal to 12 troy
ounces, not the usual 16 ounces per pound people

typically use to measure other weights. The Image
Bank/Getty Images.

were not happy with the troy pound, as it
was less than the commercial pound in
most of Europe. In response, the mer-
chants developed an even larger pound,
which was called the libra mercatoria, or
mercantile pound. But by 1300 the com-
plaints about the mercantile pound grew,
because 15 troy ounces (or 7,200 grains)
were easily divided by 15 and its divisors,
but this was not as convenient as dividing
by 12 troy ounces.

Soon, another type of pound was
born in English commerce: the 16-ounce
avoirdupois (roughly translated from the
Old French as “goods of weight”). Mod-
eled on a common Italian pound unit of
the late 13th century, the avoirdupois
pound weighed exactly 7,000 grains,
which is easily divided for use in sales and
trade. But because it was difficult to con-
vert between the troy and avoirdupois

units (the avoirdupois ounce is 7,000/16,
or 437.5 grains, and 1 grain equals 1/7,000 avoirdupois pound, or 1/5,760 troy or
apothecaries’ pound; the troy ounce is 5,760/12,480 grains, or 31.1035 grams in met-
ric), the standard soon shifted to using mostly the avoirdupois unit.

The avoirdupois is currently used in the United States and Britain. It is equal to
1/16th of a pound, or 28.3495 grams (in metric); the avoirdupois ounce is further
divided into 16 drams (or drachm). The troy ounce hasn’t been totally forgotten,
though. Today, it is used mainly as units for precious metals and drugs, where it is
often called the apothecaries’ ounce (with its subdivisions of the scruple, or 20 grains,
and the drachm, or 60 grains). In turn, the avoirdupois—our “ounce” for short—is
used for almost everything else.

What were some early measurements of volume in terms of the gallon?

The names of the traditional volume units are the names of standard containers. Until
the 18th century, the capacity of a container was difficult to accurately measure in
cubic units. Thus, the standard containers were defined by the weight of a particular
substance—such as wheat or beer—that the container could carry. For example, the
basic English unit of volume, or the gallon, was originally defined as the volume of
eight pounds of wheat. Other volumes were measured based on this gallon, depending
on the different standard sizes of the containers.



But like most measurements over time, not all gallons were alike. During the
American colonial period, the gallons from British commerce were based on dry and
liquid commodities. For dry, the gallon was one-eighth of a Winchester bushel
(defined by the English Parliament in 1696 as a cylindrical container 18.5 inches in
diameter by 8 inches deep), which held 268.8 cubic inches of material. It was also
called a “corn gallon” in England. For liquid, in England the gallon measurement was
based on Queen Anne’s wine gallon (also called the traditional British wine gallon),
which measured exactly 231 cubic inches. This is why volume measurements in the
United States include both the dry and liquid units, the dry units being about one-
sixth larger than the corresponding liquid units.

By 1824, the British weren’t as satisfied with the gallon divisions as the Ameri-
cans. In response, the British Parliament abolished all the traditional gallons and
established a system based on the Imperial gallon. 1t is still in use today, measuring
277.42 cubic inches, with the container holding exactly 10 pounds of water under spe-
cific (such as temperature and pressure) conditions.

What is a rate?

The rate is often used in measurement. It is defined as the comparison by division
(similar to a ratio). For example, when measuring miles or kilometers per hour in
your car, the rate equates the pairs of miles (kilometers) with hours. The translation
for “a rate of 65 miles per hour” is that for each hour one will travel 65 miles as long
as the speed remains the same for that hour.

What is accuracy in measurement?

Accuracy in measurement is based on relative error and number of significant digits.
Relative error is the absolute error divided by the calculated (or estimated) value. For
example, if a person expects to spend $10 per week at the local espresso bar, but he or
she actually spends $12.50, the absolute error is 12.50 — 10.00 = 2.50; the relative
error then becomes (2.50/10) = 0.25 (to find out the percent, multiply by 100, or 0.25
X 100 = 25 percent of the original estimate).

Significant digits refers to a certain decimal place that determines the amount of
rounding off to take place in the measurement. In most cases, this means that there
are more numbers to the right of the decimal point. But beware. Accuracy in measure-
ment does not mean the actual measurement taken was accurate. It only means that if
there are a large number of significant digits, or if the relative error is low, the mea-
surement is more accurate.

What are some common modern measurement systems?

There are several measurement systems in use today. The English customary system
is also known as the standard system, U.S. customary system (or units), or English

AYOLSIH LNOHDNOYHL SOILVINIHLIVIN

49



50

Who was Adrien-Marie Legendre?

drien-Marie Legendre (1752-1833) was a brilliant French mathematician

and physicist. He is known for his studies of ellipsoids (leading to what we
now call the Legendre functions) and celestial mechanics, and he worked on the
orbits of comets. In 1787 he helped measure Earth using a triangulation survey
between the Paris and Greenwich observatories. In 1794 Legendre published
Eléements de géométrie, an elementary text on geometry that would essentially
replace Euclid’s EFlements and would remain the leading text on the topic for
close to a century. Finally, Legendre also had an important connection to mea-
surement: In 1791 he was appointed to the committee of the Académie des Sci-
ences, which was assigned the task of standardizing weights and measures.

units. It actually consists of two related systems: the U.S. customary units and the
British Imperial System. The background of the units of measurement is historically
rich and includes modern familiar terms, such as foot, inch, mile, and pound, as well
as less well-known units, such as span, cubit, and rod. The official policy of the United
States government is to designate the metric system as the preferred system for trade
and commerce, but customary units are still widely used on consumer products and
in industrial manufacturing.

In order to link all systems of weights and measures, both metric and non-metric,
there is a network of international agreements supporting what is known as the Infer-
national System of Units. It is abbreviated as SI (but nof S.1.), in reference to the first
two initials of its French name, Systeme International d’Unités. It was developed from
an agreement signed in Paris on May 20, 1875, known as the Treaty of the Meter (Con-
vention du Metre). To date, 48 nations have signed the treaty. The SI is maintained by
a small agency in Paris, the International Bureau of Weights and Measures (BIPM, or
Bureau International des Poids et Mesures). Because there is a need to change or
update the precision of measurements over time, the SI is updated every few years by
the international General Conference on Weights and Measures (or CGPM, or Con-
férence Générale des Poids et Mesures), the two most recent meetings being in 2003
and 2007. SI is also referred to as the metric system, which is based on the meter. The
word can also be used in mathematics (for example, metric space) or even computing
(fontmetric file). It is often referred to incorrectly as “metrical.” (See below for more
about the metric system.)

What are the base Sl units?

There are several base units at the heart of the International System (SI). The follow-
ing lists the seven base units:



What countries have not officially adopted the metric system?

To date, there are only three countries that have not officially adopted the met-
ric system: the United States, Liberia (western Africa), and Myanmar (former-
ly Burma, in Southeast Asia). All other countries—and the scientific world as a
whole—have either used the metric system for many years or have adopted the
measurement system in the past several decades. It’s a bit of historical irony to
note that the United States has hung on to such measurements as the foot, the
standard measurement originated by the English who now use metric.

¢ meter (distance)

¢ kilogram (mass; related to weight)
¢ second (time)

e ampere (electric current)

¢ Kelvin (temperature)

¢ mole (amount of substance)

¢ candela (intensity of light)

Still other SI units—called SI derived units—are defined algebraically in terms of the
above fundamental units. All the base units are consistent with the metric system called
the MKS, or mks, system, which stands for meter, kilogram, and second. Another metric
system is the CGS, or cgs, system, which stands for centimeter, gram, and second.

What are some of the common metric/SI prefixes?

The common metric and SI prefixes have been around for a while, but some were only
recently added. In 1991, in order to apply standard units (SI units; see above) to a wide
range of phenomena (especially in the scientific world), the Nineteenth General Con-
ference on Weights and Measures lengthened the list to accommodate larger (and
smaller) metric numbers—with the list now reaching from yotta- to yocto-. The fol-
lowing lists the American system (the name for large numbers) and the corresponding
metric prefix and numerical equivalent (for comparison with prefixes and the power of
ten, see “Math Basics”):

Common Metric/SI Prefixes

American system metric prefix/symbol number
1 septillion yotta- / Y- 10%
1 sextillion zetta- / Z- 102!
1 quintillion exa- / E- 1018

1 quadrillion peta- / P- 1015
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Why is the word “centimillion” incorrect?

entimillion is a word sometimes incorrectly used to mean 100 million (108).

But the metric prefix “centi-” means 1/100, not 100. There are ways to name
this number: 100 million could be called a hectomillion; in the United States, it
could be called a decibillion.

American system metric prefix/symbol number
1 trillion tera- / T- 1012
1 billion giga- / G- 107

1 million mega- / M- 106

1 thousand kilo- / k- 103

1 hundred hecto- / h- 102
1ten deka- / da- 10

1 tenth deci- / d- 10!
1 hundredth centi- / c- 102
1 thousandth milli- / m- 1073
1 millionth micro-/ 10-6
1 billionth nano- / n- 102
1 trillionth pico-/ p- 10-12
1 quadrillionth femto- / f- 10°1
1 quintillionth atto- / a- 10-18
1 sextillionth zepto- / z- 10~
1 septillionth yocto-/ y- 10~

It is interesting to note that “deca-" is the recommended spelling by the Interna-
tional System (SI), but the United States National Institute of Standards and Technol-
ogy spells the prefix “deka-.” Thus, either one is considered by most references to be
correct. There are also spelling variations between countries; for example, in Italy,
hecto- is spelled etto- and kilo- is spelled chilo-. But the symbols remain standard
through all languages. As for other numbers in the metric system—such as 10° or
10-5)—there are no set names or prefixes.

Why are some prefix names different in measurements?

The main reason why a prefix name would differ has to do with pronunciation and
vowels: If the first letter of the unit name is a vowel and the pronunciation is difficult,
the last letter of the prefix is omitted. For example, a metric measurement of 100 ares
(2.471 acres) is a hectare (not hectoare) and 1 million ohms is a megohm (not



Is it possible to convert international units seen on such items
as vitamin bottles to milligrams or micrograms?

No, there is no direct way to convert international units (IU) to mass units,
such as milligrams. Most familiar to people who read vitamin and mineral
bottles, an IU has nothing to do with weight; it is merely the measure of a drug
or vitamin’s potency or effect. Although it is possible to convert some items’ IUs
to a weight measurement, there is no consistent number. This is because not all
materials weigh the same and the preparation of substances vary, making the
total weights of one preparation differ from another.

But there are some substances that can be converted, because for each sub-
stance there is an international agreement specifying the biological effect
expected with a dose of 1 IU. For example, for vitamins, 1 IU of vitamin E equals
0.667 milligrams (mg); 1 IU of Vitamin C is equal to 0.05 mg. In terms of drugs,
1 IU of standard preparation insulin represents 45.5 micrograms; 1 IU of stan-
dard preparation penicillin equals 0.6 micrograms.

megaohm). There are exceptions, though, especially if the resulting prefix and unit
sound fine, such as a milliampere. There are even times that another letter is added to
make it easier to roll off the tongue. For example, the letter “1” is added to the term for
1 million ergs, making it a megalerg, not a megaerg or megerg.

How did the metric system originate?

In 1791 the French Revolution was in full swing when the metric system was pro-
posed as a much needed plan to bring order to the many conflicting systems of
weights and measures used throughout Europe. It would eventually replace all the
traditional units (except those for time and angle measurements).

The system was adopted by the French revolutionary assembly in 1795; and the
standard meter (the first metric standard) was adopted in 1799. But not everyone
agreed with the metric system’s use, and it took several decades before many Euro-
pean governments adopted the system. By 1820 Belgium, the Netherlands, and Lux-
embourg all required the use of the metric system. France, the originator of the sys-
tem and its standards, took longer, finally making metric mandatory in 1837. Other
countries such as Sweden were even slower. They accepted the system by 1878 and
took another ten years to change from the old method to the metric.

How did the first standard metric measurements evolve over time?

The first standard metric units were developed by 1799: The meter was defined as one
ten-millionth of the distance from the equator to the North Pole; the liter was defined
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as the volume of one cubic decimeter, and the kilogram was the weight of a liter of
pure water.

The standards metamorphosed over the years. For example, the first physical stan-
dard meter was in the form of a bar defined as a meter in length. By 1889 the Interna-
tional Bureau of Weights and Measures (BIPM, or Bureau International des Poids et
Mesures) replaced the original meter bar. The new bar not only became a standard in
France, but copies of the newest bar were distributed to the 17 countries that signed
the Convention of the Meter (Convention du Metre) in Paris in 1875. The accepted dis-
tance became two lines marked on a bar measuring 2 centimeters by 2 centimeters in
cross-section and slightly longer than one meter; the bar itself was composed of 90
percent platinum and 10 percent iridium. But it was only a “standard meter” when it
was at the temperature of melting ice.

By 1960 the BIPM decided to make a more accurate standard; mostly, this was done
to satisfy the scientific community’s need for precision. The new standard meter was
based on the wavelength of light emitted by the krypton-86 atom (or 1,650,763.73 wave-
lengths of the atom’s orange-red line in a vacuum). An even more precise measurement
of the meter came about in 1983, when it became defined as the distance light travels in
avacuum in 1/299,792,458 second. This is the currently accepted standard.

What is scientific notation?

Scientific notation is a way of making larger and smaller numbers used in the scientif-
ic field easier to write, read, and take up less space in calculations. Scientists generally
pick the power of ten that is multiplied by a number between 1 and 10 to express these
numbers. For example, it is easier to write 0.00023334522 as 2.3334522 X 10~4. (For
more about scientific notation and power of ten, see “Math Basics.”)

How is temperature measured?

Temperature is measured using a thermometer (fhermo meaning “heat” and mefer
meaning “to measure”). The inventor of the thermometer was probably Galileo Galilei
(1564-1642), who used a device called the thermoscope to measure hot and cold.

Temperatures are determined using various scales, the most popular being Cel-
sius, Fahrenheit, and Kelvin. Invented by Swedish astronomer, mathematician, and
physicist Anders Celsius (1701-1744) in 1742, Celsius used to be called the Centigrade
scale (it can be capitalized or not; centigrade means “divided into 100 degrees”). He
used 0 degrees Celsius to mark the freezing point of water; the point where water boils
was marked as 100 degrees Celsius. Because of its ease of use (mainly because it is
based on an even 100 degrees), it is the scale most used by scientists; it is also the
scale most associated with the metric system.

Fahrenheit is the scale invented by Polish-born German physicist Daniel Gabriel
Fahrenheit (1686-1736) in 1724. His thermometer contained mercury in a long, thin



What are the methods for converting
temperatures between the various scales?

he following lists ways to convert from one temperature scale to another
using, of course, simple mathematics:

Fahrenheit to Celsius: C° = (F° — 32) / 1.8; also seen as (5/9)(F° — 32)
Celsius to Fahrenheit: F° = (C° X 1.8) + 32; also seen as ((9/5)C°) + 32
Fahrenheit to Kelvin: K° = F° — 32 /1.8 + 273.15

Kelvin to Fahrenheit: F° = (K° — 273.15) X 1.8 + 32

Celsius to Kelvin: K° = C° + 273.15

Kelvin to Celsius: C° = K° — 273.15

tube, which responded to changes in temperatures. He arbitrarily decided that the dif-
ference between water freezing and boiling—32 degrees Fahrenheit and 212 degrees
Fahrenheit, respectively—would be 180 degrees.

The Kelvin scale was invented in 1848 by Lord Kelvin (1824-1907), who was also
known as Sir William Thomson, Baron Kelvin of Largs. His scale starts at 0 degrees
Kelvin, a point that is also known as absolute zero, the temperature at which all mole-
cular activity ceases and the coldest temperature possible. His idea was that there was
no limit to how hot things can get, but there was a limit to how cold. Kelvin’s absolute
zero is equal to —273.15 degrees Celsius, or —459.67 degrees Fahrenheit. So far, sci-
entists believe nothing in the universe can get that cold.

TIME AND MATH IN HISTORY

How are mathematics and the study of time connected?

Mathematics is definitely tied to time. There has long been a need in human civilizations
to record many sequences of events, especially those in nature that affected people. For
example, the changing of the seasons was important to know, as it influenced the planting
and growing of crops, when rivers would flood, and even when weather would change—
from monsoon rains and harsh droughts to potential blizzards. The first such timekeepers
counted the changing days and years by the movement of stars, the Sun, and the Moon
across the sky, all of which are activities that included simple mathematical calculations.

What is some of the earliest evidence of keeping time?

No one agrees which culture(s) first invented timekeeping. Some historians and
archeologists believe that marks on sticks and bones made by Ice Age hunters in
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How did our present day become divided
into hours, minutes, and seconds?

Divisions into hours, minutes, and seconds probably began with the Sumeri-
ans around 3000 BCE. They divided the day into 12 periods, and the periods
into 30 sections. About one thousand years later, the Babylonian civilization,
which was then in the same area as the Sumerians, broke the day into 24 hours,
with each hour composed of 60 minutes, and each minute having 60 seconds.

It is unknown why the Babylonians chose to divide by 60 (also called a base
number). Theories range from connections to the number of days in a year,
weights and measurements, and even that the base-60 system was somehow eas-
ier for them to use. Whatever the explanation, their methods proved to be
important to us centuries later. We still use 60 as the basis of our timekeeping
system (hours, minutes, seconds) and in our definitions of circular measure-
ments (degrees, minutes, seconds). (For more information about the Sumerian
counting system, see “History of Mathematics.”)

Europe around 20,000 years ago recorded days between successive new moons. Anoth-
er hypothesis states that the measurement of time dates back some 10,000 years,
which coincides with the development of agriculture, especially in terms of when to
best plant crops. Still others point to timekeeping evidence dating back 5,000 to 6,000
years ago around the Middle East and North Africa. Whatever the true beginnings,
most researchers agree that timekeeping is one of those subjects whose history will
probably never be accurately known.

What culture took the first steps toward timekeeping?

Around 5,000 years ago, the Sumerians in the Tigris-Euphrates valley (today’s Iraq)
appear to have had a calendar, but it is unknown if they truly had a timekeeping
device. The Sumerians divided the year into months of 30 days; the day was then
divided into 12 periods (each corresponding to two of our modern hours) and the peri-
ods into 30 parts (each corresponding to four of our minutes).

Overall, many researchers agree that the Egyptians were the first serious timekeep-
ers. Around 3500 BCE, they erected obelisks (tall, four-sided monuments), placing them
in specific places in order to cast shadows as the Sun moved overhead. This thus creat-
ed a large, crude form of a sundial. This sundial time was broken into two parts: before
noon and after noon. Eventually, more divisions would be added, breaking down the
time units even more into hours. Based on the length of the obelisks’ shadows, the
huge sundials could also be used to determine the longest and shortest days of the year.



What was one of the first devices
used to measure time?

One of the first devices—smaller than the
obelisks mentioned above—to measure
time was a crude sundial. By about 1500
BCE, the true, small sundial (or shadow
clock) was developed in Egypt. It was
divided into ten parts, with two “twilight”
hours marked. But it could only tell time
for half a day; after noon, the sundial had
to be turned 180 degrees to measure the
afternoon hours.

) A

h valAor Vil

occurred later. In order to correct for the A sundial, which uses shadows from the Sun to
Sun’s changing path over the sky mark the passage of time, is one of the oldest time-

More refinements of measuring time

throu gh out the year, the gnomon—or keeping devices. National Geographic/Getty Images.

object that creates the shadow on the

sundial—had to be set at the correct angle (what we call latitude). Eventually, the sun-
dial was perfected. Multiple designs were used. For example, shortly before 27 BCE the
Roman architect Marcus Vitruvius Pollio’s (c. 90-20 BCE) De architectura described 13
different designs of sundials.

How does a sundial work?

The sundial tracks the apparent movement of the Sun across the sky. It does this by
casting a shadow on the surface of a usually circular dial marked by hour and minute
lines. The gnomon—or the shadow-casting, angular object on the dial—becomes the
“axis” about which the Sun appears to rotate. To work correctly, it must point to the
north celestial pole (near the star Polaris, also called the North Star); thus, the gno-
mon’s angle is determined by the latitude of the user. For example, New York City is
located at about 40.5 degrees north latitude, so a gnomon on a sundial in that city
would be at a 40.5 degree angle on a sundial.

The sharper the shadow line, the greater the accuracy; in addition, larger sundials
are more accurate, because the hour line can be divided into smaller units of time.
But the sundial can’t be too large. Eventually, diffraction of the sunlight around the
gnomon causes the shadow to soften, making the time more difficult to read.

What is the definition of a clock?

A clock (from the Latin cloca, or “bell”) is an instrument we use for measuring time.
There are actually two main qualities that define a clock: First, it must have a regular,
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One of the most famous clocks on Earth is Big Ben in London,
England. Although today’s digital and atomic clocks are much
more accurate, the charm of an old-fashioned analog clock still has
its appeal. Lonely Planet Images/Getty Images.

constant, or repetitive action
(or process) that will effective-
ly mark off equal increments
of time. For example, in the
old days before our battery-
driven, analog and digital
clocks and watches, “clocks”
included marking candles in
even increments, or using a
specific amount of sand in an
hourglass to measure time.

Second, there has to be a
way to keep track of the time
increments and easily display
the results. This eventually led
to the development of watch-
es, large clocks such as Big
Ben in London, England, and
even the clocks that count
down the New Year. The most
accurate clocks today are
atomic clocks, which use an
atomic frequency standard as
the counter.

What was the driving force

behind the development of

accurate clocks?

The true driving force behind
accurate clocks began around

the 16th century in relation to
finding longitudinal measure-

ment. As countries began to explore the world, an accurate way of telling a ship’s posi-
tion became a critical problem. With one time standard around the world (and clocks
to tell those times), longitude, and thus position, could be determined. This would not
only mean an increase in exploration but also wealth for the sponsoring country.

How was (and is) one second defined?

A second was once defined as 1/86,400 of a mean solar day. By 1956 this definition was
changed by the International Bureau of Weights and Measures to 1/31,556,925.9747 of



Where was the mechanical clock first invented?

t is thought that the first mechanical clock was invented in medieval Europe and

used most extensively by churches and monasteries (mainly to tell when to ring
the bells for church attendance). The clocks had an arrangement of gears and
wheels, which were all turned by attached weights. As gravity pulled on the weights,
the wheels would turn in a slow, regular manner; as the wheels turned, they were
also attached to a pointer, a way of marking the hours, but not yet minutes.

The precursor to accurate time keeping came around 1500 with the advent
of the “spring-powered clock,” an invention by German locksmith Peter Henlein
(1480-1542). It still had problems, though, especially with the slowing down of
the clock as the spring unwound. But it became a favorite of the rich because of
its small size, easily fitting on a mantle or shelf.

the length of the tropical year 1900. But like most measurements, the second definition
changed again in 1964, when it was assigned to be the equivalent of 9,192,631,770
cycles of radiation associated with a particular change in state of a cesium-133 atom.

Interestingly enough, by 1983 the second became the “definer” of the meter: Sci-
entists defined a meter as 1/299,792,458 the distance light travels in one second. This
was done because the distance light travels in one second was more accurate than the
former definition of the standard meter.

MATH AND CALENDARS IN HISTORY

What is the connection between calendars and math?

A calendar is essentially a numbering system that represents a systematic way of orga-
nizing days into weeks, months, years, and millennia, especially in terms of a human
lifespan. It was the necessity to count, keep track of, and organize days, months, and
so on that gave rise to calendars, all of which also entails the knowledge of mathemat-
ics to make such calculations.

When were the first calendars invented?

Although the first crude types of calendars may have appeared some 30,000 years
ago—they were based on the movements of the Moon and indicated as marks on
bones—the Egyptians are given credit for having the first true calendars. Scientists
believe that around 4500 BCE the Egyptians needed such a tool to keep track of the
Nile River’s flooding. From about 4236 BCE, the beginning of the year was chosen as
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the heliacal rising (when a star is finally seen after being blocked by the Sun’s light) of
the star Sirius, the brightest star in the sky located in the constellation of Canis Major.
This occurred (and still occurs) in July, with the Nile flooding shortly after that, which
made it a perfect starting point for the Egyptian calendar. The Egyptians divided the
calendar into 365 days, but it was not the only calendar they used. There was also one
used for planting and growing crops that was dependent on the lunar month.

What is a lunar-based calendar?

A lunar calendar is a calendar based on the orbit of our Moon. The new moon (when
you can’t see the Moon because it is aligned with the Sun) is usually the starting point
of a lunar calendar. From there, the various phases seen from Earth include crescent,
first quarter, and gibbous (these phases after a new moon are also labeled waxing, such
as waxing crescent). When the entire face is seen, it is called a full moon; from there,
the phases are seen “in reverse,” and are labeled waning, such as waning crescent.
Overall, the entire moon cycle takes about 29.530589 days. This cycle was used by
many early cultures as a natural calendar.

What was the problem with the lunar-based calendars?

Nothing is perfect, especially a lunar month. The biggest drawback with using a lunar
calendar is the fractional number of days, which makes a lunar calendar quickly go
out of synch with the actual phases of the Moon. The first month would be off by
about a half a day; the next month, a day; the next month, a day and a half; and so on.
One way to help solve the problem was to alternate 30 and 29 day months, but this,
too, eventually made the calendars go out of synch.

To compensate, certain cultures added (intercalations) or subtracted (extracala-
tions) days from their calendar. For example, for more than a thousand years, the
Muslims’ lunar calendar has had an intercalation of 11 extra days over a period of 30
years, with each year being 12 lunar months. This calendar is only out of synch about
one day every 2,500 years: To see this, mathematically speaking, the average length of
a month over a 30-year period is figured out with the following equation: (29.5 X 360)
+ 11/360 = 29.530556 days, in which 11 is the number of intercalated days, 360 is the
number of months in a 30-year cycle (12 months X 30 years), and 29.5 is the average
number of days in the calendar month, or (29 + 30) / 2.

What is a solar-based calendar?

A solar-based calendar is one based on the apparent movement of the Sun across the
sky as we orbit around our star. More than 2,500 years ago, various mathematicians
and astronomers were basing a solar year on the equinoxes (when the Sun’s direct
rays are on the equator—or the beginning of fall and spring) and solstices (when the



Why does the Western calendar start with the birth of Christ?

he story behind the Western calendar—the one that developed into the cal-

endar used most often today—started in the middle of the 6th century. Pope
John I asked Dacian monk and scholar Dionysius Exiguus (“Dennis the Small,”
c. 470—c. 540; he was born in what is now Romania) to calculate the dates on
which Easter would fall in future years. Dionysius, often called the inventor of
the Christian calendar, decided to abandon the calendar numbering system that
counted years from the beginning of Roman Emperor Diocletian’s reign.
Instead, being of Christian persuasion, he replaced it with a system that started
with the birth of Christ. He labeled that year “1,” mainly because there was no
concept of zero in Roman numerals.

Sun’s direct rays are on the latitudes marked tropic of Capricorn [winter in the North-
ern Hemisphere; summer in the Southern Hemisphere] or tropic of Cancer [winter in
the Southern Hemisphere; summer in the Northern Hemisphere]).

As the measurement of the solar (and lunar) cycle became more accurate, calendars
became increasingly sophisticated. But no calendar dominated until the last few cen-
turies, with many cultures deriving their own calendars—some even combining lunar
and solar cycles in a type of Moon-Sun or luni-solar calendar. This is why although there
is one “standard calendar” used by most countries around the world, certain cultures still
use their traditional calendars, including the Chinese, Jewish, and Muslim calendars.

How did some ancient cultures refine their calendars’

There were many different ways that various ancient cultures refined their calendars,
and all of them entailed some type of mathematical calculation. One way to measure
the length of a year was by using a gnomon, or a structure that casts a shadow (for
more about gnomons and sundials, see p. 57). This was based on the apparent motion
of the Sun across the sky, with the shadow not only used to tell daily time but also to
determine the summer solstice, when the shadow created by the gnomon would be at
its shortest at noon. By measuring two successive summer solstices and counting the
days in between, various ancient cultures such as the Egyptians developed a more
detailed calendar—and, as a bonus, determined the exact times of the solstice.

Around 135 BcE, Greek astronomer and mathematician Hipparchus of Rhodes (c.
170—c. 125 BCE) decided to compare his estimate of the vernal (spring in the Northern
Hemisphere, occurring in March) equinox with that made by another astronomer
about 150 years earlier. By averaging the number of days, he estimated that a year was
equal to 365.24667 days, a number only off by about six minutes and 16 seconds.
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What was the Roman calendar?

The first Roman calendar, according to legend, appeared when Rome was founded
around 750 BCE. When it actually started is still up for discussion, but the calendar was
based on the complexity of the solar-lunar cycles. At first, the calendar had ten months,
starting in March; January and February were added as the calendar was modified. Poli-
tics entered into the determination of this calendar, too, with certain officials deciding
to add days whenever they desired, and even what to name certain months.

What was the Julian calendar?

By the time of Julius Caesar (10044 BcE), Roman calendar-keeping was a mess. Cae-
sar decided to reform the Roman calendar, asking help from astronomer and mathe-
matician Sosigenes of Alexandria (lived c. 1 BCE; not to be confused with Sosigenes the
Peripatetic [c. 2nd century], an Egyptian philosopher). The year 46 BCE would conse-
quently have 445 days—a time appropriately called “the year of confusion.”

Sosigenes began the reformed year on January 1, 45 BCE, a year with 365 days, and
proposed an additional day for every fourth year in February (leap day). The alternate
months of the year (January, March, May, July, September, November) had 31 days;
the other months would have 30 days. In the Julian Calendar, there was only one rule:
Every year divisible by four was a leap year.

The vain heir to Caesar, Augustus Caesar (63 BCE-14 CE; a.k.a. Gaius Octavius,
Octavian, Julius Caesar Octavianus, and Caesar Augustus), would change the Julian
calendar in a several ways. Not only did he name the month of August after himself,
but he would change the number of days in many months to their present usage,
adding more confusion to the calendar.

The Julian calendar would govern Caesar’s part of the world until 1582. Not that the
Julian year was perfect: A year’s 364.25 days was too long by 11 minutes 12 seconds.
Although the difference between today’s measurement of the year and the Julian year was
not great, it adds up to 7.8 days over 1,000 years. But as with many decrees and mandates,
Caesar, Sosigenes, and Octavian left it up to future generations to fix the problem.

What is the Gregorian calendar?

By 1582 the discrepancies in the Julian calendar were not interfering with timekeep-
ing, but they were beginning to infringe on dates of the church’s ecclesiastical holi-
days. The powerful Catholic church was not amused: Pope Gregory XIII, on the advice
of several of his astronomers, decided to reposition days, striking out the excess ten
days that had accumulated on the then-present-day calendar. Thus, October 4, 1582,
was followed by October 15, 1582.

To fix the extra-days problem, the pope made sure that the last year of each centu-
ry would be a leap year, but only when it is exactly divisible by 400. That means that
three leap years are suppressed every four centuries; for example, 1900 was not a leap



What are some interesting facts about
the Julian and Gregorian calendars?

An interesting fact about the Julian calendar is that it designates every fourth
year as a leap year, a practice that was first introduced by King Ptolemy III of
Egypt in 238 BCE. A quirk about the Gregorian calendar is that the longest time
between two leap years is eight years. The last time such a stretch was seen was
between 1896 and 1904; it will happen again between 2096 and 2104.

year, but 2000 was a leap year. (Today, the Gregorian calendar “rules” state that every
year divisible by four is a leap year, except for years that are both divisible by 100 and
not divisible by 400.)

Some countries eliminated the ten extra days, starting “fresh” with the Gregorian
calendar. But not everyone agreed with the new calendar, especially those who distrust-
ed and disliked the Catholic church. Eventually, by 1700 those who had not changed
their calendars had collected too many extra days. In 1752, the English Parliament
decreed that 11 days would be omitted from the month of September. England and its
American colonies began to follow the Gregorian calendar, with most other countries
following close behind. It is now the standard calendar used around the world.

What is a problem with our modern calendar?

The modern calendar could use some small changes, such as making sure we don’t
have to keep changing calendars each year (see below). But the real problem with the
modern calendar isn’t the human factor; it’s nature. As our Earth orbits around the
Sun, it wobbles like a spinning top in a process called precession. Because scientists
can measure the planet’s movements more accurately now than in the past, they know
that the wobble is increasing. This is because the tides caused by the pull of the Sun
and Moon are slowing the Earth’s spin. And, like a top, as the spinning slows, the wob-
ble increases and the length of the year decreases.

What does this mean for our calendar? It is already known that our calendar and the
length of a year were only off by 24 seconds (0.00028 days) in 1582—a very small discrep-
ancy that will eventually be noticed. But when you add in the slowing down of the Earth’s
rotation, it will make the year even shorter. In fact, since 1582, the year has decreased
from 365.24222 days to 365.24219 days, or an actual decline of about 2.5 seconds.

Can we change the calendars now in use?

The present calendar is an annual one and changes every year—much to the happi-
ness of calendar publishers. This is because 365 days in a year is not evenly divisible by
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the number of days in the week: 365/7 = 52, with a remainder of 1 (or 52.142857...).
This means that a given year usually begins and ends on the same weekday; and it also
means that the next year bumps January 1 (and all following dates) to the next week-
day, and a new calendar is born each year. But because the calendar we now have is so
ingrained in everything we do, it is doubtful that there will be any changes soon.

Not that there haven’t been suggestions. One is called the World (or Worldsday)
Calendar, in which each date would always fall on the same day of the week, and all
the holidays occur on the same day of the year. With this calendar, each year begins on
Sunday, January 1, and each working year begins on Monday, January 2. The reason
why the calendar is called “perpetual” or “perennial” is that the year ends with a 365th
day following December 30, which is marked with a “W” for “Worldsday” (our current
“December 31”). Leap year days would still have to be added, such as at the end of
June (some suggest a June 31 be added). Both extra days could act as world holidays.

The drawbacks? Besides the obvious—no one wanting to change an already
entrenched system—the superstitious would revolt. After all, on the World Calendar
there are four Friday the 13ths.
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MATH BASICS

BASIC ARITHMETIC

What is arithmetic?

Arithmetic is a branch of mathematics that deals with numerical computation; specifi-
cally, it includes computation using integers, rational numbers, real numbers, or
complex numbers. The word “arithmetic” has its roots in the Greek word for “to
count” (arithmeein; also arithmos, or “number”).

Arithmetic contains all the rules for combining two or more numbers. In most cases,
when mathematicians talk about elementary arithmetic, they are speaking of those sub-
jects most of us learned in grade school: addition, subtraction, multiplication, and divi-
sion being the most common; and fractions, geometry and measurements, ratios and
proportion, simple probabilities, and algebra examined in more advanced levels. For even
more advanced students, such arithmetic lessons as congruence calculation, root extrac-
tion, power computations, and advanced factorizations are often presented.

Are there more advanced concepts in arithmetic?

Yes, arithmetic can even be more advanced than the ideas mentioned above. For exam-
ple, higher arithmetic is the archaic term for number theory, which is the study of the
properties of integers, or whole numbers (0, + 1, + 2 ...). It can include anything from
simpler arithmetic concepts to the more complex, such as diophantine equations (for
more information about these equations, see “Algebra”), prime numbers (see below),
and functions such as the Riemann hypothesis (for more about Friedrich Bernhard Rie-
mann, see “History of Mathematics” and “Geometry and Trigonometry”).

There are other more advanced ideas in arithmetic, too. For example, modular
arithmetic is known as the arithmetic of congruences (see below). The model theory
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When was the first arithmetic book published in North America?

n 1556 the first arithmetic book was published in North America by Brother

Juan Diez Freyle, a Franciscan friar. The name of the book was Sumario com-
pendioso de las quentas de plata y oro que in los reynos del Piru son necessarias
a los mercaderes y todo genero de tratantes: Con algunas reglas tocantes al
Arithmeética. The title translates as Comprehensive Summary of the Counting of
Silver and Gold, Which, in the Kingdoms of Peru, Are Necessary for Merchants
and All Kinds of Traders. The book explained the conversion of gold ore into value
equivalents in different types of coinage in the Old World, problems that required
the use of ratios and proportions. Diez also included a short chapter on algebra.

The first English-language mathematics book written in North America was
published in 1729 by Isaac Greenwood and titled Arithmetik, Vulgar and Deci-
mal (“vulgar” refers to the common people). Greenwood’s life was also some-
what vulgar: He was appointed to the first Hollis Professorship of Mathematics
and Natural Philosophy at Harvard University in Massachusetts when it was
founded in 1727. By 1737 he was removed for “intemperance.” Reportedly, he
drank too much, and more than likely his views, philosophical and otherwise,
differed greatly from those of his colleagues at the university.

discusses the existence of “non-standard” models of arithmetic. And floating-point
arithmetic is performed on real numbers by computers or other automated devices.

What is arithmetic progression?

Arithmetic progression is one of the more simple types of series in mathematics. It is
usually in the form of @, a + d, a + 2d, a + 3d, and so on, in which a is the first term
and d is the constant difference between the two successive terms. A progression is
also seen as these numbers are added, asina+ (@ +d)+ @+ 2d)+ @+ 3d) +, ..., (a
+ (n + 1)d). An example of an arithmetic progression would be 2 + 6 + 10 + 14 +
..., in which d is equal to 4.

What do computers and arithmetic have in common?

Computers and arithmetic have a great deal in common. Arithmetical operations are
actually digital computer operations in which the numerical quantities are computed,
either through adding, subtracting, multiplying, dividing, or otherwise comparing
them. Arithmetical instructions give a computer program direction to perform an
arithmetic operation on specific types of data, such as addition, subtraction, multiplica-
tion, and division. The sections of the computer that carry out these computations and



other logic operations are called arith-
metical units (or arithmetic sections).
(For more information about computers
and math, see “Math in Computing.”)

ALL ABOUT
NUMBERS

What is a number?

The term number can be defined in many
ways, including a sizable collection of
people or things, and even an indefinite
quantity or collection. In mathematics a

. . Computers have become such an everyday part of
number, or numeral, is usually defined as our lives that we hardly think about them. Yet the

a symbolic representation of a specific mathematical concepts that lie behind their opera-

quantity or place ina sequence; to most tions are staggering. Taxi/Getty Images.

people, the most familiar numbers are 1,
2, 3,4, 5, and so on.

What is a decimal system?

The decimal system uses the base 10 notation system to represent real numbers. A
decimal expansion is the expression of a number within the decimal system, such as
1, 15, 359, 18.7, and 3.14159. Each number within the system is called a decimal digit.
(Such decimal notation—or a numbering notation based on decimals—was first used
in India around the year 594.) The decimal point is represented by a period placed to
the right of a unit’s place in a decimal number. It is interesting to note that a comma
is used in continental Europe to denote a decimal point, such as 3,25 (translated as
3.25), which in this case would logically be called the decimal comma.

What is currently the most common numeration system?

The most common numeration system in use today is the Hindu-Arabic. This set of
numerals has ten digits in a place value decimal system, which is a fancy way of saying
that a decimal system—one based on tens—is an integral part of the system and that
each number has a certain value depending on its place in the list of numbers.

How did the Hindu-Arabic numerals spread to Europe?

Hindu-Arabic numerals (often less accurately called Arabic numerals or numbers) had
their roots in India before 300 BCE. From there, the use of Indian numerals followed the
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One of the earliest and most common devices developed for making everyday calculations was the abacus, which
was still being used in Europe as late as the 15th century. Phofographer’s Choice/Getty Images.

western trade routes to Spain and Northern Africa that were taken by the Arabic/Islam-
ic peoples; this consequently resulted in the expanded use of these symbols.

It took several more centuries to spread the idea to Europe. Although the Spanish
used some Hindu-Arabic symbols as early as the late 900s, records of a more extensive use
of these symbols occurred around 1202. Italian mathematician Leonardo of Pisa (also
known as Fibonacci, c. 1170—c. 1250; for more about Fibonacci, see p. 77 and “History of
Mathematics”) introduced the Hindu-Arabic numbers in his book Liber Abaci (The Book
of the Abacus). The acceptance of such a numbering system was difficult. For example, in
some places in Italy it was forbidden to use anything but Roman numerals. By the late
15th century, most people in Europe were still using an abacus and Roman numerals.

The 16th century was the turning point, with European traders, surveyors, book-
keepers, and merchants spreading the use of the Hindu-Arabic numerals. After all, it
took longer to record data using Roman numerals than with Hindu-Arabic numbers.
The advent of the printing press also helped by standardizing the way the Hindu-
Arabic numbers looked. By the 18th century, the “new” numeration system was
entrenched, establishing a system that dominates the way we work with and perceive
numbers in the 21st century. (For more information about Hindu-Arabic and Roman
numerals, see “History of Mathematics.”)

How did the Hindu-Arabic numbers evolve’

The evolution of the Hindu-Arabic numbers was not a straight line from India to Ara-
bia and on to Europe. In between, the Arabic cultures had more than one number sys-
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Different cultures generally employed one of two strategies when creating symbols for numbers: multiple marks
that indicated single numbers or multiples of fives or tens (e.g., Babylonian, Egyptian, Mayan), or a more
abstract system using a single symbol for the numbers one through nine, with numbers then being shifted over
one or more places to indicate multiples of ten, hundreds, etc. (e.g., Hindu, Hindu-Arabic).

tem to contend with, including at least three different types of arithmetic: finger-reck-
oning arithmetic (counting on fingers), a sexagesimal system with numbers written in
letters of the Arabic alphabet, and Indian numeral arithmetic.

The evolution of the Hindu-Arabic numbers continued throughout time and
includes some good reasons for why our numbers look as they do today. For exam-
ple, historians believe that between 970 and 1082, the numbers 2 and 3 changed
significantly, rotating 90 degrees from their original written position. This is
thought to be due to how scribes worked: Sitting cross-legged, they wrote on a
scroll they wound from right to left across their body. This caused them to write
from top to bottom, not our usual left to right; the script was then rotated when
the scroll was read.

How are numbers classified?

The set of natural numbers are also called integers—or counting or whole numbers—
which are usually defined as the positive and negative whole numbers, along with zero
(0). But many times mathematicians do not use the term “natural numbers,” and
instead define numbers based on the following terminology and/or symbols:
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Group Name Symbol

..,—3,—2,—1,0,1,2,3... integers Z (after the German word Zahl,
for “number”)
1,2 3... positive integers Z+ or N

(or often referred to
as natural numbers)
-1,-2, -3... negative integers Z—
0,1,2,3... nonnegative integers Z* (Z-star)
(or often referred to as
whole numbers)
0,-1,-2,-3... nonpositive integers (no symbol)

What do integers include?

Integers include the whole numbers (also called positive integers or natural num-
bers), negative whole numbers (also called negative integers or the negatives of the
naturals), and zero. Numbers such as 3/4, 5.993, 6.2, —3.2, and pi (;t; or 3.14 ...) are
not considered integers. Only integers are used when speaking of odd and even num-
bers (zero is considered to be an even number; for more about zero, see p. 90).

What is a place value?

The place value, or “rule of position,” are numbers whose value depends on the place
or position they occupy in a written numerical expression. In the Hindu-Arabic count-
ing system, the numerals 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0 have certain specific place val-
ues. For example, the number 7 represents 7 (7 units), 70 (as 7 tens), 700 (as 7 hun-
dreds), and so on—the 7’s values based on their position in the numerical expression.
(For more information about place values, see “History of Mathematics.”)

What are some of the highest numbers we know?

Numbers can go on forever—in other words, there is an infinite number of numbers.
The highest numbers we are most familiar with include million, billion, and trillion,
which we often see when referring to such quantities as the number of miles to the
outer planets or the federal budget deficit. These larger numbers are usually separated
by commas at the thousands, millions, trillions, etc., place values. For example, for
3,490 the comma is after the thousand place value; for 1,384,993 it is put after the
million and thousand place value. Larger numbers written for technical papers are
sometimes expressed with spaces; for example, 11 384 443 is equivalent to 11,384,443.

Not every country labels the highest numbers in the same way. For example, in
the American system denominations above 1,000 million (or the American billion) are
1,000 times the preceding one (for example, one trillion is 1,000 billion; one



What is a googol?

he “googol” is the invention of Milton Sirotta, the eight-year-old nephew of

mathematician Edward Kasner, who once asked the young boy to name the
number 1 followed by 100 zeros (10 to the 100th power or 101%°). A googol is an
incredibly large number, so there is little it can represent. Although you might
guess it would represent some collection of astronomical entities, such as the
number of elementary particles in the universe, it does not: Scientists estimate
only about 10 to the 80th power (108) such particles exist.

Googol was soon followed by googolplex, a name invented by another math-
ematician, and said to equal 10 to the power of googol (or 1 followed by 10 to the
power of 100 zeros). No one has ever seen such a large number printed out. And
although it is true that computer processing power doubles about every one to
two years, it is still too early to print the number represented by a googolplex.
Thus, many ask why begin at all, since attempts to do so will soon be overtaken
by faster processors? In fact, it is estimated that it will take another 500 years
before such an endeavor is achieved.

quadrillion is 1,000 trillion). But in the British system, the first denomination above
1,000 milliards (the British billion) is 1,000,000 times the preceding one (for example,
one trillion is 1,000,000 billion; one quadrillion is 1,000,000 trillion). The American
system is based on an early French system, which the French ironically no longer fol-
low. Their larger number names now correspond to the British system, as do those of
many other countries in Europe.

American and British Naming Systems for Large Numbers

American Name British Name Number (in powers of ten)
billion milliard 10°
trillion billion 1012
quadrillion — 1015
quintillion trillion 1018
sextillion — 102
septillion quadrillion 1024
octillion — 10%7
nonillion quintillion 1030
decillion — 1033
undecillion sextillion 1036
duodecillion — 10

tredecillion septillion 1042
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American Name British Name Number (in powers of ten)
quattuordecillion — 10%
quindecillion octillion 1048
sexdecillion — 10
septdecillion nonillion 10%
octodecillion — 1057
novemdecillion decillion 1080
vigintillion — 1083
— undecillion 1086
— duodecillion 107
— tredecillion 107
— quattuordecillion 108
— quindecillion 10%°
— sexdecillion 1096
— septendecillion 10102
— octodecillion 10108
— novemdecillion 10114
— vigintillion 10120
centillion — 10393
— centillion 10600

What are non-vanishing and vanishing numbers?

A non-vanishing number means just what the term implies: A quantity that is non-
zero everywhere. For example, in the expression x* + 1, the answer will never be zero
(even when x is zero or a negative number). The answer for the expression x2 is called
“vanishing” because if x = 0, the expression’s answer “vanishes” to zero.

What are rational, irrational, and real numbers?

Rational, or fractional, numbers are most often regarded as divisions (or ratios) of
integers. By creating a fraction (dividing one integer by another), a rational number
produces either a number that “ends” or repeats decimals. For example, 1/4 equals the
decimal equivalent of 0.25; 1/3 is equivalent to 0.33333.... Both of these are rational
numbers. (For more information about fractions, see p. 98.)

On the other hand, irrational numbers are all the numbers that can be written as
non-repeating, non-finite (or non-terminating) decimals. Also called non-rational
numbers, they include the decimal equivalent of “pi” (or 3.141592 ...). Finally, if you
put the rational and irrational numbers together, they form the real numbers. Most
numbers we use in our everyday lives are real numbers.



What are imaginary numbers?

he “opposite” of real numbers are (logically enough) called imaginary num-
bers. In particular, they are all non-zero multiples (real numbers) of the square
root of —1, which is also represented as 7, with the formula defined as follows:

i=+v-1
thenz2=(\/—-1)= -1
The \/—1 does not have a position on a number line; and no number can be
squared to get —1. (If you square a positive number, the result is positive; if you
square a negative number, the result is also a positive number.) Thus, in order to

square a number to get a negative one, mathematicians invented the imaginary
number, 7.

Can there be more than one type of number?

Yes, numbers can be classified as more than one type, and it’s not always easy to keep them
straight. The following lists some ways to better understand the plethora of number types:

¢ A rational number is not always an integer: 4/1 is an integer, but 2/3 is not;
but an integer is always a rational number because it can be represented by
a fraction by putting the integer over 1, or /1, such as 2/1 or 234/1

* A number can either be rational or irrational but not both

¢ The number for pi (3.141592 ...) is irrational (the decimal does not repeat)
and real

¢ (.25 is considered rational (the numbers terminate) and real
¢ The fraction 5/3 is rational (it’s a fraction) and real

¢ The number 10 can be explained using many terms, including a counting
number, whole number, integer, rational, and real

How do regular and non-regular numbers differ?

Regular and non-regular numbers are actually other terms for rational numbers. Reg-
ular numbers are positive integers that have a finite decimal expansion. In other
words, a number that seems to “end.” For example, one quarter (1/4) is equal to the
decimal equivalent of 0.25 in which the numbers end with “5.” A non-regular number
is one that includes repeating decimals—numbers that seem to go on forever. For
example, one third (1/3) is equal to the decimal equivalent of 0.3333... in which the 3s
go on indefinitely.
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Who uses complex—and, thus, imaginary—numbers?

omplex (and, thus, imaginary) numbers are used by many people in various
fields. The most logical application is in the field of mathematics: In algebra,
complex numbers give mathematicians a way to find the roots of polynomials.

Engineers and scientists also often need to use complex numbers. Because
such applications are based on polynomial models in theory, complex numbers
are needed. For example, circuit theory has polynomials as part of the model
equation for simple circuits. Vibrations with wavelike results in mechanical
engineering are also connected to the use of complex numbers. And even in
physics, quantum mechanics uses complex numbers for just about everything.
The wave functions of particles that have a complex amplitude include real and
“imaginary” parts—both of which are essential to the computations.

Complex numbers are also used by musicians, economists, and stockbro-
kers. And, indirectly, everyone who has to deal with light switches, loudspeakers,
electric motors, and sundry other mechanical devices uses imaginary numbers
just by dint of using things that were engineered through the use of imaginary
numbers.

How do you perform imaginary number computations?

Imaginary numbers come in handy to do many computations, especially something
called simplification. Here are some “simple” examples of how to use imaginary
numbers:

To simplify the square root (or sqrt) of —25:
\VEZ5 = VI35 X —1 =\ 35 X /T = 5i
To simplify 27 + 4i:

20+ 4i=02+ 4)i=06i

To simplify 217 — 5i:

21i — 5i = (217 — 5i) = 167

To multiply and simplify (27)(47):
(20)(4i) = (2 X 4)(@@d) = (8)@) = (8)(—1) = —8

Who first came up with the idea for imaginary numbers?

The origin of 7 is difficult to trace. Some historians give credit to Italian physician and
mathematician Girolamo Cardano (1501-1576; in English, known as Jerome Cardan).
In 1545, he is said to have started modern mathematics, first mentioning not only



negative numbers but imaginary num-
bers in his Latin treatise Ars Magna (The
Great Art). But Cardano did not consider
the imaginary numbers as the real math-
ematical objects we do today. To him,
they were merely convenient “fiction” to
classify certain polynomial properties,
describing how their roots would behave
when he pretended they even Aad roots.
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Most agree that around 1777, Swiss
mathematician Leonhard Euler (1707-
1783) used “i” and “—i” (negative i) for the
two different square roots of —1, thus
eliminating some of the problems associ-
ated with notation when putting polyno-
mials into categories. (He is also credited
with originating the notation a + bi for
complex numbers.) Much to the conster-

Eighteenth-century Swiss mathematician Leonhard

nation of many past and present mathe-
maticians, 7 and —7 were called “imagi-
nary,” mainly because the number’s
function at the time of Euler was not
clearly understood. When German mathe-
matician, physicist, and astronomer

Euler, who published over 70 volumes on mathe-
matics in his lifetime, was one of the greatest con-
tributors to the discipline that ever lived. Euler
developed important concepts in such areas as
geometry, calculus, trigonometry, algebra, hydrody-
namics, and much more. He also created the con-
cept of the imaginary number that is the square root

of —1. Library of Congress.

Johann Friedrich Carl Gauss (1777-1855)

used them for the geometric interpretation of complex numbers as points in a plane, the
usefulness of imaginary numbers became apparent. (For more information on Gauss,
Cardano, and Euler, see “History of Mathematics.”)

What are complex numbers?

Complex numbers have two parts: a “real” part (any real number) and an “imaginary”
part (any number with an 7 in it). The standard complex number format is “a + b7,” or
a real number plus an imaginary number. It is also often seen as x + iy because while
real numbers are viewed on a line, complex numbers are viewed graphically on an
Argand (or polar) coordinate system: The imaginary numbers make up the vertical (or
y) axis as iy, while the horizontal (or x) axis is occupied by real numbers. (For more
information about coordinate systems, see “Geometry and Trigonometry.”)

What is the polar form of a complex number?

The polar form of a complex number is equal to a real number expressed as an angle’s
cosine, and the imaginary number (/) times the same angle’s sine, with the angle
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expressed in radians (for more about
angles, sines, cosines, and polar forms,
see “Geometry and Trigonometry”). This
is seen in equation form as: r(cos 6 + 7
sin 0), in which r is the radius vector, 0 is
the angle, and 7 is the imaginary number.

Is there such a thing as a perfect
number?

Yes, there is such a thing as a perfect
number, but it is not what we think of as
true perfection. To mathematicians, per-
fect numbers are somewhat rare. They
are defined as a natural number (or posi-
tive integer) in which the sum of its posi-
tive divisors (or the bottom number in a
fraction that divides the number to equal

Engineers, such as this man making calculations on )
a CAD (computer aided design) of an electric motor another whole number, and includes 1

core, employ complex mathematics every day to per- but not the number itself) is the number

f their jobs. Taxi/Getty I X . . .
orm THeir Jobs. faxt/Letty fmages itself. For example, 6 is considered a per-

fect number because its divisors are 1, 2,
and 3—or 1 + 2 + 3 = 6. The next perfect numbers are 28 (1 + 2 + 4 + 7 + 14),
496; 8,128; 33,550,336; 8,589,869,056; 137,438,691,328; 2,305,843,008,139,952,128,
and so on. Larger and larger perfect numbers are still being discovered, especially with
the help of today’s faster and more memory-packed computers.

What is meant by one-to-one correspondence?

A one-to-one correspondence means just what it implies: that the number of objects,
numbers, or whatever is the same as the set of other objects, numbers, or whatever.
(In set theory, the one-to-one correspondence means something different; for more
about set theory, see “Foundations of Mathematics.”)

Everyone has no doubt had contact with one-to-one correspondence without even
thinking about it. For example, there is a one-to-one correspondence of the number
10 to the number of fingers on both hands (ten). Counting a deck of cards is a one-to-
one correspondence—each number, from 1 to 52, representing a card in the deck.
When you compare two decks of cards, putting the cards side-by-side to equal 52 in
each deck can also be considered a one-to-one correspondence.

Not everything is counted in such a way. For example, when mathematicians want
to know the size of an unknown quantity, they put the unknown quantity in a one-to-
one correspondence with a known quantity.



Anyone who has played a card game has used their knowledge of one-to-one correspondence, though most of us
would not know enough to call it that. The Image Bank/Getty Images.

What are ordinal and cardinal numbers?

In common, arithmetic terms, cardinal numbers are those that express amounts; they
are also used in simple counting or to answer the question of quantity (how many).
They can be nouns (try counting to fen); as pronouns (fen were discovered); or adjec-
tives (fen cats). Specifically, the term is from the Latin cardin, meaning “stem” or
“hinge,” referring to the most important or principal numbers, with others depending
(hinging) on those numbers. We are most familiar with the cardinal numbers as our
counting numbers, or the Hindu-Arabic numeration system—1, 2, 3, and so on.

Ordinal numbers are much different. In common, arithmetic terms, ordinal num-
bers are adjectives that describe the numerical position of an object, such as first, sec-
ond, third, and so on. They are used to show the order of succession for objects (sec-
ond chair), names (second month), or periods of time (2nd century).

Note that cardinal and ordinal numbers are easily divided. For example, in the
Hindu-Arabic numeration system, the cardinal numbers may be read as ordinals, such
as May 10 being read as “May tenth.” Such differences are even harder to distinguish
when it comes to Roman numerals. Most of the time, these numerals are considered
cardinal numbers (I, II, III, etc.), but they can also be ordinal numbers in certain con-
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Do numbers continue into infinity?

hen most of us think of infinity, we envision the universe continuing on

forever; and in mathematics, we often think of numbers that are never-
ending. Sometimes it is difficult to understand infinity, since our own lives—
and most of our experiences—are finite (they eventually end). Infinity is a mind-
boggling concept.

There are several rules to mathematical infinity. The three most important
are: No matter how high you count numbers, you can always count higher; no
matter what length you draw parallel lines, they will never meet; and when start-
ing with a line, dividing it in half, then dividing that in half, and so on, you will
never stop dividing the resulting line segment.

Even though scientists and mathematicians agree that infinity exists theo-
retically, it is often a difficult concept to understand and accept. Is it true that
the number of particles in the universe are infinite? Does the universe continue
on forever? Do parallel lines eventually meet at a place we have yet to discover?
If a particle is infinitely divided, just how small can an atomic particle become?
And to add to the unimaginable explanations, German mathematician George
(Georg) Ferdinand Ludwig Philipp Cantor (1845-1918) mathematically rea-
soned out that not only do infinities come in different sizes, but there are an
infinite number of infinities.

texts, such as Henry VIII (Henry the Eighth). Roman numerals can even contain ordi-
nal suffixes, such as the IXth Dynasty.

Ordinal and Cardinal Numbers and Symbols

Hindu-Arabic Roman Cardinal Ordinal Ordinal
Symbol Symbol Number Name Number Name Symbol
0 n/a zero/naught/cipher
1 I one first 1st
2 I1 two second 2d/2nd
3 11 three third 3d/3rd
4 IV four fourth 4th
5 \' five fifth 5th
6 VI six sixth 6th
7 VII seven seventh 7th
8 VIII eight eighth 8th
9 IX nine ninth 9th



Hindu-Arabic Roman Cardinal Ordinal Ordinal
Symbol Symbol Number Name Number Name Symbol

10 X ten tenth 10th
11 XI eleven eleventh 11th
12 XII twelve twelfth 12th
13 XIII thirteen thirteenth 13th
14 XIV fourteen fourteenth 14th
15 XV fifteen fifteenth 15th
16 XVI sixteen sixteenth 16th
17 XVII seventeen seventeenth 17th
18 XVIII eighteen eighteenth 18th
19 XIX nineteen nineteenth 19th
20 XX twenty twentieth 20th
30 XXX thirty thirtieth 30th
40 XL forty fortieth 40th
50 L fifty fiftieth 50th
60 LX sixty sixtieth 60th
70 LXX seventy seventieth 70th
80 LXXX eighty eightieth 80th
90 XC ninety ninetieth 90th
100 C one hundred one hundredth  100th
400 CD four hundred four hundredth 400th
500 D five hundred five hundredth  500th
900 CM nine hundred nine hundredth 900th
1,000 M one thousand one thousandth 1,000th

Why are the terms cardinal and ordinal sometimes confused in mathematics?

Cardinal and ordinal numbers are sometimes confused because they have two distinct
mathematical definitions. The cardinal numbers in the numbering system should not
be confused with cardinal numbers in set theory, in which any method of counting
sets using a cardinal number gives the same result. Likewise, the ordinal numbers in
arithmetic should not be confused with ordinal numbers in set theory: Such numbers,
often called ordinals for short, are the order type of a well-ordered set. They are divid-
ed into two types: finite and transfinite ordinals. (For more about sets, ordinals, and

cardinal numbers, see “Foundations of Mathematics.”)

SOISVE HLVNW

81



82

MORE ABOUT
NUMBERS

What is congruence?

In reference to numbers, congruence is
the property of two integers having the
same remainder upon division by another
integer. The term also is often used in
geometry to describe a property of geo-
metric formations (for more information
about congruence in geometry, see
“Geometry and Trigonometry”). Still
We can look to the familiar face of a clock to illus- another way of .usmg. congruence IS‘ n
trate the concept of “clock arithmetic” or modulo number theory, in which modular arith-
12. With clocks, we can count through 11 before metic is the arithmetic of congruences,

getting to 12, where we start over again at zero. which is sometimes informally called
Thus, if it is 7 o’clock and we add 6 hours, we get 1 « . [
clock arithmetic.

o’clock, not 13 o’clock. Taxi/Getty Images.

How does modular arithmetic work?

In modular arithmetic, numbers “wrap around” when they reach a fixed quantity. This
is also called the modulus—thus the name modular arithmetic—with the standard
way of writing the form as “mod 12” or “mod 2.”

In this case, if the two numbers b (also called the base) and ¢ (also called the
remainder) are subtracted (b — c¢), and their difference is a number integrally divisible
by m, or (b — c)/m, then b and c are said to be congruent modulo 7. Mathematically,
“b is congruent to ¢ (modulo m)” is written as follows, with the symbol for congru-
ence (=):

b =c(modm)

But if 5 — ¢ is not integrally divisible by m, then it is said, “b is not congruent to ¢
(modulo m),” or

b # ¢ (mod m)

More formally, modular arithmetic includes any “non-trivial homomorphic image
of the ring of integers.” We can interpret this interesting definition using a clock. The
modulus would be the number 12 on the clock (arithmetic modulo 12), with an asso-
ciated ring labeled C,, and the allowable numbers being 0, 1, 2, 3, 4,5, 6, 7, 8, 9, 10,
and 11. Another example is arithmetic modulo 2, with an associated ring of C,, or
allowable numbers of 1 and 2.



What are some examples of “clock arithmetic”?

As stated above, the clock would be considered arithmetic modulo, with cal-
culations including such statements as shown below. (Note: In all of the first
calculations, the equal sign can be replaced with the congruence sign =, or
three lines instead of the two for an equal sign.)

11 + 1 = 0, also written as 11 + 1 = 0 (mod 12)
7 + 8 = 3, also writtenas 7 + 8 = 3 (mod 12)
5 X 7 =11, also writtenas 5 X 7 = 11 (mod 12)

What are prime and composite numbers?

Prime numbers are positive integers (natural numbers) that are greater than 1 and
have only 1 and the prime number as divisors (factors). Another way to define a prime
number is an integer greater than 1 in which its only positive divisors are 1 and itself.
For example, prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, and 19. All other
integers greater than 1 that are not prime are called composite numbers.

There are other rules: The number 1 is unique, and is not considered a prime or
composite number. And one of the basic theorems of arithmetic is that any positive inte-
ger is either a prime or the product of a unique set of prime numbers. For example, the
number 12 is not a prime, but it has a unique “prime calculation” written as: 2 X 2 X 3.

What is the Sieve of Eratosthenes’

The smallest prime numbers—those less than 1 million—can be determined using
something invented circa 240 BCE: the Sieve of Eratosthenes. This method was named
after astronomer and mathematician Eratosthenes of Cyrene (276-196 BCE), who was
actually more famous for calculating the circumference of the Earth than for his work
with prime numbers.

To determine primes using this method, make a list of all the integers less than or
equal to n (numbers greater than 1) and get rid of all the multiples of all primes less
than or equal to the square root of n. The numbers that are left are all primes. For
example, to determine primes less than 100, start with 2 as the first prime; then write
all odd numbers from 3 to 100 (there is no need to write the even numbers). Take 3 as
the first prime and cross out all its multiples in the numbers you listed. Take the next
number, 5, and then 7, and cross out all their multiples. By the time you reach 11,
many numbers will be eliminated and you will have reached a number greater than
the square root of 100 (11 is greater than 10, the square root of 100). Thus, all the
numbers you have left will be primes.
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What are the first 100 prime numbers?
The first 100 prime numbers are as follows:

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541

Are there different types of prime numbers?

Yes, there are different types of prime numbers, including the following:
Mersenne primes—See the boxed text for an explanation

Twin primes—Primes of the form p and p + 2 (in other words, they differ by
two); discovering such a prime involves finding two primes.

Factorial/primorial primes—Primorial primes are of the form n# + 1; factori-
al primes are of the form n/ + 1.

Sophie Germain primes—This is an odd prime p for which 2p + 1 is also a
prime. It was named after Sophie Germain (1776-1831), who proved that the
first case of Fermat’s Last Theorem for exponents was divisible by such primes.

Other names for prime numbers are mainly for descriptive purposes. For example,
in 1984, mathematician Samuel Yates defined a fitanic prime to be any prime with at
least 1,000 digits. In the past few decades since his definition, there have been over a
thousand times more such primes discovered. Yates also coined the term gigantic
prime to indicate a prime with at least 10,000 digits. A great deal has happened in the
last few decades, so it is only a matter of time before the first ten-million-digit prime is
found, although it is still unknown what name that prime number will be given.

What is the Fibonacci sequence?

Italian mathematician Leonardo of Pisa (c. 1170—c. 1250; also known as Fibonacci, or
“son of Bonacci,” although some historians say there is no evidence that he or his con-
temporaries ever used the name) may be known for helping to introduce Hindu-Ara-
bic numerals to Europe (see p. 70), but he also is famous for the sequence of numbers
he discovered. This sequence—initially pursued as an exercise to determine how fast a



What is the story behind the Mersenne primes?

ersenne primes (or Mersenne numbers) are connected to prime numbers.
They come in the form of 27 — 1, in which p is a prime; or, to put it another
way, when 27 — 1 is prime, it is said to be a Mersenne prime.

Centuries ago, many mathematicians believed that numbers from the form
27 — 1 (they actually used the form 27 — 1, which is the same as the 2 — 1 used
today) were prime for all primes p. By the 16th century, it was proven that 211 —
1 = 2,047 was not prime. By 1603 Pietro Cataldi (1548-1626) correctly discov-
ered thatp = 17 and p = 19 were both prime, but he was wrong to add 23, 29,
and 37 to his prime numbers list. Soon, others discovered his errors, including
French mathematician Pierre de Fermat (1601-1665) in 1640 and Swiss mathe-
matician Leonhard Euler (1707-1783) in 1738.

The hunt for primes continued. The name “Mersenne” actually came from the
French priest Father Marin Mersenne (1588-1648), who in 1644 referred to such
numbers in the preface to his book Cogitata Physica-Mathematica. He believed
that these special primes were:p = 2, 3,5, 7, 13, 17, 19, 31, 67, 127, and 257. But
like earlier attempts at determining prime numbers, many of Mersenne’s numbers
were in error. It took three centuries more to check Mersenne’s range of numbers,
and by 1947 the correct list of Mersenne primes were: p = 2, 3,5, 7, 13, 17, 19, 31,
61, 89, 107 and 127. Interestingly enough, even though Mersenne incorrectly stat-
ed that certain numbers belonged to this group—he probably didn’t verify all the
numbers on his list—his name is still attached to these numbers.

Mersenne Year Mersenne Year Mersenne Year

Prime Discovered Prime Discovered Prime Discovered
2 — 1,279 1952 110,503 1988
3 — 2,203 1952 132,049 1983
5 — 2,281 1952 216,091 1985
7 — 3,217 1957 756,839 1992
13 1456 4,253 1961 859,433 1994
17 1588 4,423 1961 1,257,787 1996
19 1588 9,689 1963 1,398,269 1996
31 1772 9,941 1963 2,976,221 1997
61 1883 11,213 1963 3,021,377 1998
89 1911 19,937 1971 6,972,593 1999
107 1914 21,701 1978 13,466,917* 2001
127 1876 23,209 1979 20,996,011* 2003
521 1952 44,497 1979 24,036,583* 2004
607 1952 86,243 1982

*These numbers have not yet been confirmed as Mersenne primes by the Great Internet
Mersenne Prime Search at press time (GIMPS; see boxed text).
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What is GIMPS?

IMPS stands for the Great Internet Mersenne Prime Search, a program

started in January 1996 to discover new world-record-sized Mersenne Prime
numbers. It harnesses the power of the Internet—and thousands of small com-
puters belonging to public and private concerns—to make the necessary calcula-
tions. GIMPS uses only about 8 MB of memory and about 10 MB of disk space
per computer—a small amount of space for such a large undertaking. A Pen-
tium-class computer is necessary, and the computer should be on most of the
time. But if you decide to join the GIMPS group, be patient—a single test can
take about a month to complete. To find out more, get on your computer, log on
to the Internet, and access the address http://www.mersenne.org/prime.htm.

pair of rabbits can reproduce per year—is formed by adding the two preceding num-
bers to find the next number, starting with a pair of ones. Thus, the Fibonacci num-
bers in this sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, and so on; or

1+1=2

2+1=3

3+2=5

54+3=38

8+5=13

13+8=21

21 + 13 =34

34+21=55

55 + 34 =89

89 + 55 = 144

144 + 89 = 233

233 + 144 = 377, and so on.

What are exponents?

Exponents are actually shorthand for multiplications and represent the number of
times a number is being multiplied (called the base). For example, 9 X 9 = 9%, or 9 X
9xX9=09%,

Another term for this process is “raising to a power,” in which the exponent (a num-
ber as a superscript) is the “power.” For example, 9° is “nine raised to the third power.” It
is also easier to write larger numbers with exponents. For instance, instead of writing
xxxx, we can write x4 (For more information about exponents, see “Algebra.”)



How can we simplify expressions using exponents?
The following are ways to solve simple mathematical expressions with the same base:
To multiply two numbers with different exponents, add the exponents:
(%) (x*)
= (xx) (exxx)
= XXXXXX
— 24
To raise a number with a power, multiply the exponents:

3)3

~

=

%) (%) (%)
= (xxx) (exx) (exx)

XXXXXXXX
(3X3)

Lol
BEE)

Il
=

9

Il
==

What common mistake is often made in exponential equations?

Unlike multiplication, exponents do not “distribute” over addition. For example, (2 +
5)2 does not mean 22 + 5% = 4 + 25 = 29. In this case, you add the numbers in the
parentheses first, then square that number. The frue answer to this equation is (2 +
5)2 = (7)? = 49.

What is a base in mathematics?

The term “base” has many meanings in the English language, including several that
apply to the field of mathematics. When talking about sets, bases are the open sets
whose union forms an abstract entity called a topological space. In geometry, the base
represents the side of a polygon or polyhedron that is perceived as its bottom; when
referring to an isosceles triangle, the base is the side that differs in length from the
other two (thus, the base angles include the side that is thought of as the base). Alge-
braists also use the term base to describe either the number used with an exponent to
create a power, such as 3* = 81; or to write the same number as a subscript to a loga-
rithm, such as log, 81 = 4. (For more information about logarithms, see “Algebra.”)

One of the more familiar uses of the term base in mathematics deals with our
numbering system, in which a base is a natural number whose powers are added to
produce a specific number. For example, using 10 as a base, the number 2583.789 is
actually (2 X 103%) + (5 X 10%) + (8 X 101) + (3 X 10% + (7 X 107}) + (8 X 1072) +
(9 X 1073).
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How do you convert from the binary to the decimal system and vice versa?

Besides the decimal system, one of the most familiar number systems is the binary
numeration system; this is mainly because of its use in computers (for more about
computers, see “Math in Computing”). In a binary numeration system, only 1 and 0
are used—or a base 2 system. Converting between binary and decimal systems is fairly
simple; just remember that each digit in the binary number represents a power of two.

The first column in the base 2 math is the units column, then the twos, fours,
eights, etc. columns, all of which can only be filled with Os or 1s. Since there is no sin-
gle digit that stands for “2” in base 2, when you get to what stands for 2, you put a 1 in
the 2’s column and a 0 in the units column, creating one 2 and no 1s. Thus, the base
ten “two” (2,,, or just 2 in decimal form) is written in the binary as 10,; a 3 (3,,, or just
3 in decimal form) in base 2 is actually “one 2 and one 1,” or 11,. The number 4 is
actually 2 X 2, so you eliminate the 2 and unit columns and put a 1 in the 4s column.
Thus, 4,, (or just 4 in decimal form) is written in binary form as 100,. To see how
computers “translate” decimal to binary numbers, here are the first ten conversions:

Decimal Binary Explanation
0 0 no 1s
1 1 one 1
2 10 one 2 and no 1s
3 11 one 2 and one 1
4 100 one 4, no 2s, and no 1s
5 101 one 4, no 2s, and one 1
6 110 one 4, one 2, and no 1s
7 111 one 4, one 2, and one 1
8 1000 one 8, no 4s, no 2s, and no 1s
9 1001 one 8, no 4s, no 2s, and one 1
10 1010 one 8, no 4s, one 2, and no 1s

How do you express certain numbers in powers of ten notation?

A number in power of ten notation is represented as a base number (or mantissa) times
ten raised to some power (or exponent). This means the mantissa is multiplied by ten
times the number of times the power indicates. For example, in the equation 32 X 104,
the 32 is the mantissa multiplied by 10 X 10 X 10 X 10. This would equal 320,000.

Power of ten notation can also be used to express the same number in various
ways. For example, the distance from the Earth to the Sun averages 93,000,000 miles.
This can be represented by the following:

93,000,000

93 X 108

9.3 X 107

or 0.93 X 108 and so on.



The distance between the Earth and the Sun is most easily expressed using powers of ten as 9.3 X 107. The
Image Bank/Getty Images.

Why do mathematicians and scientists often use scientific notation?

In scientific notation, scientists generally pick the power of ten that is multiplied by a
number between 1 and 10, which makes larger (and smaller) numbers easier to write
and read because they take up less space.

For example, in the case of the average distance between Earth and Sun, 9.3 X 107
miles is mathematically much easier to work with than any larger or smaller exponent
numbers. The following are several examples of large and small numbers in powers of
ten notation similar to numbers used in scientific notation (note: numbers that are
extremely small in scientific notation will have negative exponents):

® 748,000 can be represented by 7.48 X 10°

® 245 can be represented by 2.45 X 102

e —45,000 can be represented by —4.5 X 10*

¢ 0.025 can be represented by 2.5 X 1072

® —(0.0036 can be represented by —3.6 X 1073

¢ 0.0000409 can be represented by 4.09 X 10~°

© (0.0000000014 can be represented by 1.4 X 102
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What prefixes define the powers of ten?

Many standard prefixes are used to represent powers of ten, most of which are
employed quite frequently to express various units. We are all familiar with some of
them, including kilo- (from the Greek chilioi, or “a thousand”), milli- (from the Latin
mille, or “thousand”) , and micro- (from the Greek mikros, or “small”). The following
chart defines some prefixes representing the powers of ten:

Prefixes for Powers of Ten

Multiple Name
1018 exa
1015 peta
1012 tera
10° giga
108 mega
103 kilo
102 hecto
10 deka
101 deci
102 centi
103 milli
106 micro
1079 nano
10712 pico
10715 femto
10-18 atto

THE CONCEPT OF ZERO

What is a placeholder?

A placeholder is a number that, as the name implies, holds a place. Initially, various
cultures used a placeholder—often a dot or a space—to show an empty spot or place
not used in a numeral (or other way of counting). This was in place of what we now
call a zero (0), a symbol that is not only a placeholder but also an essential number in
our numeration system. (For more about the evolution of the symbol zero [0], see
“History of Mathematics.”)

What are the definitions of zero and non-zero?

Those who use the Hindu-Arabic numeration system are all familiar with the concept
of “zero” (0), and its importance. The symbol “zero” represents a valuable placeholder;
it is also the additive identity element of an algebraic system (when a number and its



additive inverse add up to 0); and, finally, it is the starting point in measurements. The
zero symbol is also called a cipher (no relation to sending secret messages) or the
symbol for the absence of quantity (although be aware that cipher can also mean any
Hindu-Arabic numeral). In other words, zero is naught (nothing, or, from the Old
English, nawiht, meaning “not” [na] and “thing” [wiht]).

Mathematicians also use the word non-zero to represent a quantity that does not
equal zero. A real non-zero number must either be positive or negative; a complex
non-zero number can be the real or imaginary part of the equation. (For more infor-
mation about complex numbers, see above.)

What is an indeterminate number?

As with many other fields, mathematics has terms that are sometimes confusing or
overlapping. For example, it is interesting to note that there is such a number as 0/0,
which is called an indeterminate number. But be careful: This is not the same as an
undefined number. If an indeterminate number comes up somewhere, you never
know the value for your specific case—and you can conceivably give it any number of
values. Confusing? Don’t worry, you're not alone. It is one of those quandaries that
often baffles the best mathematicians.

BASIC MATHEMATICAL OPERATIONS

What does an equal sign represent?

In standard arithmetic terms, the equal sign (=) is a symbol that represents two
amounts with the same value. For example 7 = 7; or 3 + 4 = 7. When something is
not equal, the signis #,asin2 # 3or3 + 7 # 12.

In a line of computer code, the equal sign can mean something much different.
For example, for codes used under certain conditions, such as a JavaScript-reading
computer, a single equal sign in a line of script means “is”. There is even a double
equal sign (= =) that means “is equal to,” an important difference when writing code
for the computer. In addition—and confusing as it may seem—the computer codes for
“not equal” are different, and include != and /=.

What is addition?

Addition is an operation in which two numbers, called the addends, produce a third
number called the sum. Natural numbers are added by starting with the first addend
and counting as many more numbers as the second addend. For example, for 2 + 4,
you would think 2, 3 (as the first number after 2), 4 (as the second number), 5 (as the
third number), and 6 (as the fourth number), thus the numbers add up to 6. Not all
numbers are added in the same way as natural numbers.
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When was the equal sign introduced into mathematics?

he equal sign (=) is a relatively new invention in mathematics. It was first

used by British mathematician Robert Recorde (1510-1558; also seen erro-
neously as Record) in his book The Whetstone of Witte (1557), the first algebra
book introduced in England. In it he justifies using two parallel line segments
“bicause noe 2 thynges can be moare equalle (sic)” (“because no two things can
be more equal than parallel lines.”) It was not an immediately popular symbol,
though, with mathematicians continuing to use a range of symbols for equal,
including the two parallel lines (Il) used by Wilhelm Xylander in 1575, and ae or
oe (both from the word aequalis, the Latin for “equal”). But for the most part,
the word “equal” was written in an equation until around 1600, when Recorde’s
symbol became more readily accepted, and it continues to be so today.

What does carry mean in addition?

In addition, carry defines a way in which larger numbers are added. In this arithmetic
operation, there is a shifting of leading digits into the next column to the left when
the sum of that column exceeds a single digit. For example, carrying is evident in the
following operation in the base 10 numbering system (adding addends 234 and 168,
giving the sum 402): 1
34
+ 168

402

By adding the same columns, starting in the right-hand column, 8 + 4 is 12, a num-
ber larger than 9, the highest number than can exist in that spot; carry the amount of ten
to the next column, leaving 2; add 3 + 6 + 1 (which, when carried, represents 10 for this
column), which equals 10, again a number larger than 9. Again, carry the one to the next
column leaving 0; adding the 2 + 1 + 1 (carried) equals 4. All total, the sum is 402.

N~

How do you subtract numbers?

Subtraction is the “opposite” (or, in set theory, the inverse) of addition: In its simplest
form, one whole number is essentially taken away from another whole number. When
you subtract numbers, you are answering the question of how many are left. For
example, if 23 people leave a building that has 123 people (123 — 23), there would be
100 people left in the building.

What does borrow mean in subtraction?

As with “carry” in addition, to “borrow” in subtraction means to take amounts from
one number and assign them to the next. In this procedure, the 10 is borrowed from



the next highest digit column in order to obtain a positive difference in the nearby
column. For example, borrowing is evident in the following operation in the base 10
numbering system (1,234 minus 567, giving the result of 667):

1734
—567
667

When you subtract the same columns, starting in the right-hand column, the 4 is
too small to subtract from 7; therefore, you need to borrow 10 from the column to the
left, boosting the number 4 to 14. The column to the left then loses 10, and 2 is left.
Again, the 2 is too small to subtract from 6, so 10 is borrowed from the next column
to the left, boosting the number 2 to 12. The last number to the left is dropped down
by 10, giving 11; the 5 is subtracted from the 11, resulting in 6 in that column.

Where did the symbols plus (+) and minus (—) originate?

One of the first books to use the plus and minus signs was written in 1489 in Johann
Widmann’s (c. 1460-?) Mercantile Arithmetic. Originally, he used the signs + and —
to indicate excesses and deficits (what we would call credit and debit) in business deal-
ings. But some historians believe the + sign initially evolved from the French ef, or
“and,” because the written “e” and “t” resemble the + sign.

Although they were probably used before in general mathematics, the first person
known to have used the + and — symbols in writing algebraic expressions lived in the
early 1500s: Dutch mathematician Vander Hoecke. The symbols finally went into gen-
eral use in England when Robert Recorde’s (1510-1558; also seen erroneously as
Record) book The Whetstone of Witte was published; this is the same book responsible
for bringing the equal (=) sign to the forefront of mathematics (see above).

What is multiplication?

The word “multiply” comes from the Latin roots mulfi (“many”) and pli (“folds”). Eng-
lish poet Geoffrey Chaucer (1340?—1400) may have used the word first as a verb in his A
Treatise on the Astrolab (1391). In multiplication, two natural numbers are multiplied
together (the numbers are called factors; the less-used terms for two such numbers are
multiplicand and multiplier), producing what is called a product. Multiplication is
actually a form of repeated addition. For example, 2 X 3 means 2 + 2 + 2 (or 6).

What are multiplication tables?

Multiplication tables are just what the name implies: a table of multiplication. Most of
these tables have a specific purpose: mainly, to multiply numbers in the rows and
columns by each other to find a product. One of the simplest multiplication tables
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deals with the whole numbers. Here is
one example:

O O W (W
o0 W |
[S—

u]oulul

NS S (=)
O U R N e
0 O\ B DN
[S—

)

[

(@) N \)

N =

()

Where did the symbols for
multiplication originate?

The 17th century seems to be the century
when the basic mathematical symbols
were developed. The best reasons for the
development of such symbols make
sense: they were faster and easier to
write, took up less written space, and
helped the printing process. Although the use of these symbols would eventually be
standardized—so everyone would understand the meaning of certain mathematical
operations—it took a while for this to happen.

Ledgers are commonly used in business for account-
ing purposes. Debits and credits are added and sub-
tracted to keep track of profits and expenses. The
Image Bank/Getty Images.

For example, in 1686 German mathematician Gottfried Wilhelm Leibniz
(1646-1716) was using the symbol N for multiplication and U for division. Eventual-
ly, English mathematician and scientist Thomas Harriot (1560-1621; also seen as
Hariot) used the dot to indicate multiplication in his treatise Artis anayticae praxis
(1631). (He also developed the greater than [>] and less than [<] symbols). That same
year, English mathematician William Oughtred (1575-1660) used the symbol “X” for
multiplication in his book Clavis mathematicae, in which he was also the first to
mention the plus-minus symbol [+].)

Today, we use a number of symbols for multiplication operations. The most com-
mon symbols are X, * , ., and (),asin2 X 3,2 * 3,2 .3, and (2)(3).

How is the term inverse used in arithmetic operations?

Inverse operations are those that “undo” another operation. In particular, subtraction
is the inverse of addition because a + b — b = a; division is also the inverse operation
to multiplication.

The inverse of a number can be expressed as follows: The additive inverse of a real
or complex number a is the number that, when added to g, equals 0. In multiplication,
the multiplicative inverse of a is the number that, when multiplied by a, equals 1.



Why can’t you divide by zero?

Dividing by zero is like the old saying “You can’t get something from noth-
ing.” Mathematically speaking, it’s the same way: You can’t “divide by noth-
ing.” In fact, when something is divided by zero, the answer is always undefined.

Here are a few ways of looking at this: There is a rule in arithmetic that
a(b/a) = b. So if we say that 1/0 = 5, then 0(1/0) = 0 X 5 = 0. In other words, if
you could divide by 0, this rule would not work. Another way to look at the “no
to 0 as a divisor” problem is through multiplication: if 10/2 = 5, we know that 5
X 2 = 10; the same for 5/1 = 5, thus we know that 5 X 1 = 5. But if you take
5/0, that would mean that the answer times 0 would equal 5, but anything times
0 is equal to zero. Because there is no answer to this dilemma, mathematicians
say you can’t divide by zero.

What is division?

The word “divide” comes from the Latin root vidua (referring to a separation; the
word “divide” shares its major root with the word “widow”) and di, a prefix that is a
contraction of dis, meaning “apart” or “away.” In division, the number being divided is
called the dividend, while the number dividing it is called the divisor. The end result is
called the guotient. For example, in 20/5 = 4, 20 is the dividend, 5 the divisor, and 4
the quotient.

Division in mathematics is a relatively new concept for the masses; it was only
taught at university levels after the 16th century. The first to offer division to the pub-
lic was German mathematician Adam Ries (1492-1559; also seen as Risz, Riesz, Riese,
or Ris) in his work Rechenung nach der lenge, auff den Linihen vnd (sic) Feder, often
shortened to Practica. His work reached more people for an important reason: Instead
of the usual practice of writing a mathematical book in Latin, he wrote his book in
German, thus reaching a wider audience.

Where did the symbols for division originate?

The history behind the division symbols is long and complicated. The following lists
how the major ones developed:

Closed parentheses—The arrangement “8)24,” meaning 24 divided by 8 in this
case, was used by Michael Stifel (1486 or 1487-1567) in Arithmetica integra (1544).

The obelus—By 1659 Swiss mathematician Johann Heinrich Rahn (1622-1676)
introduced the division symbol (=, called an obelus) in his book Teutsche Algebra.
The symbol was a combination of “:” and “—". (This division symbol was used by many
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writers before Rahn as a minus sign.) In 1668, when Rahn’s book was translated into
English with additions by English mathematician John Pell (1610-1685), the division
symbol was retained. Some say Pell greatly influenced Rahn to develop the symbol,
but most historians agree that there is little evidence of such a connection.

Slash—Another sign for division, the slash (/) was actually first used for fractions,
such as 2/3 or 1/2. It can be extended into other, larger or smaller numbers, such as
123/112 and 0.112/0.334. Little is known about its origins, but it is known that this
symbol was sometimes used for subtraction, until it became standard practice for rep-
resenting division.

How did the symbols for long division develop?

In the 19th century, United States textbooks typically showed long division with the
divisor, dividend, and quotient on the same line, separated by parentheses, as in
36)108(3. In the same century, in examples of short division, a vinculum (line) was
placed under the dividend, with the vinculum almost attached to the bottom of the
parenthesis. The quotient was written under the vinculum, as per the following:

5)455
91

By late in the 19th century, the vinculum was almost attached to the top of the
parenthesis and the quotient was written above the vinculum, as per the following:

91
5)455
These symbols are similar to what we see in our elementary dealings with long

division, but our vinculum is attached to the parenthesis. Interestingly enough, there is
no name for the symbol used for long division () ).

What are the least common multiple and denominator?

The smallest common multiple (whole number) of two or more whole numbers is
called the lowest (or least) common multiple (LCM). For example, for the numbers 3
and 8, the multiples of 8 are 8, 16, 24, 32, and so on; the multiples of 3 are 3, 6, 9, 12,
15, 18, 21, 24, 27, and so on. Therefore, the LCM of 3 and 8 is 24.

The least common denominator (LCD) is mainly used to carry out the addition or
subtraction of fractions. In order to do these operations, the fractions need to have the
same denominator. (For more information about fractions, see below.) The easiest way
to work on such calculations is to determine the lowest number possible for the
denominator—a number called the least common denominator (LCD)—which is
actually the common factor by which two numbers are divisible. For example, to add
1/6 and 1/8, we have to find the least common multiple of the denominators. In this



case, the number is 24: Multiply 1/6 X 4/4 and 1/8 X 3/3, to change each addend to
some number of “24ths”; or 1/6 X 4/4 = 4/24; and 1/8 X 3/3 = 3/24. Thus, 1/6 + 1/8
= 4/24 + 3/24 = (4+3)/24 = 7/24.

What is the root of a number?

The root of a real or complex number is a number that, when raised to some exponent
(or multiplied by itself the number of times indicated by the exponent), equals the
original number. Most people are familiar with square and cube roots. There are actu-
ally many other such roots, including the real fourth roots, real fifth roots, and so on,
and roots associated with complex numbers. For example, the real fourth roots of 16
are 2 and —2; the real fifth root of —32 is —2.

What are the square and square roots?

When you multiply a real or complex number by itself, you are actually squaring that
number. Mathematicians express the square of a number using the superscript 2, or,
for example, 22. The square of a real number is always positive, whether the number is
22 (= 4) or —22 (= 4; a negative times a negative equals a positive real number).

A square root is a number that when multiplied by itself equals a specific product.
For example, if 2 = s, then f = + \/s , in which ¢ is the square root and s is a positive
number. For example, the two square roots of 16 (\/ 16 ) are 4 and —4, as 42 = 16 and
—42 = 16.

What are the cube and the cube root?

Much like a square, a cube is when you multiply a real or complex number by twice
itself (making a total of three numbers). Mathematicians express the cube of a number
using the superscript 3; or, for example, 23, or 2 X 2 X 2. Unlike a square of a number,
the cube of a number will not always be positive, such as —3 X —3 X —3, which
equals —9.

A cube root is a number that when multiplied by itself two more times has the
product of s, in which # = s. For example, the cube root of 125 (s) is 5 (¢), or written
as /125 = 5; the cube root of —125is —5.

What is a factor and what does factorization mean?

A factor is a portion of a quantity that when multiplied by other factors gives the
entire quantity (or product). In order to determine such factors (or divisors), you have
to use factorization (also called factoring or to factor). When factoring an integer, it is
referred to as prime factorization; when factoring a polynomial, it is called polynomial
factorization.
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What is prime factorization?

Many of us are most familiar with prime factorization, which is a way of taking a num-
ber and breaking it down into its constituent primes. An example of prime factorization
is as follows: One finds the “simplest” representation of the given quantity in terms of
smaller parts—in the case of 15, the factors would be 1, 3, 5, and 15 (essentially, all the
numbers that will divide integrally into 15). Not that prime factorization is always that
easy. Larger numbers make it more difficult to factor, and many sophisticated prime
algorithms have been devised for larger—and different types—of numbers.

What does the greatest common factor mean?

The greatest common factor (or GCF; sometimes called highest common factor) of
two whole numbers is the largest whole number that is a factor of both. Take, for
example, the numbers 12 and 15: The factors of 12 are 1, 2, 3, 4, 6, and 12; the factors
of 15 are 1, 3, 5, and 15. Therefore, the common factors—or numbers in both lists of
factors—are 1 and 3; and the greatest (highest) common factor in this case is 3.

There is another method used to discover the GCF: listing the numbers’ prime
factors, then multiplying those numbers. For example, the prime factorizations of 12
and 15 are: 2 X 2 X 3 =12 and 3 X 5 = 15. Notice that the prime numbers have 3 in
common; thus, the GCF is 3.

An example with larger numbers is to find the GCF of 36 and 54. Working it out by
the first method, the factors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, and 36; the factors of 54 are
1,2,3,6,9, 18, 27, and 54. The greatest (or highest) common factor of both numbers is
18. To work it out using prime factorization, the prime factorization of 36 is 2 X 2 X 3
X 3; the prime factorization of 54 is 2 X 3 X 3 X 3. Both these factorizations have one 2
and two 3s in common; thus, we multiply those common numbers, or 2 X 3 X 3 = 18.

FRACTIONS

What are proper and improper fractions?

The word “fraction” to most of us means a part of something; in mathematics, it rep-
resents a type of numeral, in most cases the quotient of two integers, with the top
number called the numerator (the number of parts) and the bottom number the
denominator (how many parts the whole is divided into). Written out, the numerator
and denominator are separated by a “/” or “—". A fraction is usually denoted by a/b, in

which “a” and “b” are whole numbers and “b” is not equal to zero. (For the explana-
tion of why you cannot divide by zero, see above).

A rational number between 0 and 1 can be represented by fractions (by the divi-
sion of two numbers). If the quotient is less than one, such as 1/2 or 2/5, then it is
called a proper fraction; if the quotient is greater than one—or, in other words, if the



Can a fraction’s numerator be zero?

n the context of division (see above), we learned that it is not possible to divide

by 0, which is labeled an undefined number. But you can have zero (0) as your
numerator. And any allowed fraction (one that doesn’t have a 0 in the denomina-
tor) that has 0 as its numerator will always be equal to zero. For example, 0/5
and 0/345 both equal 0.

numerator of a fraction is larger than the denominator, such as 23/7—it is called an
improper fraction.

How are fractions converted to decimals and vice-versa?

In the most commonly used place value, the decimal system, numbers smaller than 1
can be expressed as fractions called decimal fractions. In this system, the decimal frac-
tions are expressed in terms of tenths, hundredths, thousandths, and so on. For exam-
ple, for the fraction 1/2, or 1 divided by 2, the decimal fraction is 0.5; and, vice versa,
the decimal fraction 0.5, or 5/10ths, is equal to 1/2.

Not all fractions are so easily converted to decimals. It depends on the type of
number, especially if it is an irrational or rational number. Some decimal fractions
include an infinite number of decimal places to be expressed exactly; something that
is not possible as far as we know (who can write an infinite number of numbers?) And
some decimal fractions repeat forever, such as 1/3 = 0.3333....

What are the rules for adding and subtracting fractions?

When adding fractions, the denominators need to be the same, but you can’t add the
denominators to get the answer. Simply put, if the denominators are already the same,
the fractions are simple to add, such as 1/3 + 1/3 = (1 + 1)/3 = 2/3. If the denomina-
tors are not the same, find the common denominator by multiplication. For example,
12 +1/3=3/6 +2/6 = (3 + 2)/6 = 5/6.

When subtracting fractions, the denominators again need to be the same; and
again you can’t add (or subtract) the denominators to get the answer. If the denomina-
tors are the same, subtract the fractions, such as 2/3 — 1/3 = (2 — 1)/3 = 1/3. If the

denominators are not the same, find the common denominator by multiplication,
suchas 1/2 — 1/3 = 3/6 — 2/6 = (3 — 2)/6 = 1/6.

What are the rules for multiplying and dividing fractions?

As to be expected, there are rules for multiplying and dividing fractions. Multiplication
of fractions is very straightforward—just multiply the numerators and denominators,
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then simplify the resulting fraction, if needed (or if you can). For example, 2/5 X 4/7
= (2 X 4)/(5 X 7) = 8/35 (this number can’t be simplified).

Division of fractions entails one main rule: You need to flip over, or invert, the
“divisor” fraction (the fraction on the bottom) to get the result (this is also called the
reciprocal of the fraction; see below). Here are the steps: First, change the division
sign to a multiplication sign after inverting the fraction to the right of the sign. Multi-
ply the numerators and denominators, and write the result. You can then simplify or
reduce the fraction if needed. For example, 1/2 +~ 1/4 = 1/2 X 4/1 = 4/2. This number
can be simplified to 2.

How are decimal fractions calculated by adding, subtracting, multiplying
and dividing?

Decimal fractions are added, subtracted, multiplied and divided much like whole
numbers, but with decimal differences. The following gives some examples: Adding
such numbers as 0.3 + 0.2 is simple: 0.3 + 0.2 = 0.5. Adding whole and decimal frac-
tions is also easy: 2.4 + 5 = 7.4. These numbers are also easy to subtract, such as 0.3
— 0.2 = 0.1. Multiplication and division with fractions is also similar to doing so with
regular numbers, although the placement of the decimal point is all important. For
example, multiplying 24.45 X 0.002 = 0.0489; dividing the same numbers 24.45/.002
= 12,225. (It’s interesting to note here a “mathematical surprise”: In the last example,
dividing the small numbers equaled a much larger number—the opposite of what
most of us would expect.)

How do you reduce a fraction?

To reduce a fraction, there are three general steps: factor the numerator, factor the
denominator, and cancel out the fractional mixes that have the value of one. The left-
over number is the reduced fraction. For example, to reduce 16/56, factor the numera-
tor (16 = 2 X 2 X 2 X 2) and factor the denominator (56 = 2 X 2 X 2 X 7); then
eliminate the 2s (2/2 equals 1):

16 _ 2X2X2X2
56 T 2X2X2X7

The reduced fraction equals 2/7.

What do you calculate an equivalent fraction?

An equivalent fraction—also called “building fractions”—is the reverse of reducing
the fraction: Instead of searching for the 1 in the fractional mix that you can reduce,
you insert a 1 and build the fractions. For example, to find the equivalent fraction for
1/4, using the number 3, multiply the numerator and denominator by 3 (3/3 = 1); 1/4



What are unit fractions and how are they tied to ancient Egypt?

unit fraction is one that has a numerator of 1, such as 1/2, 1/4, and 1/43545.

One of the earliest discussions of unit fractions—a table of representations
of 1/n—was found on the famous Rhind papyrus (also called the Rhind Mathe-
matical Papyrus), dated to around 1650 BCE. This record—a table copied by the
Egyptians from another papyrus dated 200 years earlier—represented a sum of
distinct unit fractions for odd “n” numbers between 5 and 101. To write a certain
fraction, they would add combinations of 1/n. For example, instead of writing
2/5, they wrote 1/3 + 1/15; for 2/29, they wrote 1/24 + 1/58 + 1/174 + 1/232.

Because of the Rhind papyrus discovery, the sums of unit fractions are now
called Egyptian fractions. No one truly knows why the Egyptians chose this
method for representing fractions, but some historians believe it was a “wrong
turn” in Egyptian mathematical history. Whatever the reason, the Egyptians
(apparently successfully) used this system for 2,000 years. (For more informa-
tion about the Rhind papyrus, see “History of Mathematics.”)

X 3/3 = (1 X 3)/(4 X 3) = 3/12; therefore, the equivalent fraction in this case is 1/4 =
3/12 (the equal sign is used to represent equivalent fractions).

What is the reciprocal of a number?

The reciprocal of a number is obtained when a given number is divided into 1: the
results are called the reciprocal of that number. For example, the reciprocal of 6 is 1
divided by 6, or 1/6. Reciprocals come in most handy when dividing fractions (see
above to learn more about dividing fractions).
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FOUNDATIONS
OF MATHEMATICS

FOUNDATIONS AND LOGIC

What are the foundations of mathematics?

The foundations of mathematics include how to formulate and analyze the language
(you have to “speak” the right mathematical language to make meaningful mathemat-
ical statements), axioms (a statement accepted as true without proof), and developing
logical methods in all mathematical studies. The most basic mathematical concepts in
the foundations include numbers, shapes, sets, functions, algorithms, axioms, defini-
tions, and proofs.

Why do so many philosophers study the foundations of mathematics?

There are three underlying reasons why philosophers often study the foundations of
mathematics. First, these foundations have always been a part of scientific thought,
with the abstract nature of mathematical objects offering unusual and often unique
philosophical quandaries. Second, the subject offers a high level of technical sophisti-
cation, allowing philosophers to develop connections between models and patterns,
laying the groundwork for many other sciences. And finally, the foundations of mathe-
matics provides ways for philosophers (and mathematicians) to try out general philo-
sophical doctrines in a specific scientific context.

What is logic?

Although it closely resembles mathematics (and is sometimes used as a basis for it),
logic is a branch of knowledge or inquiry that is separate from mathematics and the sci-
ences, but it is still used by both fields in various ways. Simply put, logic is described as
the systematic study of well-founded inference, in which there is a definite distinction
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What is an argument?

In logic, an argument is not a “heated discussion,” although some mathemati-
cians may argue over the validity of certain mathematical arguments. In this
sense, an argument is a list of statements called premises followed by a state-
ment called the conclusion. Generally, an argument is valid if the conjunction of
its premises implies its conclusion; stated differently, validity means that if all
the premises are true, then so is the conclusion. But remember: The validity of
an argument does not guarantee the truth of its premises, and thus it does not
guarantee the truth of its conclusion. It only guarantees that if the premises are
true, the conclusion will be true.

between logical validity (also known as the formal properties of the inference process)
and truth. This also means that a true result may come from an invalid argument (see
below for the definition of an argument). For example, “all cats are cute; Fluffer is a cat;
therefore, Fluffer is cute,” is a valid inference; whereas, “all cats are cute; Fluffer is cute;
therefore, Fluffer is a cat,” is an invalid inference, even if Fluffer really is a cat.

What is the historical basis for mathematical logic?

Most mathematicians believe that systematic logic began with Aristotle’s collection of
works titled Organon (Tool), in which he introduced his ideas on logic. In particular,
Aristotle used general forms to describe logic, such as if all x are y; and all y are 2;
then all x are z. He presented three laws basic to all valid thought: the law of identity,
or A is A (for example, an acorn will always yield an oak tree and nothing else); the law
of contradiction, or A cannot be both A and not A (for example, an honest woman can-
not be a thief); and the law of the excluded middle, or either or, in which A must either
be A or not A (for example, a dog can be brown or not brown). Interestingly, author
Ayn Rand divided her novel Atlas Shrugged into three parts after these three princi-
ples as a tribute to Aristotle.

Was mathematics always based on a logical foundation?

No, not all of mathematics was always based on a logical foundation, but some ancient
cultures did develop certain aspects of logic in their thought. The Greeks were proba-
bly one of the first cultures to understand logic’s role in mathematics and philosophy,
and they studied the subject extensively. For example, geometry, as presented by
Greek mathematician Euclid (c. 325—c. 270 BCE), had some foundations in logic.
Greek scientist and philosopher Aristotle’s (384-322 BCE) rules for syllogisms were
also based on logic, and he wrote the first systematic treatise on logic. But his logic



works were based on ordinary language—
making them a matter of interpretation
and subject to ambiguities.

It was not until the development of
calculus that most of mathematics was
put on a logical foundation. By the 17th
century, people such as German mathe-
matician Gottfried Wilhelm Leibniz
(1646-1716) began to demand a more
regular and symbolic way to express
logic. Logic truly became a part of mathe-
matics around the mid-19th century,
especially with the 1847 publication of
English mathematician George Boole’s
(1815-1864) The Mathematical Analysis
of Logic and English mathematician
Augustus De Morgan’s (1806-1871) For-
mal Logic. Thus, mathematics began to Syllogisms, a simple exercise developed by Greek
encompass symbolic logic with precise  philosopher Aristotle, use basic concepts of logic
rules to manipulate those symbols (see also seen in mathematics. Aristotle also contributed

bel f b bolic logi to mathematics by originating the concept of proofs.
elow for more about symbolic Oglc)' The Bridgeman Art Library/Getty Images.

Of course, nothing is perfect, although
mathematicians in the late 19th and early 20th centuries hoped it would be. They
believed that all of mathematics could be described using symbolic logic and made
purely formal. But in the 1930s, Austrian-American mathematician and logician Kurt
Godel (1906-1978) put a damper on such an idea by showing that not all truths could
be derived by a formal logic system.

What were Aristotle’s syllogisms?

Syllogisms, which are often attributed to Aristotle, are the verbal versions of the formal
deductive rules for logic. Aristotle believed that any logical argument could be
explained in these standard forms. He divided them into a major premise (“all squirrels
eat nuts”), a minor premise (“Fred is a squirrel”), and a conclusion derived by a rule of
logic (“Fred eats nuts”). The classical syllogism is, “All men are mortal. Socrates is a
man. Therefore Socrates is mortal.” This form of logic—called syllogistic logic—would
dominate Western cultural thought for more than 2,000 years.

What are subjects and predicates in Aristotelian logic?

In Aristotelian logic there are grammatical distinctions between a subject and a predi-
cate. The subject is usually an individual entity (an object, house, city, man, animal);
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or it may be a class of entities (objects,
houses, cities, men, animals). The predi-
cate is the property or mode of existence
that does or does not exist with a given
subject. For example, a singular plant
(subject) may or may not be blooming
(predicate); all houses (subject) may or
may not have two stories (predicate).

Who invented a way of analyzing
syllogisms?

In 1880 English logician John Venn
(1834-1923) presented a method to ana-
lyze syllogisms, now known as Venn dia-
grams. Venn initially criticized such
diagrams in works by his contempo-
In these examples of Venn diagrams, the top illustra- raries, especially those of English math-
tion represents an order-two diagram, and the bot- ematicians George Boole (18 15—1864)
tom is an order-three diagram. and Augustus De Morgan (1806-1871).

But in 1880 Venn introduced his own,
now famous, version of the diagrams in his paper On the Diagrammatic and
Mechanical Representation of Prepositions and Reasonings. By 1881, along with
correcting Boole’s work, Venn further elaborated on the diagrams in his book Sym-
bolic Logic. Today we are most familiar with Venn diagrams in connection with
understanding sets.

Although Venn is credited with the diagrams, he was not the first person to use
such geometric methods to represent syllogistic logic. German mathematician Got-
tfried Wilhelm Leibniz (1646-1716) used such graphic representations in his work.
And even Swiss mathematician Leonhard Euler (1707-1783) is known to have pre-
sented diagrams that had a definite “Venn-ish” look a century before John Venn.

What are some examples of Venn diagrams?

Venn diagrams are schematic illustrations used in logic theory to show collections of
sets and the relationship between them. Overlapping circles represent the sets (or the
subjects and predicates in syllogistic logic); the standard way of presenting such dia-
grams include the intersection of two (order-two diagram) to three (order-three dia-
gram) circles. Based on what circles intersect and the areas shaded, a conclusion about
the sets may then be read directly from the diagram. Such illustrations can include the
union of two sets, the intersection of two sets, the complement of a set, and the com-
plement of the union of two sets. (For more information about sets, see p. 122).



MATHEMATICAL
AND FORMAL LOGIC

What is mathematical logic?

Mathematical logic is not the logic of
mathematics, but is really the mathemat-
ics of logic composed of those parts of
logic that can be modeled mathematical-
ly. Overall, it was invented to understand
and present the work of Austrian-Ameri-
can mathematician and logician Kurt
Godel (1906-1978) and his interpretation
of the foundations of mathematics in the
early 20th century. Although mathemati- The human brain is more than just a remarkable
cians use mathematical logic to have calculating device; it also possesses the capacity for
rational and reasonable discussions of the intuition. Some mathematicians have created the
X R i concept of “intuitionism” to reflect the idea that

many 1ssues in the foundations of mathe- concepts of language and math are really just all in
matics, not everything is agreed upon. your head. Visuals Unlimited/Getty Images.

What is intuitionism?

There are some people within philosophy and mathematics who reject the formalism
of mathematics and believe in infuitionism, which says that words and formulas have
significance only as a reflection of the mind’s activity. Intuitionists believe that a theo-
rem is meaningful only if it represents a mental construction of a mathematical or
logical entity. This is different from the classical approach that states that the exis-
tence of an entity can be proven by refuting its non-existence. For example, if you said
“A or B” to an intuitionist, he or she believes that either A or B can be proved; but if
you said, “A or not A,” this is not allowed, since you cannot assume that it is always
possible to either prove or disprove statement A.

What is a proposition in mathematical logic?

A proposition in mathematical logic is a statement that can be proven to be either true
or false. For example, if you say, “The bear is black,” that is a proposition; but the
statement “the bear is x,” can’t be true or false until a particular value for x is chosen;
therefore, it is not a proposition.

What is symbolic logic?

Symbolic logic (also called formal logic) is mainly concerned with the structure of rea-
soning. It determines the meaning and relationship of statements used to represent
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What contributions did David Hilbert make to mathematics?

erman mathematician David Hilbert (1862—1943) contributed a great deal to

mathematical logic, as well as mathematics in general. In 1890 his proof of
the theorem of invariants replaced earlier work on the subject and paved the way
for modern algebraic geometry; by 1897, his algebraic number theory led to
many developments in that field. His contributions also included discoveries in
number theory, mathematical logic, differential equations, multivariable calcu-
lus, Euclidean geometry, and even mathematical (theoretical) physics.

Hilbert is most well known for presenting “Hilbert’s problems,” which origi-
nally were a set of 23 unsolved mathematical problems that he hoped would
eventually lead to many more disciplines within the field of mathematics. His
idea worked: As mathematicians attempted to solve the problems their efforts
led to mathematical discoveries in the 20th century, although a number of the
problems have yet to be solved. (For more information about Hilbert, see “Histo-
ry of Mathematics.”)

specific mathematical concepts and provides a means to compose proofs of statements.
Symbolic logic draws most notably on set theory. It uses variables combined by opera-
tions such as nof or and, and assigns symbols to them (“~” and “&”, respectively).

What are truth values and truth functions’

As seen above, when discussing propositional calculus, a proposition is any declarative
sentence that is either true (T) or false (F). Mathematicians refer to T or F as the fruth
value of the statement.

The combinations of such statements are known as fruth functions, with their
true values determined from the overall true values of their contents. Truth-function-
al analysis includes the following logical operators:

Negation—The negation of a statement is false if the original statement is true,
and true if the original statement is false; it refers to “it is not the case that” or simply
“not” in natural language.

Conjunction—The conjunction of two statements is true only if both are true and
false in all other instances; it refers to “and” in natural language.

Alteration—Alteration (or disjunction) of two statements is false only if both are false
and true in all other instances; it refers to “or” (and “either ... or”) in natural language.

Conditional—Conditional (or implication) is false only if the antecedent is true
and the consequent is false, and is true in all other instances; it refers to “if ... then”
or “implies” in natural language.



What is propositional calculus?

Propositional calculus is not the calculus most of us hear about, but it is con-
sidered by many to be the foundation of symbolic logic. (Actually, the term
“calculus” is a generic name for any area of mathematics that deals with calcu-
lating; thus, arithmetic could be called the “calculus of numbers.”) Also known
as truth-functional analysis, sentential calculus, or the calculus of propositions
(or, as seen above, any declarative sentence that is either true or false), proposi-
tional calculus deals with statements that can be assigned fruth values. In gen-
eral, it uses symbols to denote logical operators (such as and and or), and paren-
theses for grouping formulas.

Biconditional—Biconditional (double implication or bi-implication) is true only if
the two statements have the same value, either true or false; it refers to “if and only
if....” in natural language.

What is a truth table?

A truth table is a two-dimensional array of truth values derived by determining the
validity of arguments through assigning all possible combinations of truth values to
the statements. This simple form of logic depends on a combination of certain state-
ments, using terms such as “not” or “and,” along with the input values.

The first columns correspond to the possible input values and the last columns to
the operations being performed; the rows list all possible combinations of true (T) or
false (F) inputs, together with the corresponding outputs. The following is a truth
table for the three most common binary operations of logic (“if ... then,” “or,” “and”),
using s and £ as the statements:

s t if s, then ¢t sort sand t
T T T T T
T F F T F
F T T T F
F F T F F

What are logical operators in truth tables?

Logical operators in truth tables include such words as “and” or “or,” which are all
represented by certain symbols (for more about logical operators in predicate calcu-
lus, see below). For example, “and” (also called the conjunction operator) is also
referred to as a binary operator. It is one of the most useful logical operators, as in “p
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Why are truth tables important to computers?

In many ways, truth tables are directly connected to digital logic circuits. In the
case of computers, the terms would be AND, OR, NAND, NOR, NOT, XOR, or the
“gates” that open and close in response to such terms. In such a circuit, values at
each point can take on values of only true (1) or false (0); this is also known as the
computer binary system. In general, there is also a three-valued logic, in which
possible values are true, false, and “undecided.” A further generalization called
fuzzy logic examines the “truth” as a continuous quantity ranging from 0 to 1.
(For more about fuzzy logic and computers, see “Math in Computing.”)

AND q,” represented by the symbols A or &. The “or” (also called the disjunction oper-
ator) is also a binary operator, as in “p OR q”, and represented by the symbols \, and I.
The “not” (also called the negation or inversion) operator is known as a unary opera-
tor, and is represented by the symbols ~ or = (in computer programming, NOT is
often represented by the !). The “implies” (or implication operator) is also a binary
operator; its symbols include .., D, and A.

But note: Not all logical operators seem to represent words the way we are accus-
tomed to using them, and many times they seem to contradict their proper defini-
tions. But in a truth table, the logical operator means what it means—without the
usual nuances of our English language.

What is a