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Introduction

Calculus is the great Mount Everest of math. Most of the world is content
to just gaze upward at it in awe. But only a few brave souls attempt the

ascent.

Or maybe not.

In recent years, calculus has become a required course not only for math,
engineering, and physics majors, but also for students of biology, economics,
psychology, nursing, and business. Law schools and MBA programs welcome
students who’ve taken calculus because it requires discipline and clarity of
mind. Even more and more high schools are encouraging the students to
study calculus in preparation for the Advanced Placement (AP) exam.

So, perhaps calculus is more like a well-traveled Vermont mountain, with lots
of trails and camping spots, plus a big ski lodge on top. You may need some
stamina to conquer it, but with the right guide (this book, for example!),
you’re not likely to find yourself swallowed up by a snowstorm half a mile
from the summit.

About This Book
You, too, can learn calculus. That’s what this book is all about. In fact, as you
read these words, you may well already be a winner, having passed a course in
Calculus I. If so, then congratulations and a nice pat on the back are in order.

Having said that, I want to discuss a few rumors you may have heard about
Calculus II:

� Calculus II is harder than Calculus I.

� Calculus II is harder, even, than either Calculus III or Differential
Equations.

� Calculus II is more frightening than having your home invaded by zombies
in the middle of the night, and will result in emotional trauma requiring
years of costly psychotherapy to heal.
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Now, I admit that Calculus II is harder than Calculus I. Also, I may as well tell
you that many — but not all — math students find it to be harder than the
two semesters of math that follow. (Speaking personally, I found Calc II to be
easier than Differential Equations.) But I’m holding my ground that the long-
term psychological effects of a zombie attack far outweigh those awaiting you
in any one-semester math course.

The two main topics of Calculus II are integration and infinite series. Integration
is the inverse of differentiation, which you study in Calculus I. (For practical
purposes, integration is a method for finding the area of unusual geometric
shapes.) An infinite series is a sum of numbers that goes on forever, like 1 + 2 + 
3 + ... or 2

1 + 4
1 + 8

1 + .... Roughly speaking, most teachers focus on integration 
for the first two-thirds of the semester and infinite series for the last third.

This book gives you a solid introduction to what’s covered in a college
course in Calculus II. You can use it either for self-study or while enrolled in
a Calculus II course.

So feel free to jump around. Whenever I cover a topic that requires informa-
tion from earlier in the book, I refer you to that section in case you want to
refresh yourself on the basics.

Here are two pieces of advice for math students — remember them as you
read the book:

� Study a little every day. I know that students face a great temptation to
let a book sit on the shelf until the night before an assignment is due.
This is a particularly poor approach for Calc II. Math, like water, tends
to seep in slowly and swamp the unwary!

So, when you receive a homework assignment, read over every problem
as soon as you can and try to solve the easy ones. Go back to the harder
problems every day, even if it’s just to reread and think about them.
You’ll probably find that over time, even the most opaque problem
starts to make sense.

� Use practice problems for practice. After you read through an example
and think you understand it, copy the problem down on paper, close the
book, and try to work it through. If you can get through it from beginning
to end, you’re ready to move on. If not, go ahead and peek — but then
try solving the problem later without peeking. (Remember, on exams, no
peeking is allowed!)

2 Calculus II For Dummies 
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Conventions Used in This Book
Throughout the book, I use the following conventions:

� Italicized text highlights new words and defined terms.

� Boldfaced text indicates keywords in bulleted lists and the action part
of numbered steps.

� Monofont text highlights Web addresses.

� Angles are measured in radians rather than degrees, unless I specifically
state otherwise. See Chapter 2 for a discussion about the advantages of
using radians for measuring angles.

What You’re Not to Read
All authors believe that each word they write is pure gold, but you don’t have
to read every word in this book unless you really want to. You can skip over
sidebars (those gray shaded boxes) where I go off on a tangent, unless you
find that tangent interesting. Also feel free to pass by paragraphs labeled with
the Technical Stuff icon.

If you’re not taking a class where you’ll be tested and graded, you can skip
paragraphs labeled with the Tip icon and jump over extended step-by-step
examples. However, if you’re taking a class, read this material carefully and
practice working through examples on your own.

Foolish Assumptions
Not surprisingly, a lot of Calculus II builds on topics introduced Calculus I
and Pre-Calculus. So, here are the foolish assumptions I make about you as
you begin to read this book:

� If you’re a student in a Calculus II course, I assume that you passed
Calculus I. (Even if you got a D-minus, your Calc I professor and I agree
that you’re good to go!)

� If you’re studying on your own, I assume that you’re at least passably
familiar with some of the basics of Calculus I.

3Introduction
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I expect that you know some things from Calculus I, but I don’t throw you in
the deep end of the pool and expect you to swim or drown. Chapter 2 con-
tains a ton of useful math tidbits that you may have missed the first time
around. And throughout the book, whenever I introduce a topic that calls for
previous knowledge, I point you to an earlier chapter or section so that you
can get a refresher.

How This Book Is Organized
This book is organized into six parts, starting you off at the beginning of
Calculus II, taking you all the way through the course, and ending with a look
at some advanced topics that await you in your further math studies.

Part I: Introduction to Integration
In Part I, I give you an overview of Calculus II, plus a review of more founda-
tional math concepts.

Chapter 1 introduces the definite integral, a mathematical statement that
expresses area. I show you how to formulate and think about an area problem
by using the notation of calculus. I also introduce you to the Riemann sum
equation for the integral, which provides the definition of the definite integral
as a limit. Beyond that, I give you an overview of the entire book

Chapter 2 gives you a need-to-know refresher on Pre-Calculus and Calculus I.

Chapter 3 introduces the indefinite integral as a more general and often more
useful way to think about the definite integral.

Part II: Indefinite Integrals
Part II focuses on a variety of ways to solve indefinite integrals.

Chapter 4 shows you how to solve a limited set of indefinite integrals by using
anti-differentiation — that is, by reversing the differentiation process. I show
you 17 basic integrals, which mirror the 17 basic derivatives from Calculus I.
I also show you a set of important rules for integrating.

Chapter 5 covers variable substitution, which greatly extends the usefulness
of anti-differentiation. You discover how to change the variable of a function
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that you’re trying to integrate to make it more manageable by using the inte-
gration methods in Chapter 4.

Chapter 6 introduces integration by parts, which allows you to integrate func-
tions by splitting them into two separate factors. I show you how to recog-
nize functions that yield well to this approach. I also show you a handy
method — the DI-agonal method — to integrate by parts quickly and easily.

In Chapter 7, I get you up to speed integrating a whole host of trig functions.
I show you how to integrate powers of sines and cosines, and then tangents
and secants, and finally cotangents and cosecants. Then you put these meth-
ods to use in trigonometric substitution.

In Chapter 8, I show you how to use partial fractions as a way to integrate
complicated rational functions. As with the other methods in this part of the
book, using partial fractions gives you a way to tweak functions that you
don’t know how to integrate into more manageable ones.

Part III: Intermediate Integration Topics
Part III discusses a variety of intermediate topics, after you have the basics of
integration under your belt.

Chapter 9 gives you a variety of fine points to help you solve more complex
area problems. You discover how to find unusual areas by piecing together
one or more integrals. I show you how to evaluate improper integrals — that
is, integrals extending infinitely in one direction. I discuss how the concept of
signed area affects the solution to integrals. I show you how to find the aver-
age value of a function within an interval. And I give you a formula for finding
arc-length, which is the length measured along a curve.

And Chapter 10 adds a dimension, showing you how to use integration to find
the surface area and volume of solids. I discuss the meat-slicer method and
the shell method for finding solids. I show you how to find both the volume
and surface area of revolution. And I show you how to set up more than one
integral to calculate more complicated volumes.

Part IV: Infinite Series
In Part IV, I introduce the infinite series — that is, the sum of an infinite
number of terms.

5Introduction
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Chapter 11 gets you started working with a few basic types of infinite series. I
start off by discussing infinite sequences. Then I introduce infinite series, get-
ting you up to speed on expressing a series by using both sigma notation and
expanded notation. Then I show you how every series has two associated
sequences. To finish up, I introduce you to two common types of series —
the geometric series and the p-series — showing you how to recognize and,
when possible, evaluate them.

In Chapter 12, I show you a bunch of tests for determining whether a series is
convergent or divergent. To begin, I show you the simple but useful nth-term
test for divergence. Then I show you two comparison tests — the direct 
comparison test and the limit comparison test. After that, I introduce you
to the more complicated integral, ratio, and root tests. Finally, I discuss alter-
nating series and show you how to test for both absolute and conditional
convergence.

And in Chapter 13, the focus is on a particularly useful and expressive type
of infinite series called the Taylor series. First, I introduce you to power
series. Then I show you how a specific type of power series — the Maclaurin
series — can be useful for expressing functions. Finally, I discuss how the
Taylor series is a more general version of the Maclaurin series. To finish up,
I show you how to calculate the error bounds for Taylor polynomials.

Part V: Advanced Topics
In Part V, I pull out my crystal ball, showing you what lies in the future if you
continue your math studies.

In Chapter 14, I give you an overview of Calculus III, also known as multivari-
able calculus, the study of calculus in three or more dimensions. First, I dis-
cuss vectors and show you a few vector calculations. Next, I introduce you to
three different three-dimensional (3-D) coordinate systems: 3-D Cartesian
coordinates, cylindrical coordinates, and spherical coordinates. Then I dis-
cuss functions of several variables, and I show you how to calculate partial
derivatives and multiple integrals of these functions.

Chapter 15 focuses on differential equations — that is, equations with deriva-
tives mixed in as variables. I distinguish ordinary differential equations from
partial differential equations, and I show you how to recognize the order of a
differential equation. I discuss how differential equations arise in science.
Finally, I show you how to solve separable differential equations and how to
solve linear first-order differential equations.

6 Calculus II For Dummies 
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Part VI: The Part of Tens
Just for fun, Part VI includes a few top-ten lists on a variety of calculus-
related topics.

Chapter 16 provides you with ten insights from Calculus II. These insights
provide an overview of the book and its most important concepts.

Chapter 17 gives you ten useful test-taking tips. Some of these tips are spe-
cific to Calculus II, but many are generally helpful for any test you may face.

Icons Used in This Book
Throughout the book, I use four icons to highlight what’s hot and what’s not:

This icon points out key ideas that you need to know. Make sure that you
understand the ideas before reading on!

Tips are helpful hints that show you the easy way to get things done. Try
them out, especially if you’re taking a math course.

Warnings flag common errors that you want to avoid. Get clear where these
little traps are hiding so that you don’t fall in.

This icon points out interesting trivia that you can read or skip over as
you like.

Where to Go from Here
You can use this book either for self-study or to help you survive and thrive
in a course in Calculus II.

If you’re taking a Calculus II course, you may be under pressure to complete a
homework assignment or study for an exam. In that case, feel free to skip right
to the topic that you need help with. Every section is self-contained, so you
can jump right in and use the book as a handy reference. And when I refer to
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information that I discuss earlier in the book, I give you a brief review and a
pointer to the chapter or section where you can get more information if you
need it.

If you’re studying on your own, I recommend that you begin with Chapter 1,
where I give you an overview of the entire book, and read the chapters from
beginning to end. Jump over Chapter 2 if you feel confident about your
grounding in Calculus I and Pre-Calculus. And, of course, if you’re dying to
read about a topic that’s later in the book, go for it! You can always drop back
to an easier chapter if you get lost.

8 Calculus II For Dummies 
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In this part . . .

I give you an overview of Calculus II, plus a review
of Pre-Calculus and Calculus I. You discover how to

measure the areas of weird shapes by using a new tool:
the definite integral. I show you the connection between
differentiation, which you know from Calculus I, and inte-
gration. And you see how this connection provides a
useful way to solve area problems.

04_225226-pp01.qxd  4/30/08  11:57 PM  Page 10



Chapter 1

An Aerial View 
of the Area Problem

In This Chapter
� Measuring the area of shapes by using classical and analytic geometry

� Understanding integration as a solution to the area problem

� Building a formula for calculating definite integrals using Riemann sums

� Applying integration to the real world

� Considering sequences and series

� Looking ahead at some advanced math

Humans have been measuring the area of shapes for thousands of years.
One practical use for this skill is measuring the area of a parcel of land.

Measuring the area of a square or a rectangle is simple, so land tends to get
divided into these shapes.

Discovering the area of a triangle, circle, or polygon is also easy, but as shapes
get more unusual, measuring them gets harder. Although the Greeks were
familiar with the conic sections — parabolas, ellipses, and hyperbolas — they
couldn’t reliably measure shapes with edges based on these figures.

Descartes’s invention of analytic geometry — studying lines and curves as
equations plotted on a graph — brought great insight into the relationships
among the conic sections. But even analytic geometry didn’t answer the
question of how to measure the area inside a shape that includes a curve.

In this chapter, I show you how integral calculus (integration for short) devel-
oped from attempts to answer this basic question, called the area problem.
With this introduction to the definite integral, you’re ready to look at the
practicalities of measuring area. The key to approximating an area that you
don’t know how to measure is to slice it into shapes that you do know how to
measure (for example, rectangles).
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Slicing things up is the basis for the Riemann sum, which allows you to turn a
sequence of closer and closer approximations of a given area into a limit that
gives you the exact area that you’re seeking. I walk you through a step-by-
step process that shows you exactly how the formal definition for the definite
integral arises intuitively as you start slicing unruly shapes into nice, crisp
rectangles.

Checking out the Area
Finding the area of certain basic shapes — squares, rectangles, triangles, and
circles — is easy. But a reliable method for finding the area of shapes contain-
ing more esoteric curves eluded mathematicians for centuries. In this sec-
tion, I give you the basics of how this problem, called the area problem, is
formulated in terms of a new concept, the definite integral.

The definite integral represents the area on a graph bounded by a function, the
x-axis, and two vertical lines called the limits of integration. Without getting too
deep into the computational methods of integration, I give you the basics of
how to state the area problem formally in terms of the definite integral.

Comparing classical and analytic geometry
In classical geometry, you discover a variety of simple formulas for finding the
area of different shapes. For example, Figure 1-1 shows the formulas for the
area of a rectangle, a triangle, and a circle.

width = 1

height = 2

height = 1

base = 1

Area = width ⋅ height = 2 ==Area = Area = π ⋅ radius2 = π

radius = 1

base ⋅ height
2

1
2

Figure 1-1:
Formulas for
the area of a
rectangle, a
triangle, and

a circle.
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When you move on to analytic geometry — geometry on the Cartesian
graph — you gain new perspectives on classical geometry. Analytic geometry
provides a connection between algebra and classical geometry. You find that
circles, squares, and triangles — and many other figures — can be repre-
sented by equations or sets of equations, as shown in Figure 1-2.

You can still use the trusty old methods of classical geometry to find the
areas of these figures. But analytic geometry opens up more possibilities —
and more problems.

Discovering a new area of study
Figure 1-3 illustrates three curves that are much easier to study with analytic
geometry than with classical geometry: a parabola, an ellipse, and a hyperbola.

1

2

1

1

1

1

yyy

xxx

–1

–1

Figure 1-2:
A rectangle,

a triangle,
and a circle

embedded
on the
graph.
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Wisdom of the ancients
Long before calculus was invented, the ancient
Greek mathematician Archimedes used his
method of exhaustion to calculate the exact
area of a segment of a parabola. Indian mathe-
maticians also developed quadrature methods

for some difficult shapes before Europeans
began their investigations in the 17th century.

These methods anticipated some of the methods
of calculus. But before calculus, no single theory
could measure the area under arbitrary curves.
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Analytic geometry gives a very detailed account of the connection between
algebraic equations and curves on a graph. But analytic geometry doesn’t tell
you how to find the shaded areas shown in Figure 1-3.

Similarly, Figure 1-4 shows three more equations placed on the graph: a sine
curve, an exponential curve, and a logarithmic curve.

Again, analytic geometry provides a connection between these equations and
how they appear as curves on the graph. But it doesn’t tell you how to find
any of the shaded areas in Figure 1-4.

y

x

1

y

x

1

π–π 2π 1

y

x

y  = sin x y  = ex
y  = ln x

–1

Figure 1-4:
A sine

curve, an
exponential

curve, and a
logarithmic

curve
embedded

on the
graph.

1

1

–1

–1 1

1

2

–1

–2

1

–1

–1 1–1

yyy

y = x 2

xxx

= 1=x 2 y 2

4

=y 1
x

Figure 1-3:
A parabola,

an ellipse,
and a

hyperbola
embedded

on the
graph.
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Generalizing the area problem
Notice that in all the examples in the previous section, I shade each area in a
very specific way. Above, the area is bounded by a function. Below, it’s bounded
by the x-axis. And on the left and right sides, the area is bounded by vertical
lines (though in some cases, you may not notice these lines because the func-
tion crosses the x-axis at this point).

You can generalize this problem to study any continuous function. To illus-
trate this, the shaded region in Figure 1-5 shows the area under the function
f(x) between the vertical lines x = a and x = b.

The area problem is all about finding the area under a continuous function
between two constant values of x that are called the limits of integration, usu-
ally denoted by a and b.

The limits of integration aren’t limits in the sense that you learned about in
Calculus I. They’re simply constants that tell you the width of the area that
you’re attempting to measure.

In a sense, this formula for the shaded area isn’t much different from those
that I provide earlier in this chapter. It’s just a formula, which means that if
you plug in the right numbers and calculate, you get the right answer.

The catch, however, is in the word calculate. How exactly do you calculate 
using this new symbol # ? As you may have figured out, the answer is on the 
cover of this book: calculus. To be more specific, integral calculus or integration.

∫  ƒ(x) dxArea =
a

b

x

y

x = a x = b

y = ƒ(x)

Figure 1-5:
A typical

area
problem.
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Most typical Calculus II courses taught at your friendly neighborhood college
or university focus on integration — the study of how to solve the area prob-
lem. When Calculus II gets confusing (and to be honest, you probably will get
confused somewhere along the way), try to relate what you’re doing back to
this central question: “How does what I’m working on help me find the area
under a function?”

Finding definite answers with 
the definite integral
You may be surprised to find out that you’ve known how to integrate some
functions for years without even knowing it. (Yes, you can know something
without knowing that you know it.)

For example, find the rectangular area under the function y = 2 between x = 1
and x = 4, as shown in Figure 1-6.

This is just a rectangle with a base of 3 and a height of 2, so its area is obvi-
ously 6. But this is also an area problem that can be stated in terms of inte-
gration as follows:

Area dx2 6
1

4

= =#

As you can see, the function I’m integrating here is f(x) = 2. The limits of inte-
gration are 1 and 4 (notice that the greater value goes on top). You already

Area =

x

y
y = 2

x = 1 x = 4

∫  2 dx
1

4

Figure 1-6:
The

rectangular
area under

the function
y = 2,

between 
x = 1 and 

x = 4.
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know that the area is 6, so you can solve this calculus problem without
resorting to any scary or hairy methods. But, you’re still integrating, so please
pat yourself on the back, because I can’t quite reach it from here.

The following expression is called a definite integral:

dx2
1

4

#

For now, don’t spend too much time worrying about the deeper meaning 
behind the # symbol or the dx (which you may remember from your fond 

memories of the differentiating that you did in Calculus I). Just think of #
and dx as notation placed around a function — notation that means area.

What’s so definite about a definite integral? Two things, really:

� You definitely know the limits of integration (in this case, 1 and 4).
Their presence distinguishes a definite integral from an indefinite inte-
gral, which you find out about in Chapter 3. Definite integrals always
include the limits of integration; indefinite integrals never include them.

� A definite integral definitely equals a number (assuming that its limits
of integration are also numbers). This number may be simple to find or
difficult enough to require a room full of math professors scribbling
away with #2 pencils. But, at the end of the day, a number is just a
number. And, because a definite integral is a measurement of area, you
should expect the answer to be a number.

When the limits of integration aren’t numbers, a definite integral doesn’t 
necessarily equal a number. For example, a definite integral whose limits of
integration are k and 2k would most likely equal an algebraic expression that
includes k. Similarly, a definite integral whose limits of integration are sin θ
and 2 sin θ would most likely equal a trig expression that includes θ. To
sum up, because a definite integral represents an area, it always equals a
number — though you may or may not be able to compute this number.

As another example, find the triangular area under the function y = x,
between x = 0 and x = 8, as shown in Figure 1-7.

This time, the shape of the shaded area is a triangle with a base of 8 and a
height of 8, so its area is 32 (because the area of a triangle is half the base
times the height). But again, this is an area problem that can be stated in
terms of integration as follows:

Area x dx 32
0

8

= =#
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The function I’m integrating here is f(x) = x and the limits of integration are 0
and 8. Again, you can evaluate this integral with methods from classical and
analytic geometry. And again, the definite integral evaluates to a number, which
is the area below the function and above the x-axis between x = 0 and x = 8.

As a final example, find the semicircular area between x = –4 and x = 4, as
shown in Figure 1-8.

First of all, remember from Pre-Calculus how to express the area of a circle
with a radius of 4 units:

x2 + y2 = 16

dx16 − x 2

x

y
y = 16 − x 2

x = −4 x = 4

∫  Area =
-4

4

Figure 1-8:
The semi-

circular
area

between 
x = –4 and 

x = 4.

x

y
y = x

x = 0 x = 8

∫  x dxArea =
0

8

Figure 1-7:
The

triangular
area under

the function
y = x,

between 
x = 0 and 

x = 8.
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Next, solve this equation for y:

y x16 2!= -

A little basic geometry tells you that the area of the whole circle is 16π, so the
area of the shaded semicircle is 8π. Even though a circle isn’t a function (and
remember that integration deals exclusively with continuous functions!), the
shaded area in this case is beneath the top portion of the circle. The equation
for this curve is the following function:

y x16 2= -

So, you can represent this shaded area as a definite integral:

Area x dx π16 82

4

4

= - =
-

#

Again, the definite integral evaluates to a number, which is the area under the
function between the limits of integration.

Slicing Things Up
One good way of approaching a difficult task — from planning a wedding to
climbing Mount Everest — is to break it down into smaller and more manage-
able pieces.

In this section, I show you the basics of how mathematician Bernhard Riemann
used this same type of approach to calculate the definite integral, which I intro-
duce in the previous section “Checking out the Area.” Throughout this section
I use the example of the area under the function y = x2, between x = 1 and x = 5.
You can find this example in Figure 1-9.

x

y
y = x 2

x = 1 x = 5

∫  x 2 dxArea =
1

5

Figure 1-9:
The area

under the
function 

y = x2,
between 
x = 1 and 

x = 5.
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Untangling a hairy problem 
by using rectangles
The earlier section “Checking out the Area” tells you how to write the definite
integral that represents the area of the shaded region in Figure 1-9:

x dx2

1

5

#

Unfortunately, this definite integral — unlike those earlier in this chapter —
doesn’t respond to the methods of classical and analytic geometry that I use
to solve the problems earlier in this chapter. (If it did, integrating would be
much easier and this book would be a lot thinner!)

Even though you can’t solve this definite integral directly (yet!), you can
approximate it by slicing the shaded region into two pieces, as shown in
Figure 1-10.

Obviously, the region that’s now shaded — it looks roughly like two steps
going up but leading nowhere — is less than the area that you’re trying to
find. Fortunately, these steps do lead someplace, because calculating the area
under them is fairly easy.

Each rectangle has a width of 2. The tops of the two rectangles cut across
where the function x2 meets x = 1 and x = 3, so their heights are 1 and 9,
respectively. So, the total area of the two rectangles is 20, because

2 (1) + 2 (9) = 2 (1 + 9) = 2 (10) = 20

x

y
y = x 2

x = 1 x = 5

Figure 1-10:
Area

approx-
imated
by two

rectangles.
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With this approximation of the area of the original shaded region, here’s the
conclusion you can draw:

x dx 202

1

5

.#

Granted, this is a ballpark approximation with a really big ballpark. But, even
a lousy approximation is better than none at all. To get a better approxima-
tion, try cutting the figure that you’re measuring into a few more slices, as
shown in Figure 1-11.

Again, this approximation is going to be less than the actual area that you’re
seeking. This time, each rectangle has a width of 1. And the tops of the four
rectangles cut across where the function x2 meets x = 1, x = 2, x = 3, and x = 4,
so their heights are 1, 4, 9, and 16, respectively. So the total area of the four
rectangles is 30, because

1 (1) + 1 (4) + 1 (9) + 1 (16) = 1 (1 + 4 + 9 + 16) = 1 (30) = 30

Therefore, here’s a second approximation of the shaded area that you’re
seeking:

x dx 302

1

5

.#

Your intuition probably tells you that your second approximation is better
than your first, because slicing the rectangles more thinly allows them to cut
in closer to the function. You can verify this intuition by realizing that both
20 and 30 are less than the actual area, so whatever this area turns out to be,
30 must be closer to it.

x

y
y = x 2

x = 1 x = 5

Figure 1-11:
A closer

approxima-
tion; the

area is
approxi-

mated
by four

rectangles.
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You might imagine that by slicing the area into more rectangles (say 10, or
100, or 1,000,000), you’d get progressively better estimates. And, again, your
intuition would be correct: As the number of slices increases, the result
approaches 41.3333....

In fact, you may very well decide to write:

.x dx 41 332

1

5

=#

This, in fact, is the correct answer. But to justify this conclusion, you need a
bit more rigor.

Building a formula for finding area
In the previous section, you calculate the areas of two rectangles and four
rectangles, respectively, as follows:

2 (1) + 2 (9) = 2 (1 + 9) = 20

1 (1) + 1 (4) + 1 (9) + 1 (16) = 1 (1 + 4 + 9 + 16) = 30

Each time, you divide the area that you’re trying to measure into rectangles
that all have the same width. Then, you multiply this width by the sum of the
heights of all the rectangles. The result is the area of the shaded area.

In general, then, the formula for calculating an area sliced into n rectangles is:

Area of rectangles = wh1 + wh2 + ... + whn

22 Part I: Introduction to Integration 

How high is up?
When you’re slicing a weird shape into rectan-
gles, finding the width of each rectangle is easy
because they’re all the same width. You just
divide the total width of the area that you’re
measuring into equal slices.

Finding the height of each individual rectangle,
however, requires a bit more work. Start by
drawing the horizontal tops of all the rectangles
you’ll be using. Then, for each rectangle:

1. Locate where the top of the rectangle
meets the function.

2. Find the value of x at that point by looking
down at the x-axis directly below this
point.

3. Get the height of the rectangle by plugging
that x-value into the function.
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In this formula, w is the width of each rectangle and h1, h2, ... , hn, and so forth
are the various heights of the rectangles. The width of all the rectangles is the
same, so you can simplify this formula as follows:

Area of rectangles = w (h1 + h2 + ... + hn)

Remember that as n increases — that is, the more rectangles you draw — the
total area of all the rectangles approaches the area of the shape that you’re
trying to measure.

I hope that you agree that there’s nothing terribly tricky about this formula.
It’s just basic geometry, measuring the area of rectangles by multiplying
their width and height. Yet, in the rest of this section, I transform this simple
formula into the following formula, called the Riemann sum formula for the
definite integral:

limf x dx f x n
b a*

a

b

n
i

i

n

1
=

-
"3 =

# !^ _ ch i m

No doubt about it, this formula is eye-glazing. That’s why I build it step by
step by starting with the simple area formula. This way, you understand com-
pletely how all this fancy notation is really just an extension of what you can
see for yourself.

If you’re sketchy on any of these symbols — such as Σ and the limit — read
on, because I explain them as I go along. (For a more thorough review of
these symbols, see Chapter 2.)

Approximating the definite integral
Earlier in this chapter I tell you that the definite integral means area. So in
transforming the simple formula

Area of rectangles = w (h1 + h2 + ... + hn)

the first step is simply to introduce the definite integral:

f x dx w h h h
a

b

n1 2 f. + + +# ^ _h i

As you can see, the = has been changed to ≈ — that is, the equation has been
demoted to an approximation. This change is appropriate — the definite inte-
gral is the precise area inside the specified bounds, which the area of the rec-
tangles merely approximates.

Limiting the margin of error
As n increases — that is, the more rectangles you draw — your approxima-
tion gets better and better. In other words, as n approaches infinity, the area
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of the rectangles that you’re measuring approaches the area that you’re
trying to find.

So, you may not be surprised to find that when you express this approximation
in terms of a limit, you remove the margin of error and restore the approxima-
tion to the status of an equation:

limf x dx w h h h
a

b

n
n1 2 f= + + +

"3
# ^ _h i

This limit simply states mathematically what I say in the previous section: As
n approaches infinity, the area of all the rectangles approaches the exact area
that the definite integral represents.

Widening your understanding of width
The next step is to replace the variable w, which stands for the width of each
rectangle, with an expression that’s more useful.

Remember that the limits of integration tell you the width of the area that
you’re trying to measure, with a as the smaller value and b as the greater. So
you can write the width of the entire area as b – a. And when you divide this
area into n rectangles, each rectangle has the following width:

w = n
b a-

Substituting this expression into the approximation results in the following:

limf x dx n
b a h h h

a

b

n
n1 2 f=

-
+ + +

"3
# ^ _h i

As you can see, all I’m doing here is expressing the variable w in terms of a, b,
and n.

Summing things up with sigma notation
You may remember that sigma notation — the Greek symbol Σ used in equa-
tions — allows you to streamline equations that have long strings of numbers
added together. Chapter 2 gives you a review of sigma notation, so check it
out if you need a review.

The expression h1 + h2 + ... + hn is a great candidate for sigma notation:

i

n

1=

! hi = h1 + h2 + ... + hn

So, in the equation that you’re working with, you can make a simple substitu-
tion as follows:

limf x dx n
b a h

a

b

n
i

i

n

1
=

-
"3 =

# !^ h
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Now, I tweak this equation by placing n
b a- inside the sigma expression (this 

is a valid rearrangement, as I explain in Chapter 2):

limf x dx h n
b a

a

b

n
i

i

n

1
=

-
"3 =

# !^ ch m

Heightening the functionality of height
Remember that the variable hi represents the height of a single rectangle
that you’re measuring. (The sigma notation takes care of adding up these
heights.) The last step is to replace hi with something more functional. And
functional is the operative word, because the function determines the height
of each rectangle.

Here’s the short explanation, which I clarify later: The height of each individ-
ual rectangle is determined by a value of the function at some value of x lying
someplace on that rectangle, so:

hi = f(xi*)

The notation xi*, which I explain further in “Moving left, right, or center,”
means something like “an appropriate value of xi.” That is, for each hi in your
sum (h1, h2, and so forth) you can replace the variable hi in the equation for
an appropriate value of the function. Here’s how this looks:

limf x dx f x n
b a*

a

b

n
i

i

n

1
=

-
"3 =

# !^ _ ch i m

This is the complete Riemann sum formula for the definite integral, so in a
sense I’m done. But I still owe you a complete explanation for this last substi-
tution, and here it comes.

Moving left, right, or center
Go back to the example that I start with, and take another look at the way I
slice the shaded area into four rectangles in Figure 1-12.

x

y
y = x 2

x = 1 x = 5

Figure 1-12:
Approxi-

mating area
with left

rectangles.
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As you can see, the heights of the four rectangles are determined by the
value of f(x) when x is equal to 1, 2, 3, and 4, respectively — that is, f(1), f(2),
f(3), and f(4). Notice that the upper-left corner of each rectangle touches the
function and determines the height of each rectangle.

However, suppose that I draw the rectangles as shown in Figure 1-13.

In this case, the upper-right corner touches the function, so the heights of the
four rectangles are f(2), f(3), f(4), and f(5).

Now, suppose that I draw the rectangles as shown in Figure 1-14.

This time, the midpoint of the top edge of each rectangle touches the function,
so the heights of the rectangles are f(1.5), f(2.5), f(3.5), and f(4.5).

x

y
y = x 2

x = 1 x = 5

Figure 1-14:
Approxi-

mating area
with

midpoint
rectangles.

x

y
y = x 2

x = 1 x = 5

Figure 1-13:
Approxi-

mating area
with right

rectangles.
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It seems that I can draw rectangles at least three different ways to approxi-
mate the area that I’m attempting to measure. They all lead to different
approximations, so which one leads to the correct answer? The answer is all
of them.

This surprising answer results from the fact that the equation for the definite
integral includes a limit. No matter how you draw the rectangles, as long as the
top of each rectangle coincides with the function at one point (at least), the
limit smoothes over any discrepancies as n approaches infinity. This slack in
the equation shows up as the * in the expression f(xi*).

For example, in the example that uses four rectangles, the first rectangle is
located from x = 1 to x = 2, so

1 ≤ x1* ≤ 2 therefore 1 ≤ f(x1*) ≤ 4

Table 1-2 shows you the range of allowable values for xi when approximating
this area with four rectangles. In each case, you can draw the height of the
rectangle on a range of different values of x.

Table 1-2 Allowable Values of xi* When n = 4
Value of i Location of Allowable Lowest Value Highest Value 

Rectangle Value of xi* of f(xi*) of f(xi*)

i = 1 x = 1 to x = 2 1 ≤ x1* ≤ 2 f(1) = 1 f(2) = 4

i = 2 x = 2 to x = 3 2 ≤ x2* ≤ 3 f(2) = 4 f(3) = 9

i = 3 x = 3 to x = 4 3 ≤ x3* ≤ 4 f(3) = 9 f(4) = 16

i = 4 x = 4 to x = 5 4 ≤ x1* ≤ 5 f(4) = 16 f(5) = 25

In Chapter 3, I discuss this idea — plus a lot more about the fine points of the
formula for the definite integral — in greater detail.

Defining the Indefinite
The Riemann sum formula for the definite integral, which I discuss in the pre-
vious section, allows you to calculate areas that you can’t calculate by using
classical or analytic geometry. The downside of this formula is that it’s quite
a hairy beast. In Chapter 3, I show you how to use it to calculate area, but
most students throw their hands up at this point and say, “There has to be
a better way!”
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The better way is called the indefinite integral. The indefinite integral looks a
lot like the definite integral. Compare for yourself:

Definite Integrals Indefinite Integrals

x dx2

1

5

# x dx2#

sinx dx
π

0

# sinx dx#

dxe x

1

1

-

# dxe x#

Like the definite integral, the indefinite integral is a tool for measuring the
area under a function. Unlike it, however, the indefinite integral has no limits
of integration, so evaluating it doesn’t give you a number. Instead, when you
evaluate an indefinite integral, the result is a function that you can use to
obtain all related definite integrals. Chapter 3 gives you the details of how
definite and indefinite integrals are related.

Indefinite integrals provide a convenient way to calculate definite integrals. In
fact, the indefinite integral is the inverse of the derivative, which you know
from Calculus I. (Don’t worry if you don’t remember all about the derivative —
Chapter 2 gives you a thorough review.) By inverse, I mean that the indefinite
integral of a function is really the anti-derivative of that function. This connec-
tion between integration and differentiation is more than just an odd little fact:
It’s known as the Fundamental Theorem of Calculus (FTC).

For example, you know that the derivative of x2 is 2x. So, you expect that the
anti-derivative — that is, the indefinite integral — of 2x is x2. This is funda-
mentally correct with one small tweak, as I explain in Chapter 3.

Seeing integration as anti-differentiation allows you to solve tons of integrals
without resorting to the Riemann sum formula (I tell you about this in
Chapter 4). But integration can still be sticky depending on the function that
you’re trying to integrate. Mathematicians have developed a wide variety of
techniques for evaluating integrals. Some of these methods are variable sub-
stitution (see Chapter 5), integration by parts (see Chapter 6), trig substitu-
tion (see Chapter 7), and integration by partial fractions (see Chapter 8).

Solving Problems with Integration
After you understand how to describe an area problem by using the definite
integral (Part I), and how to calculate integrals (Part II), you’re ready to get
into action solving a wide range of problems.
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Some of these problems know their place and stay in two dimensions. Others
rise up and create a revolution in three dimensions. In this section, I give you
a taste of these types of problems, with an invitation to check out Part III of
this book for a deeper look.

Three types of problems that you’re almost sure to find on an exam involve
finding the area between curves, the length of a curve, and volume of revolu-
tion. I focus on these types of problems and many others in Chapters 9 and 10.

We can work it out: Finding 
the area between curves
When you know how the definite integral represents the area under a curve,
finding the area between curves isn’t too difficult. Just figure out how to break
the problem into several smaller versions of the basic area problem. For exam-
ple, suppose that you want to find the area between the function y = sin x and 
y = cos x, from x = 0 to x = π

4 — that is, the shaded area A in Figure 1-15.

In this case, integrating y = cos x allows you to find the total area A + B. And
integrating y = sin x gives you the area of B. So, you can subtract A + B – B to
find the area of A.

For more on how to find an area between curves, flip to Chapter 9.

Walking the long and winding road
Measuring a segment of a straight line or a section of a circle is simple when
you’re using classical and analytic geometry. But how do you measure a
length along an unusual curve produced by a polynomial, exponential, or trig
equation?

y

x = 0

y = sin x

y = cos x

A
B

x  = π
4

xFigure 1-15:
The area

between the
function 

y = sin x and
y = cos x,

from x = 0 to
x = π

4 .
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For example, what’s the distance from point A to point B along the curve
shown in Figure 1-16?

Once again, integration is your friend. In Chapter 9, I show you how to use
integration provides a formula that allows you to measure arc length.

You say you want a revolution
Calculus also allows you to find the volume of unusual shapes. In most cases,
calculating volume involves a dimensional leap into multivariable calculus,
the topic of Calculus III, which I touch upon in Chapter 14. But in a few situa-
tions, setting up an integral just right allows you to calculate volume by inte-
grating over a single variable — that is, by using the methods you discover in
Calculus II.

Among the trickiest of these problems involves the solid of revolution of a
curve. In such problems, you’re presented with a region under a curve. Then,
you imagine the solid that results when you spin this region around the axis,
and then you calculate the volume of this solid as seen in Figure 1-17.

y = x 2

x

y

Figure 1-17:
A solid of

revolution
produced by
spinning the

function 
y = x2 around

the axis 
x = 0.

y

x = 1 x = 3

A

y = In x
B

x

Figure 1-16:
The

distance
from point A

to point B
along the
function 
y = ln x.
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Clearly, you need calculus to find the area of this region. Then you need more
calculus and a clear plan of attack to find the volume. I give you all this and
more in Chapter 10.

Understanding Infinite Series
The last third of a typical Calculus II course — roughly five weeks — usually
focuses on the topic of infinite series. I cover this topic in detail in Part IV.
Here’s an overview of some of the ideas you find out about there.

Distinguishing sequences and series
A sequence is a string of numbers in a determined order. For example:

2, 4, 6, 8, 10, ...

1, 2
1 , 4

1 , 8
1 , 16

1 , ...

1, 2
1 , 3

1 , 4
1 , 5

1 , ...

Sequences can be finite or infinite, but calculus deals well with the infinite, so
it should come as no surprise that calculus concerns itself only with infinite
sequences.

You can turn an infinite sequence into an infinite series by changing the
commas into plus signs:

2 + 4 + 6 + 8 + 10 + ...

1 + 2
1 + 4

1 + 8
1 + 16

1 + ...

1 + 2
1 + 3

1 + 4
1 + 5

1 + ...

Sigma notation, which I discuss further in Chapter 2, is useful for expressing
infinite series more succinctly:

n2
n 1

3

=

!

2
1

n

n 1

3

=

! c m

n
1

n 1

3

=

!
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Evaluating series
Evaluating an infinite series is often possible. That is, you can find out what
all those numbers add up to. For example, here’s a solution that should come
as no surprise:

n2
n 1

3

=

! = 2 + 4 + 6 + 8 + 10 + ... = ∞

A helpful way to get a handle on some series is to create a related sequence of
partial sums — that is, a sequence that includes the first term, the sum of the
first two terms, the sum of the first three terms, and so forth. For example,
here’s a sequence of partial sums for the second series shown earlier:

1 = 1

1 + 2
1 = 12

1

1 + 2
1 + 4

1 = 1 4
3

1 + 2
1 + 4

1 + 8
1 = 1 8

7

1 + 2
1 + 4

1 + 8
1 + 16

1 = 116
15

The resulting sequence of partial sums provides strong evidence of this 
conclusion:

2
1

n

n 1

3

=

! c m = 1 2
1

4
1

8
1

16
1

+ + + + + ... 1

Identifying convergent and
divergent series
When a series evaluates to a number — as does 2

1
n

n 1

3

=

! c m — it’s called a convergent 

series. However, when a series evaluates to infinity — like n2
n 1

3

=

! — it’s called a
divergent series.

Identifying whether a series is convergent or divergent isn’t always simple. For
example, take another look at the third series I introduce earlier in this section:

n
1

n 1

3

=

! = 1 2
1

3
1

4
1

5
1

+ + + + + ... = ?

This is called the harmonic series, but can you guess by looking at it whether
it converges or diverges? (Before you begin adding fractions, let me warn you
that the partial sum of the first 10,000 numbers is less than 10.)
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An ongoing problem as you study infinite series is deciding whether a given
series is convergent or divergent. Chapter 13 gives you a slew of tests to help
you find out.

Advancing Forward into Advanced Math
Although it’s further along in math than many people dream of going, calcu-
lus isn’t the end but a beginning. Whether you’re enrolled in a Calculus II
class or reading on your own, here’s a brief overview of some areas of math
that lie beyond integration.

Multivariable calculus
Multivariable calculus generalizes differentiation and integration to three dimen-
sions and beyond. Differentiation in more than two dimensions requires partial
derivatives. Integration in more than two dimensions utilizes multiple integrals.

In practice, multivariable calculus as taught in most Calculus III classes is
restricted to three dimensions, using three sets of axes and the three vari-
ables x, y, and z. I discuss multivariable calculus in more detail in Chapter 14.

Partial derivatives
As you know from Calculus I, a derivative is the slope of a curve at a given
point on the graph. When you extend the idea of slope to three dimensions,
a new set of issues that need to be resolved arises.

For example, suppose that you’re standing on the side of a hill that slopes
upward. If you draw a line up and down the hill through the point you’re
standing on, the slope of this line will be steep. But if you draw a line across
the hill through the same point, the line will have little or no slope at all.
(For this reason, mountain roads tend to cut sideways, winding their way up
slowly, rather than going straight up and down.)

So, when you measure slope on a curved surface in three dimensions, you
need to take into account not only the point where you’re measuring the
slope but the direction in which you’re measuring it. Partial derivatives allow
you to incorporate this additional information.

Multiple integrals
Earlier in this chapter, you discover that integration allows you to measure
the area under a curve. In three dimensions, the analog becomes finding the
volume under a curved surface. Multiple integrals (integrals nested inside
other integrals) allow you to compute such volume.
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Differential equations
After multivariable calculus, the next topic most students learn on their pre-
cipitous math journey is differential equations.

Differential equations arise in many branches of science, including physics,
where key concepts such as velocity and acceleration of an object are 
computed as first and second derivatives. The resulting equations contain
hairy combinations of derivatives that are confusing and tricky to solve.
For example:

F m
dt
d s

2

2

=

Beyond ordinary differential equations, which include only ordinary deriva-
tives, partial differential equations — such as the heat equation or the Laplace
equation — include partial derivatives. For example:

V
x
V

y
V

z
V 02

2

2

2

2

2

2

d
2
2

2
2

2
2

= + + =

I provide a look at ordinary and partial differential equations in Chapter 15.

Fourier analysis
So much of physics expresses itself in differential equations that finding reliable
methods of solving these equations became a pressing need for 19th-century
scientists. Mathematician Joseph Fourier met with the greatest success.

Fourier developed a method for expressing every function as the function of an
infinite series of sines and cosines. Because trig functions are continuous and
infinitely differentiable, Fourier analysis provided a unified approach to solving
huge families of differential equations that were previously incalculable.

Numerical analysis
A lot of math is theoretical and ideal: the search for exact answers without
regard to practical considerations such as “How long will this problem take
to solve?” (If you’ve ever run out of time on a math exam, you probably know
what I’m talking about!)
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In contrast, numerical analysis is the search for a close-enough answer in a
reasonable amount of time.

For example, here’s an integral that can’t be evaluated:

dxe x 2

#

But even though you can’t solve this integral, you can approximate its solu-
tion to any degree of accuracy that you desire. And for real-world applica-
tions, a good approximation is often acceptable as long as you (or, more
likely, a computer) can calculate it in a reasonable amount of time. Such a
procedure for approximating the solution to a problem is called an algorithm.

Numerical analysis examines algorithms for qualities such as precision (the
margin of error for an approximation) and tractability (how long the calcula-
tion takes for a particular level of precision).
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Chapter 2

Dispelling Ghosts from the Past:
A Review of Pre-Calculus and

Calculus I
In This Chapter
� Making sense of exponents of 0, negative numbers, and fractions

� Graphing common continuous functions and their transformations

� Remembering trig identities and sigma notation

� Understanding and evaluating limits

� Differentiating by using all your favorite rules

� Evaluating indeterminate forms of limits with L’Hospital’s Rule

Remember Charles Dickens’s A Christmas Carol? You know, Scrooge and
those ghosts from the past. Math can be just like that: All the stuff you

thought was dead and buried for years suddenly pays a spooky visit when
you least expect it.

This quick review is here to save you from any unnecessary sleepless nights.
Before you proceed any further on your calculus quest, make sure that you’re
on good terms with the information in this chapter.

First I cover all the Pre-Calculus you forgot to remember: polynomials, expo-
nents, graphing functions and their transformations, trig identities, and sigma
notation. Then I give you a brief review of Calculus I, focusing on limits and
derivatives. I close the chapter with a topic that you may or may not know
from Calculus I: L’Hospital’s Rule for evaluating indeterminate forms of limits.

If you still feel stumped after you finish this chapter, I recommend that you
pick up a copy of Pre-Calculus For Dummies by Deborah Rumsey, PhD, or
Calculus For Dummies by Mark Ryan (both published by Wiley), for a more 
in-depth review.
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Forgotten but Not Gone: A Review 
of Pre-Calculus

Here’s a true story: When I returned to college to study math, my first degree
having been in English, it had been a lot of years since I’d taken a math
course. I won’t mention how many years, but when I confided this number to
my first Calculus teacher, she swooned and was revived with smelling salts
(okay, I’m exaggerating a little), and then she asked with a concerned look on
her face, “Are you sure you’re up for this?”

I wasn’t sure at all, but I hung in there. Along the way, I kept refining a stack of
notes labeled “Brute Memorization” — basically, what you find in this section.
Here’s what I learned that semester: Whether it’s been one year or 20 since
you took Pre-Calculus, make sure that you’re comfy with this information.

Knowing the facts on factorials
The factorial of a positive integer, represented by the symbol !, is that number
multiplied by every positive integer less than itself. For example:

5! = 5 · 4 · 3 · 2 · 1 = 120

Notice that the factorial of every positive number equals that number multi-
plied by the next-lowest factorial. For example:

6! = 6 (5!)

Generally speaking, then, the following equality is true:

(x + 1)! = (x + 1) x!

This equality provides the rationale for the odd-looking convention that 0! = 1:

(0 + 1)! = (0 + 1) 0!

1! = (1) 0!

1 = 0!

When factorials show up in fractions (as they do in Chapters 12 and 13), you
can usually do a lot of cancellation that makes them simpler to work with. For
example:

!
!

5
3

5 4 3 2 1
3 2 1

5 4
1

20
1

= = =
$ $ $ $
$ $

$^

^

^h

h

h
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Even when a fraction includes factorials with variables, you can usually sim-
plify it. For example:

!
!

!
!

x
x

x
x x

x
1 1

1
+

=
+

= +
^ ^h h

Polishing off polynomials
A polynomial is any function of the following form:

f(x) = anx
n + an–1x

n–1 + an–2x
n–2 + ... + a1x + a0

Note that every term in a polynomial is x raised to the power of a nonnega-
tive integer, multiplied by a real-number coefficient. Here are a few examples
of polynomials:

f(x) = x3 – 4x2 + 2x – 5

f(x) = x12 – 4
3 x7 + 100x – π

f(x) = (x2 + 8)(x – 6)3

Note that in the last example, multiplying the right side of the equation will
change the polynomial to a more recognizable form.

Polynomials enjoy a special status in math because they’re particularly easy
to work with. For example, you can find the value of f(x) for any x value by
plugging this value into the polynomial. Furthermore, polynomials are also
easy to differentiate and integrate. Knowing how to recognize polynomials
when you see them will make your life in any math course a whole lot easier.

Powering through powers (exponents)
Remember when you found out that any number (except 0) raised to the
power of 0 equals 1? That is:

n0 = 1 (for all n ≠ 0)

It just seemed weird, didn’t it? But when you asked your teacher why, I sus-
pect you got an answer that sounded something like “That’s just how mathe-
maticians define it.” Not a very satisfying answer, is it?

However if you’re absolutely dying to know why (or if you’re even mildly curi-
ous about it), the answer lies in number patterns.
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For starters, suppose that n = 2. Table 2-1 is a simple chart that encapsulates
information you already know.

Table 2-1 Positive Integer Exponents of 2
x 1 2 3 4 5 6 7 8

2x 2 4 8 16 32 64 128 256

As you can see, as x increases by 1, 2x doubles. So, as x decreases by 1, 2x is
halved. You don’t need rocket science to figure out what happens when x = 0.
Table 2-2 shows you what happens.

Table 2-2 Nonnegative Integer Exponents of 2
x 0 1 2 3 4 5 6 7 8

2x 1 2 4 8 16 32 64 128 256

This chart provides a simple rationale of why 20 = 1. The same reasoning
works for all other real values of n (except 0). Furthermore, Table 2-3 shows
you what happens when you continue the pattern into negative values of x.

Table 2-3 Positive and Negative Integer Exponents of 2 
x –4 –3 –2 –1 0 1 2 3 4

nx

16
1

8
1

4
1

2
1 1 2 4 8 16

As the table shows, 2–x = 2
1

x . This pattern also holds for all real, nonzero
values of n, so

n–x = n
1

x

Notice from this table that the following rule holds:

nanb = na + b

For example:

23 ⋅ 24 = 23 + 4 = 27 = 128
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This rule allows you to evaluate fractional exponents as roots. For example:

2 2 2 2 2 2 2so2
1

2
1

2
1

2
1 1

2
1

= = = =
+$ ` j

You can generalize this rule for all bases and fractional exponents as follows:

n nb
a ab=

Plotting these values for x and f(x) = 2x onto a graph provides an even deeper
understanding (check out Figure 2-1):

In fact, assuming the continuity of the exponential curve even provides a
rationale (or, I suppose, an irrationale) for calculating a number raised to an
irrational exponent. This calculation is beyond the scope of this book, but it’s
a problem in numerical analysis, a topic that I discuss briefly in Chapter 1.

Noting trig notation
Trigonometry is a big and important subject in Calculus II. I can’t cover every-
thing you need to know about trig here. For more detailed information on trig,
see Trigonometry For Dummies by Mary Jane Sterling (Wiley). But I do want to
spend a moment on one aspect of trig notation to clear up any confusion you
may have.

When you see the notation

2 cos x

remember that this means 2 (cos x). So, to evaluate this function for x = π,
evaluate the inner function cos x first, and then multiply the result by 2:

2 cos π = 2 · –1 = –2
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Figure 2-1:
Graph of the

function 
y = 2x.
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On the other hand, the notation

cos 2x

means cos (2x). For example, to evaluate this function for x = 0, evaluate the
inner function 2x first, and then take the cosine of the result:

cos (2 · 0) = cos 0 = 1

Finally (and make sure that you understand this one!), the notation

cos2 x

means (cos x)2. In other words, to evaluate this function for x = π, evaluate the
inner function cos x first, and then take the square of the result:

cos2 π = (cos π)2 = (–1)2 = 1

Getting clear on how to evaluate trig functions really pays off when you’re
applying the Chain Rule (which I discuss later in this chapter) and when inte-
grating trig functions (which I focus on in Chapter 7).

Figuring the angles with radians
When you first discovered trigonometry, you probably used degrees because
they were familiar from geometry. Along the way, you were introduced to
radians, and forced to do a bunch of conversions between degrees and radi-
ans, and then in the next chapter you went back to using degrees.

Degrees are great for certain trig applications, such as land surveying. But for
math, radians are the right tool for the job. In contrast, degrees are awkward
to work with.

For example, consider the expression sin 1,260°. You probably can’t tell just
from looking at this expression that it evaluates to 0, because 1,260° is a mul-
tiple of 180°.

In contrast, you can tell immediately that the equivalent expression sin7π is a
multiple of π. And as an added bonus, when you work with radians, the num-
bers tend to be smaller and you don’t have to add the degree symbol (°).

You don’t need to worry about calculating conversions between degrees and
radians. Just make sure that you know the most common angles in both
degrees and radians. Figure 2-2 shows you some common angles.

42 Part I: Introduction to Integration 

06_225226-ch02.qxd  5/1/08  12:19 AM  Page 42



Radians are the basis of polar coordinates, which I discuss later in this section.

Graphing common functions
You should be familiar with how certain common functions look when drawn
on a graph. In this section, I show you the most common graphs of functions.
These functions are all continuous, so they’re integrative at all real values of x.

Linear and polynomial functions
Figure 2-3 shows three simple functions.
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Figure 2-3:
Graphs of
two linear
functions
y = n and 
y = x and
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y = |x|.
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Figure 2-4 includes a few basic polynomial functions.

Exponential and logarithmic functions
Here are some exponential functions with whole number bases:

y = 2x

y = 3x

y = 10x

Notice that for every positive base, the exponential function

� Crosses the y-axis at x = 1

� Explodes to infinity as x increases (that is, it has an unbounded y value)

� Approaches y = 0 as x decreases (that is, in the negative direction the 
x-axis is an asymptote)

The most important exponential function is ex. See Figure 2-5 for a graph of
this function.
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Figure 2-5:
Graph of the
exponential

function 
y = ex.
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Figure 2-4:
Graphs of

three
polynomial

functions
y = x2, y = x3,

and y = x4.
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The unique feature of this exponential function is that at every value of x, its
slope is ex. That is, this function is its own derivative (see “Recent Memories:
A Review of Calculus I” later in this chapter for more on derivatives).

Another important function is the logarithmic function (also called the natural
log function). Figure 2-6 is a graph of the logarithmic function y = ln x.

Notice that this function is the reflection of ex along the diagonal line y = x. So
the log function does the following:

� Crosses the x-axis at x = 1

� Explodes to infinity as x increases (that is, it has an unbounded y value),
though more slowly than any exponential function

� Produces a y value that approaches –∞ as x approaches 0 from the right

Furthermore, the domain of the log functions includes only positive values.
That is, inputting a nonpositive value to the log function is a big no-no, on par
with placing 0 in the denominator of a fraction or a negative value inside a
square root.

For this reason, functions placed inside the log function often get “pretreated”
with the absolute value operator. For example:

y = ln |x3|

You can bring an exponent outside of a natural log and make it a coefficient,
as follows:

ln (ab) = b ln a

y

x
1

y = In x

Figure 2-6:
Graph of the
logarithmic

function 
y = ln x.
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Trigonometric functions
The two most important graphs of trig functions are the sine and cosine. See
Figure 2-7 for graphs of these functions.

Note that the x values of these two graphs are typically marked off in multi-
ples of π. Each of these functions has a period of 2π. In other words, it repeats
its values after 2π units. And each has a maximum value of 1 and a minimum
value of –1.

Remember that the sine function

� Crosses the origin

� Rises to a value of 1 at x = π
2

� Crosses the x-axis at all multiples of π

Remember that the cosine function

� Has a value of 1 at x = 0

� Drops to a value of 0 at x = π
2

� Crosses the x-axis at π
2

3 , π
2

5 , π
2

7 , and so on

The graphs of other trig functions are also worth knowing. Figure 2-8 shows
graphs of the trig functions y = tan x, y = cot x, y = sec x, and y = csc x.
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Figure 2-7:
Graphs of

the trig
functions 

y = sin x and
y = cos x.
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Asymptotes
An asymptote is any straight line on a graph that a curve approaches but
doesn’t touch. It’s usually represented on a graph as a dashed line. For exam-
ple, all four graphs in Figure 2-8 have vertical asymptotes.

Depending on the curve, an asymptote can run in any direction, including
diagonally. When you’re working with functions, however, horizontal and ver-
tical asymptotes are more common.

Transforming continuous functions
When you know how to graph the most common functions, you can trans-
form them by using a few simple tricks, as I show you in Table 2-4.
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Figure 2-8:
Graphs of

the trig
functions 
y = tan x, 
y = cot x, 
y = sec x,

and 
y = csc x.
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Table 2-4 Five Vertical and Five Horizontal 
Transformations of Functions

Axis Direction Transformation Example

y-axis Shift Up y = f (x) + n y = ex + 1
(vertical)

Shift Down y = f (x) – n y = x3 – 2

Expand y = nf (x) y = 5 sec x

Contract y = n
f x^ h

y = sin x
10

Reflect y = –f (x) y = –(ln x)

x-axis Shift Right y = f (x – n) y = ex – 2

(horizontal)

Shift Left y = f (x + n) y = (x + 4)3

Expand y = f n
x

c m y = sec x
3

Contract y = f (nx) y = sin (πx)

Reflect y = f (–x) y = e–x

The vertical transformations are intuitive — that is, they take the function
in the direction that you’d probably expect. For example, adding a constant
shifts the function up and subtracting a constant shifts it down.

In contrast, the horizontal transformations are counterintuitive — that is,
they take the function in the direction that you probably wouldn’t expect. For
example, adding a constant shifts the function left and subtracting a constant
shifts it right.

Identifying some important trig identities
Memorizing trig identities is like packing for a camping trip.

When you’re backpacking into the wilderness, there’s a limit to what you can
comfortably carry, so you should probably leave your pogo stick and your
30-pound dumbbells at home. At the same time, you don’t want to find your-
self miles from civilization without food, a tent, and a first-aid kit.

I know that committing trig identities to memory registers on the Fun Meter
someplace between alphabetizing your spice rack and vacuuming the lint
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filter on your dryer. But knowing a few important trig identities can be a life-
saver when you’re lost out on the misty calculus trails, so I recommend that
you take a few along with you. (It’s nice when the metaphor really holds up,
isn’t it?)

For starters, here are the three inverse identities, which you probably know
already:

sin x = cscx
1

cos x = secx
1

tan x = cotx
1

You also need these two important identities:

tan x = cos
sin

x
x

cot x = sin
cos

x
x

I call these the Basic Five trig identities. By using them, you can express any
trig expression in terms of sines and cosines. Less obviously, you can also
express any trig expression in terms of tangents and secants (try it!). Both of
these facts are useful in Chapter 7, when I discuss trig integration.

Equally indispensable are the three square identities. Most students remem-
ber the first and forget about the other two, but you need to know them all:

sin2 x + cos2 x = 1

1 + tan2 x = sec2 x

1 + cot2 x = csc2 x
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How to avoid an identity crisis
Most students remember the first square iden-
tity without trouble:

sin2 x + cos2 x = 1

If you’re worried that you might forget the other
two square identities just when you need them
most, don’t despair. An easy way to remember
them is to divide every term in the first square
identity by sin2 x and cos2 x :
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Now, simplify these equations using the Basic
Five trig identities:

1 + tan2 x = sec2 x

1 + cot2 x = csc2 x
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You also don’t want to be seen in public without the two half-angle identities:

sin2 x = cos x
2

1 2-

cos2 x = cos x
2

1 2+

Finally, you can’t live without the double-angle identities for sines:

sin 2x = 2 sin x cos x

Beyond these, if you have a little spare time, you can include these double-
angle identities for cosines and tangents:

cos 2x = cos2 x – sin2 x = 2 cos2 x – 1 = 1 – 2 sin2 x

tan 2x = 
tan

tan
x

x
1

2
2-

Polar coordinates
Polar coordinates are an alternative to the Cartesian coordinate system. As
with Cartesian coordinates, polar coordinates assign an ordered pair of
values to every point on the plane. Unlike Cartesian coordinates, however,
these values aren’t (x, y), but rather (r, θ).

� The value r is the distance to the origin.

� The value θ is the angular distance from the polar axis, which corre-
sponds to the positive x-axis in Cartesian coordinates. (Angular distance
is always measured counterclockwise.)

Figure 2-9 shows how to plot points in polar coordinates. For example:

� To plot the point (3, π
4 ), travel 3 units from the origin on the polar axis, 

and then arc π
4 (equivalent to 45°) counterclockwise.

� To plot (4, π
6

5 ), travel 4 units from the origin on the polar axis, and then 

arc π
6

5 units (equivalent to 150°) counterclockwise.

� To plot the point (2, π
2

3 ), travel 2 units from the origin on the polar axis, 
and then arc π

2
3 units (equivalent to 270°) counterclockwise.

Polar coordinates allow you to plot certain shapes on the graph more simply
than Cartesian coordinates. For example, here’s the equation for a 3-unit
circle centered at the origin in both Cartesian and polar coordinates:

y x 92!= - r = 3
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Some problems that would be difficult to solve expressed in terms of Cartesian
variables (x and y) become much simpler when expressed in terms of polar
variables (r and θ). To convert Cartesian variables to polar, use the following
formulas:

x = r cos θ y = r sin θ

To convert polar variables to Cartesian, use this formula:

r x y2 2!= + arctan x
yθ = d n

Polar coordinates are the basis of two alternative 3-D coordinate systems:
cylindrical coordinates and spherical coordinates. See Chapter 14 for a look
at these two systems.

Summing up sigma notation
Mathematicians just love sigma notation (Σ) for two reasons. First, it provides
a convenient way to express a long or even infinite series. But even more
important, it looks really cool and scary, which frightens nonmathematicians
into revering mathematicians and paying them more money.

However, when you get right down to it, Σ is just fancy notation for adding,
and even your little brother isn’t afraid of adding, so why should you be?

r

( 3, )π
4

r

( 4, )5π
6

r
( 2, )3π

2

Figure 2-9:
Plotting

points in
polar

coordinates.
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For example, suppose that you want to add the even numbers from 2 to 10. Of
course, you can write this expression and its solution this way:

2 + 4 + 6 + 8 + 10 = 30

Or you can write the same expression by using sigma notation:

n2
n 1

5

=

!

Here, n is the variable of summation — that is, the variable that you plug
values into and then add them up. Below the Σ, you’re given the starting
value of n (1) and above it the ending value (5). So here’s how to expand the
notation:

n2 2 1 2 2 2 3 2 4 2 5 30
n 1

5

= + + + + =
=

! ^ ^ ^ ^ ^h h h h h

You can also use sigma notation to stand for the sum of an infinite number of
values — that is, an infinite series. For example, here’s how to add up all the
positive square numbers:

n
n

2

1

3

=

!

This compact expression can be expanded as follows:

= 12 + 22 + 32 + 42 + ... = 1 + 4 + 9 + 16 + ...

This sum is, of course, infinite. But not all infinite series behave in this way. In
some cases, an infinite series equals a number. For example:

2
1

n

n 0

3

=

! c m

This series expands and evaluates as follows:

1 + 2
1 + 4

1 + 8
1 + ... = 2

When a series evaluates to a number, the series is convergent. When a series
isn’t convergent, it’s divergent. You find out all about divergent and conver-
gent series in Chapter 12.
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Recent Memories: A Review of Calculus I
Integration is the study of how to solve a single problem — the area problem.
Similarly, differentiation, which is the focus of Calculus I, is the study of how
to solve the tangent problem: how to find the slope of the tangent line at any
point on a curve. In this section, I review the highlights of Calculus I. For a
more thorough review, please see Calculus For Dummies by Mark Ryan (Wiley).

Knowing your limits
An important thread that runs through Calculus I is the concept of a limit.
Limits are also important in Calculus II. In this section, I give you a review of
everything you need to remember but may have forgotten about limits.

Telling functions and limits apart
A function provides a link between two variables: the independent variable
(usually x) and the dependent variable (usually y). A function tells you the
value y when x takes on a specific value. For example, here’s a function:

y = x2

In this case, when x takes a value of 2, the value of y is 4.

In contrast, a limit tells you what happens to y as x approaches a certain
number without actually reaching it. For example, suppose that you’re work-
ing with the function y = x2 and want to know the limit of this function as x
approaches 2. The notation to express this idea is as follows:

lim x
x 2

2

"

You can get a sense of what this limit equals by plugging successively closer
approximations of 2 into the function (see Table 2-5).

Table 2-5 Approximating lim x
x 2

2

"

x 1.7 1.8 1.9 1.99 1.999 1.9999

y 2.69 3.24 3.61 3.9601 3.996001 3.99960001
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This table provides strong evidence that the limit evaluates to 4. That is:

lim x 4
x 2

2=
"

Remember that this limit tells you nothing about what the function actually
equals when x = 2. It tells you only that as x approaches 2, the value of the
function gets closer and closer to 2. In this case, because the function and the
limit are equal, the function is continuous at this point.

Evaluating limits
Evaluating a limit means either finding the value of the limit or showing that
the limit doesn’t exist.

You can evaluate many limits by replacing the limit variable with the number
that it approaches. For example:

lim x
x
2 2 4

4
8

16 1
x 4

2 2

= = =
" $

Sometimes this replacement shows you that a limit doesn’t exist. For example:

lim x
x

3=
"3

When you find that a limit appears to equal either ∞ or –∞, the limit does not
exist (DNE). DNE is a perfectly good way to complete the evaluation of a limit.

Some replacements lead to apparently untenable situations, such as division
by zero. For example:

lim x 0 0
1e e

x

x

0

0

= =
"

This looks like a dead end, because division by zero is undefined. But, in fact,
you can actually get an answer to this problem. Remember that this limit tells
you nothing about what happens when x actually equals 0, only what hap-
pens as x approaches 0: The denominator shrinks toward 0, while the numer-
ator never falls below 1, so the value fraction becomes indefinitely large.
Therefore:

lim x
e Does Not Exist DNE

x

x

0"

^ h

Here’s another example:

, , , ,lim x
1 000 000 1 000 000

x 3=
"3
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This is another apparent dead end, because ∞ isn’t really a number, so how
can it be the denominator of a fraction? Again, the limit saves the day. It 
doesn’t tell you what happens when x actually equals ∞ (if such a thing were
possible), only what happens as x approaches ∞. In this case, the denomina-
tor becomes indefinitely large while the numerator remains constant, so:

, ,lim x
1 000 000 0

x
=

"3

Some limits are more difficult to evaluate because they’re one of several inde-
terminate forms. The best way to solve them is to use L’Hospital’s Rule, which
I discuss in detail at the end of this chapter.

Hitting the slopes with derivatives
The derivative at a given point on a function is the slope of the tangent line
to that function at that point. The derivative of a function provides a “slope
map” of that function.

The best way to compare a function with its derivative is by lining them up
vertically (see Figure 2-10 for an example).

y

x

y = x 2

–1

y

x

y ' = 2x

–1

–2

Figure 2-10:
Comparing
a graph of

the function
y = x2 with

its
derivative

function 
y' = 2x.
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Looking at the top graph, you can see that when x = 0, the slope of the func-
tion y = x2 is 0 — that is, no slope. The bottom graph verifies this because at
x = 0, the derivative function y = 2x is also 0.

You probably can’t tell, however, what the slope of the top graph is at x = –1.
To find out, look at the bottom graph and notice that at x = –1, the derivative
function equals –2, so –2 is also the slope of the top graph at this point.
Similarly, the derivative function tells you the slope at every point on the
original function.

Referring to the limit formula 
for derivatives
In Calculus I, you develop two formulas for the derivative of a function. These
formulas are both based on limits, and they’re both equally valid:

limf x h
f x h f x

h 0
=

+ -

"

l ^
^ ^

h
h h

limf x x a
f x f a

x a
= -

-

"

l ^
^ ^

h
h h

You probably won’t need to refer to these formulas much as you study
Calculus II. Still, please keep in mind that the official definition of a function’s
derivative is always cast in terms of a limit.

For a more detailed look at how these formulas are developed, see Calculus
For Dummies by Mark Ryan (Wiley).

Knowing two notations for derivatives
Students often find the notation for derivatives — especially Leibniz notation 

dx
d — confusing. To make things simple, think of this notation as a unary 

operator that works in a similar way to a minus sign.

A minus sign attaches to the front of an expression, changing the value of
that expression to its negative. Evaluating the effect of this sign on the
expression is called distribution, which produces a new but equivalent
expression. For example:

–(x2 + 4x – 5) = –x2 – 4x + 5
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Similarly, the notation dx
d attaches to the front of an expression, changing 

the value of that expression to its derivative. Evaluating the effect of this nota-
tion on the expression is called differentiation, which also produces a new but
equivalent expression. For example:

dx
d (x2 + 4x – 5) = 2x + 4

The basic notation remains the same even when an expression is recast as a
function. For example, given the function y = f(x) = x2 + 4x – 5, here’s how you
differentiate:

dx
dy

= dx
d f(x) = 2x + 4

The notation dx
dy

, which means “the change in y as x changes,” was first used 
by Gottfried Leibniz, one of the two inventors of calculus (the other inventor
was Isaac Newton). An advantage of Leibniz notation is that it explicitly tells
you the variable over which you’re differentiating — in this case, x. When this
information is easily understood in context, a shorter notation is also available:

y' = f'(x) = 2x + 4

You should be comfortable with both of these forms of notation. I use them
interchangeably throughout this book.

Understanding differentiation
Differentiation — the calculation of derivatives — is the central topic of
Calculus I and makes an encore appearance in Calculus II.

In this section, I give you a refresher on some of the key topics of differentia-
tion. In particular, the 17 need-to-know derivatives are here and, for your con-
venience, in the Cheat Sheet just inside the front cover of this book. And if
you’re shaky on the Chain Rule, I offer you a clear explanation that gets you
up to speed.

Memorizing key derivatives
The derivative of any constant is always 0:

dx
d n = 0

The derivative of the variable by which you’re differentiating (in most cases, x)
is 1:

dx
d x = 1
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Here are three more derivatives that are important to remember:

dx
d ex = ex

dx
d nx = nx ln n

dx
d ln x = x

1

You need to know each of these derivatives as you move on in your study of
calculus.

Derivatives of the trig functions
The derivatives of the six trig functions are as follows:

dx
d sin x = cos x

dx
d cos x = –sin x

dx
d tan x = sec2 x

dx
d cot x = –csc2 x

dx
d sec x = sec x tan x

dx
d csc x = –csc x cot x

You need to know them all by heart.

Derivatives of the inverse trig functions
Two notations are commonly used for inverse trig functions. One is the addi-
tion of –1 to the function: sin–1, cos–1, and so forth. The second is the addition
of arc to the function: arcsin, arccos, and so forth. They both mean the same
thing, but I prefer the arc notation, because it’s less likely to be mistaken for
an exponent.

I know that asking you to memorize these functions seems like a cruel joke.
But you really need them when you get to trig substitution in Chapter 7, so at
least have a looksie:

arcsindx
d x

x1
1

2
=

-

arccosdx
d x

x1
1

2
= -

-

arctandx
d x

x1
1

2=
+

cotdx
d x

x1
1arc 2= -

+
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secdx
d x

x x 1
1arc

2
=

-

dx
d x

x x 1
1arccsc

2
= -

-

Notice that derivatives of the three “co” functions are just negations of the
three other functions, so your work is cut in half.

The Sum Rule
In textbooks, the Sum Rule is often phrased: The derivative of the sum of
functions equals the sum of the derivatives of those functions:

dx
d [f(x) + g(x)] = dx

d f(x) + dx
d g(x)

Simply put, the Sum Rule tells you that differentiating long expressions term
by term is okay. For example, suppose that you want to evaluate the following:

dx
d (sin x + x4 – ln x)

The expression that you’re differentiating has three terms, so by the Sum
Rule, you can break this into three separate derivatives and solve them 
separately:

= dx
d sin x + dx

d x4 – dx
d ln x

= cos x + 4x3 – x
1

Note that the Sum Rule also applies to expressions of more than two terms.
It also applies regardless of whether the term is positive or negative. Some
books call this variation the Difference Rule, but you get the idea.

The Constant Multiple Rule
A typical textbook gives you this sort of definition for the Constant Multiple
Rule: The derivative of a constant multiplied by a function equals the product
of that constant and the derivative of that function:

dx
d nf(x) = n dx

d f(x)

In plain English, this rule tells you that moving a constant outside of a deriva-
tive before you differentiate is okay. For example:

dx
d 5 tan x

To solve this, move the 5 outside the derivative, and then differentiate:

= 5 dx
d tan x

= 5 sec2 x
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The Power Rule
The Power Rule tells you that to find the derivative of x raised to any power,
bring down the exponent as the coefficient of x, and then subtract 1 from the
exponent and use this as your new exponent. Here’s the general form:

dx
d xn = nxn–1

Here are a few examples:

dx
d x2 = 2x

dx
d x3 = 3x2

dx
d x10 = 10x9

When the function that you’re differentiating already has a coefficient, multi-
ply the exponent by this coefficient. For example:

dx
d 2x4 = 8x3

dx
d 7x6 = 42x5

dx
d 4x100 = 400x99

The Power Rule also extends to negative exponents, which allows you to dif-
ferentiate many fractions. For example:

dx
d

x
1

5

= dx
d x–5

= –5x–6

= 
x
5

6-

It also extends to fractional exponents, which allows you to differentiate
square roots and other roots:

dx
d x x3

1
3
1

3
2

= -
c m
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The Product Rule
The derivative of the product of two functions f(x) and g(x) is equal to the
derivative of f(x) multiplied by g(x) plus the derivative of g(x) multiplied by
f(x). That is:

dx
d [f(x) · g(x)]

= f'(x) · g(x) + g'(x) · f(x)

Practice saying the Product Rule like this: “The derivative of the first function
times the second plus the derivative of the second times the first.” This
encapsulates the Product Rule and sets you up to remember the Quotient
Rule (see the next section).

For example, suppose that you want to differentiate ex sin x. Start by breaking
the problem out as follows:

dx
d ex sin x = sin sindx

d e x dx
d x ex x+c cm m

Now, you can evaluate both derivatives, which I underline, without much 
confusion:

= ex · sin x + cos x · ex

You can clean this up a bit as follows:

= ex (sin x + cos x)

The Quotient Rule

dx
d

g x
f x

g x

f x g x g x f x
2=

-$ $l l

^

^
f

^

^ ^ ^ ^

h

h
p

h

h h h h

Practice saying the Quotient Rule like this: “The derivative of the top function
times the bottom minus the derivative of the bottom times the top, over the
bottom squared.” This is similar enough to the Product Rule that you can
remember it.

For example, suppose that you want to differentiate the following:

tandx
d

x
x 4

c m
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As you do with the Product Rule example, start by breaking the problem out
as follows:

tan

tan tan

x
dx
d x x dx

d x x
2

4 4

=
-$ $c cm m

Now, evaluate the two derivatives:

tan
tan sec

x
x x x x4

2

3 2 4

=
-$ $

This answer is fine, but you can clean it up by using some algebra plus the
five basic trig identities from earlier in this chapter. (Don’t worry too much
about these steps unless your professor is particularly unforgiving.)

= 
tan

tan
x

x x4
2

3

– (x4 sec2 x cot2 x)

= tan cos sin
cos

x
x x

x x
x4 13

4
2 2

2

- d dn n

= 4x3 cot x – x4 csc2 x

= x3 (4 cot x – x csc2 x)

The Chain Rule
I’m aware that the Chain Rule is considered a major sticking point in Calculus I,
so I take a little time to review it. (By the way, contrary to popular belief,
the Chain Rule isn’t “If you don’t follow the rules in your Calculus class, the
teacher gets to place you in chains.” Such teaching methods are now consid-
ered questionable and have been out of use in the classroom since at least
the 1970s.)

The Chain Rule allows you to differentiate nested functions — that is, func-
tions within functions. It places no limit on how deeply nested these functions
are. In this section, I show you an easy way to think about nested functions,
and then I show you how to apply the Chain Rule simply.

Evaluating functions from the inside out
When you’re evaluating a nested function, you begin with the inner function
and move outward. For example:

f(x) = e2x

In this case, 2x is the inner function. To see why, suppose that you want to
evaluate f(x) for a given value of x. To keep things simple, say that x = 0. After
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plugging in 0 for x, your first step is to evaluate the inner function, which I
underline:

Step 1: e2(0) = e0

Your next step is to evaluate the outer function:

Step 2: e0 = 1

The terms inner function and outer function are determined by the order in
which the functions get evaluated. This is true no matter how deeply nested
these functions are. For example:

lng x e x3 6
3

= -
^ `h j

Suppose that you want to evaluate g(x). To keep the numbers simple, this
time let x = 2. After plugging in 2 for x, here’s the order of evaluation from the
inner function to the outer:

Step 1: ln lne e( )3 2 6
3

0
3

=-
` `j j

Step 2: ln ln 1e0
3 3

=` `j j

Step 3: ln ln1 1
3 3
=` ^j h

Step 4: (ln 1)3 = 03

Step 5: 03 = 0

The process of evaluation clearly lays out the five nested functions of g(x)
from inner to outer.

Differentiating functions from the outside in
In contrast to evaluation, differentiating a function by using the Chain Rule
forces you to begin with the outer function and move inward.

Here’s the basic Chain Rule the way that you find it in textbooks:

dx
d f(g(x)) = f'(g(x)) · g'(x)

To differentiate nested functions by using the Chain Rule, write down the
derivative of the outer function, copying everything inside it, and multiply
this result by the derivative of the next function inward.

This explanation may seem a bit confusing, but it’s a lot easier when you
know how to find the outer function, which I explain in the previous section,
“Evaluating functions from the inside out.” A couple of examples should help.
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For example, suppose that you want to differentiate the nested function sin 2x.
The outer function is the sine portion, so this is where you start:

dx
d sin 2x = cos 2x · dx

d x2

To finish, you still need to differentiate the underlined portion, 2x:

= cos 2x · 2

Rearranging this solution to make it more presentable gives you your final
answer:

= 2 cos 2x

When you differentiate more than two nested functions, the Chain Rule really
lives up to its name: As you break down the problem step by step, you string
out a chain of multiplied expressions.

For example, suppose that you want to differentiate sin3 ex. Remember from
the earlier section, “Noting trig notation,” that the notation sin3 ex really
means (sin ex)3. This rearrangement makes clear that the outer function is
the power of 3, so begin differentiating with this function:

dx
d (sin ex)3 = 3(sin ex)2 · dx

d (sin ex)

Now, you have a smaller function to differentiate, which I underline:

= 3(sin ex)2 · cos ex · dx
d e x

Only one more derivative to go:

= 3(sin ex)2 · cos ex · ex

Again, rearranging your answer is customary:

= 3ex cos ex sin2 ex

Finding Limits by Using L’Hospital’s Rule
L’Hospital’s Rule is all about limits and derivatives, so it fits better with
Calculus I than Calculus II. But some colleges save this topic for Calculus II.

So, even though I’m addressing this as a review topic, fear not: Here, I give
you the full story of L’Hospital’s Rule, starting with how to pronounce
L’Hospital (low-pee-tahl).
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L’Hospital’s Rule provides a method for evaluating certain indeterminate forms
of limits. First, I show you what an indeterminate form of a limit looks like,
with a list of all common indeterminate forms. Next, I show you how to use
L’Hospital’s Rule to evaluate some of these forms. And finally, I show you how
to work with the other indeterminate forms so that you can evaluate them.

Understanding determinate and 
indeterminate forms of limits
As you discover earlier in this chapter, in “Knowing your limits,” you can
evaluate many limits by simply replacing the limit variable with the number
that it approaches. In some cases, this replacement results in a number, so
this number is the value of the limit that you’re seeking. In other cases, this
replacement gives you an infinite value (either +∞ or –∞), so the limit does
not exist (DNE).

Table 2-6 shows a list of some functions that often cause confusion.

Table 2-6 Limits of Some Common Functions 
Case f(x) = g(x) = Function Limit

#1 0 ∞ g x
f x
^

^

h

h
0

#2 0 ∞ f x
(g x )

^ h 0

#3 C ≠ 0 0 g x
f x
^

^

h

h
DNE

#4 ±∞ 0 g x
f x
^

^

h

h
DNE

To understand how to think about these four cases, remember that a limit
describes the behavior of a function very close to, but not exactly at, a value
of x.

In the first and second cases, f(x) gets very close to 0 and g(x) explodes to 

infinity, so both 
g x
f x
^

^

h

h
and f(x)g(x) approach 0. In the third case, f(x) is a con-

stant c other than 0 and g(x) approaches 0, so the fraction 
g x
f x
^

^

h

h
explodes to 

infinity. And in the fourth case, f(x) explodes to infinity and g(x) approaches 0, 

so the fraction 
g x
f x
^

^

h

h
explodes to infinity.
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In each of these cases, you have the answer you’re looking for — that is, you
know whether the limit exists and, if so, its value — so these are all called
determinate forms of a limit.

In contrast, however, sometimes when you try to evaluate a limit by replace-
ment, the result is an indeterminate form of a limit. Table 2-7 includes two
common indeterminate forms.

Table 2-7 Two Indeterminate Forms of Limits
Case f(x) = g(x) = Function Limit

#1 0 0 g x
f x
^

^

h

h
Indeterminate

#2 ±∞ ±∞ g x
f x
^

^

h

h
Indeterminate

In these cases, the limit becomes a race between the numerator and denomi-
nator of the fractional function. For example, think about the second example
in the chart. If f(x) crawls toward ∞ while g(x) zooms there, the fraction
becomes bottom heavy and the limit is 0.

But if f(x) zooms to ∞ while g(x) crawls there, the fraction becomes top
heavy and the limit is ∞ — that is, DNE. And if both functions move toward 0
proportionally, this proportion becomes the value of the limit.

When attempting to evaluate a limit by replacement saddles you with either
of these forms, you need to do more work. Applying L’Hospital’s Rule is the
most reliable way to get the answer that you’re looking for.

Introducing L’Hospital’s Rule
Suppose that you’re attempting to evaluate the limit of a function of the form 

g x
f x
^

^

h

h
. When replacing the limit variable with the number that it approaches 

results in either 0
0 or !

!
3
3 , L’Hospital’s Rule tells you that the following equa-

tion holds true:

lim lim
g x
f x

g x
f x

x c x c
=

" " l

l

^

^

^

^

h

h

h

h

Note that c can be any real number as well as ∞ or –∞.
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As an example, suppose that you want to evaluate the following limit:

lim sinx
x

x 0

3

"

Replacing x with 0 in the function leads to the following result:

sin0
0

0
03

=

This is one of the two indeterminate forms that L’Hospital’s Rule applies to,
so you can draw the following conclusion:

lim sin lim
sinx

x
x

x
x x0

3

0

3

=
" " l

l

^

_

h

i

Next, evaluate the two derivatives:

lim cosx
x3

x 0

2

=
"

Now, use this new function to try another replacement of x with 0 and see
what happens:

cos0
3 0

1
0

2

=
_ i

This time, the result is a determinate form, so you can evaluate the original
limit as follows:

lim sinx
x 0

x 0

3

=
"

In some cases, you may need to apply L’Hospital’s Rule more than once to get
an answer. For example:

lim
x
e

x

x

5
"3

Replacement of x with ∞ results in the indeterminate form 3
3 , so you can use

L’Hospital’s Rule:

lim lim
x5e

e e
x

x

x

x

5 4=
" "3 3

In this case, the new function gives you the same indeterminate form, so use
L’Hospital’s Rule again:

lim
x20

e
x

x

3=
"3
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The same problem arises, but again you can use L’Hospital’s Rule. You can
probably see where this example is going, so I fast forward to the end:

lim
x60

e
x

x

2=
"3

lim x120
e

x

x

=
"3

lim 120
e

x

x

=
"3

When you apply L’Hospital’s Rule repeatedly to a problem, make sure that
every step along the way results in one of the two indeterminate forms that
the rule applies to.

At last! The process finally yields a function with a determinate form:

120 120
e 3 3= =

3

Therefore, the limit does not exist.

Alternative indeterminate forms
L’Hospital’s Rule applies only to the two indeterminate forms 0

0 and !
!
3
3 . 

But limits can result in a variety of other indeterminate forms for which
L’Hospital’s Rule doesn’t hold. Table 2-8 is a list of the indeterminate forms
that you’re most likely to see.

Table 2-8 Five Cases of Indeterminate Forms Where You 
Can’t Apply L’Hospital’s Rule Directly

Case f(x) = g(x) = Function Form

#1 0 ∞ f (x) · g (x) Indeterminate

#2 ∞ ∞ f (x) – g (x) Indeterminate

#3 0 0 f (x)g(x) Indeterminate

#4 ∞ 0 f (x)g(x) Indeterminate

#5 1 ∞ f (x)g(x) Indeterminate

Because L’Hospital’s Rule doesn’t hold for these indeterminate forms, apply-
ing the rule directly gives you the wrong answer.

These indeterminate forms require special attention. In this section, I show you
how to rewrite these functions so that you can then apply L’Hospital’s Rule.
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Case #1: 0 · ∞
When f(x) = 0 and g(x) = ∞, the limit of f(x) · g(x) is the indeterminate form 
0 · ∞, which doesn’t allow you to use L’Hospital’s Rule. To evaluate this limit,
rewrite this function as follows:

f(x) · g(x) = 

g x

f x
1
^

^

h

h

The limit of this new function is the indeterminate form 0
0 , which allows you 

to use L’Hospital’s Rule. For example, suppose that you want to evaluate the
following limit:

lim cotx x
x 0"

+

Replacing x with 0 gives you the indeterminate form 0 · ∞, so rewrite the limit
as follows:

lim

cotx

x
1x 0

=
"

+

c m

This can be simplified a little by using the inverse trig identity for cot x:

lim tanx
x

x 0
=

"
+

Now, replacing x with 0 gives you the indeterminate for 0
0 , so you can apply

L’Hospital’s Rule.

lim
tanx

x
x 0

=
"

+ l

l

^

^

h

h

lim
sec x

1
x 0

2=
"

+

At this point, you can evaluate the limit directly by replacing x with 0:

= 1
1 = 1

Therefore, the limit evaluates to 1.

Case #2: ∞ – ∞
When f(x) = ∞ and g(x) = ∞, the limit of f(x) – g(x) is the indeterminate form
∞ – ∞, which doesn’t allow you to use L’Hospital’s Rule. To evaluate this
limit, try to find a common denominator that turns the subtraction into a
fraction. For example:

lim cot cscx x
x 0

-
"

+
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In this case, replacing x with 0 gives you the indeterminate form ∞ – ∞. A little
tweaking with the Basic Five trig identities (see “Identifying some important
trig identities” earlier in this chapter) does the trick:

lim sin
cos

sinx
x

x
1

x 0
= -

"
+

lim sin
cos

x
x 1

x 0
=

-
"

+

Now, replacing x with 0 gives you the indeterminate form 0
0 , so you can use

L’Hospital’s Rule:

lim
sin

cos
x

x 1
x 0

=
-

"
+ l

l

^

^

h

h

lim cos
sin

x
x

x 0
=

-
"

+

At last, you can evaluate the limit by directly replacing x with 0.

= 1
0 = 0

Therefore, the limit evaluates to 0.

Cases #3, #4, and #5: 00, ∞0, and 1∞

In the following three cases, the limit of f(x)g(x) is an indeterminate form that
doesn’t allow you to use L’Hospital’s Rule:

� When f(x) = 0 and g(x) = 0

� When f(x) = ∞ and g(x) = 0

� When f(x) = 1 and g(x) = ∞

This indeterminate form 1∞ is easy to forget because it seems weird. After all,
1x = 1 for every real number, so why should 1∞ be any different? In this case,
infinity plays one of its many tricks on mathematics. You can find out more
about some of these tricks in Chapter 16.

For example, suppose that you want to evaluate the following limit:

lim x
x

x

0"

As it stands, this limit is of the indeterminate form 00.

Fortunately, I can show you a trick to handle these three cases. As with so many
things mathematical, mere mortals such as you and me probably wouldn’t dis-
cover this trick, short of being washed up on a desert island with nothing to do
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but solve math problems and eat coconuts. However, somebody did the hard
work already. Remembering this following recipe is a small price to pay:

1. Set the limit equal to y.

limy x
x

x

0
=

"

2. Take the natural log of both sides, and then do some log rolling:

ln ln limy x
x

x

0
=

"

Here are the two log rolling steps:

• First, roll the log inside the limit:

lim lnx
x

x

0
=

"

This step is valid because the limit of a log equals the log of a limit
(I know, those words veritably roll off the tongue).

• Next, roll the exponent over the log:

lim lnx x
x 0

=
"

This step is also valid, as I show you earlier in this chapter when I
discuss the log function in “Graphing common functions.”

3. Evaluate this limit as I show you in “Case #1: 0 · ∞.”

Begin by changing the limit to a determinate form:

lim ln

x

x
1x 0

=
"

At last, you can apply L’Hospital’s Rule:

lim
ln

x

x

1x 0
1

1

=
"

c

^

m

h

lim

x

x
1

1

x 0
2

=
-

"

Now, evaluating the limit isn’t too bad:

lim x
x

x 0

2

= -
"

lim x 0
x 0

= - =
"

Wait! Remember that way back in Step 2 you set this limit equal to ln y.
So you have one more step!
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4. Solve for y.

ln y = 0

y = 1

Yes, this is your final answer, so lim x 1
x

x

0
=

"

.

This recipe works with all three indeterminate forms that I talk about at the
beginning of this section. Just make sure that you keep tweaking the limit until
you have one of the two forms that are compatible with L’Hospital’s Rule.
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Chapter 3

From Definite to Indefinite:
The Indefinite Integral

In This Chapter
� Approximating area in five different ways

� Calculating sums and definite integrals

� Looking at the Fundamental Theorem of Calculus (FTC)

� Seeing how the indefinite integral is the inverse of the derivative

� Clarifying the differences between definite and indefinite integrals

The first step to solving an area problem — that is, finding the area of a
complex or unusual shape on the graph — is expressing it as a definite

integral. In turn, you can evaluate a definite integral by using a formula based
on the limit of a Riemann sum (as I show you in Chapter 1).

In this chapter, you get down to business calculating definite integrals. First,
I show you a variety of different ways to estimate area. All these methods
lead to a better understanding of the Riemann sum formula for the definite
integral. Next, you use this formula to find exact areas. This rather hairy
method of calculating definite integrals prompts a search for a better way.

This better way is the indefinite integral. I show you how the indefinite inte-
gral provides a much simpler way to calculate area. Furthermore, you find a
surprising link between differentiation (which is the focus of Calculus I) and
integration. This link, called the Fundamental Theorem of Calculus, shows that
the indefinite integral is really an anti-derivative (the inverse of the derivative).

To finish up, I show you how using an indefinite integral to evaluate a definite
integral results in signed area. I also clarify the differences between definite
and indefinite integrals so that you never get them confused. By the end of
this chapter, you’re ready for Part II, which focuses on an abundance of meth-
ods for calculating the indefinite integral.
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Approximate Integration
Finding the exact area under a curve — that is, solving an area problem (see
Chapter 1) — is one of the main reasons that integration was invented. But
you can approximate area by using a variety of methods. Approximating area
is a good first step toward understanding how integration works.

In this section, I show you five different methods for approximating the solu-
tion to an area problem. Generally speaking, I introduce these methods in the
order of increasing difficulty and effectiveness. The first three involve manip-
ulating rectangles.

� The first two methods — left and right rectangles — are the easiest to
use, but they usually give you the greatest margin of error.

� The Midpoint Rule (slicing rectangles) is a little more difficult, but it usu-
ally gives you a slightly better estimate.

� The Trapezoid Rule requires more computation, but it gives an even
better estimate.

� Simpson’s Rule is the most difficult to grasp, but it gives the best
approximation and, in some cases, provides you with an exact measure-
ment of area.

Three ways to approximate 
area with rectangles
Slicing an irregular shape into rectangles is the most common approach to
approximating its area (see Chapter 1 for more details on this approach). In
this section, I show you three different techniques for approximating area
with rectangles.

Using left rectangles
You can use left rectangles to approximate the solution to an area problem
(see Chapter 1). For example, suppose that you want to approximate the
shaded area in Figure 3-1 by using four left rectangles.

To draw these four rectangles, start by dropping a vertical line from the func-
tion to the x-axis at the left-hand limit of integration — that is, x = 0. Then drop
three more vertical lines from the function to the x-axis at x = 2, 4, and 6. Next,
at the four points where these lines cross the function, draw horizontal lines
from left to right to make the top edges of the four rectangles. The left and top
edges define the size and shape of each left rectangle.
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To measure the areas of these four rectangles, you need the width and height
of each. The width of each rectangle is obviously 2. The height and area of each
is determined by the value of the function at its left edge, as shown in Table 3-1.

Table 3-1 Approximating Area by Using Left Rectangles
Rectangle Width Height Area

#1 2 02 + 1 = 1 2

#2 2 22 + 1 = 5 10

#3 2 42 + 1 = 17 34

#4 2 62 + 1 = 37 74

To approximate the shaded area, add up the areas of these four rectangles:

x dx1 2 10 34 74 1202

0

8

.+ + + + =# _ i

Using right rectangles
Using right rectangles to approximate the solution to an area problem is vir-
tually the same as using left rectangles. For example, suppose that you want
to use six right rectangles to approximate the shaded area in Figure 3-2.

To draw these rectangles, start by dropping a vertical line from the function
to the x-axis at the right-hand limit of integration — that is, x = 3. Next, drop
five more vertical lines from the function to the x-axis at x = 0.5, 1, 1.5, 2, and
2.5. Then, at the six points where these lines cross the function, draw hori-
zontal lines from right to left to make the top edges of the six rectangles. The
right and top edges define the size and shape of each left rectangle.

x
4

y
y = x 2 + 1

6 82
1 5

17

37Figure 3-1:
Approxi-

mating

x dx12

0

8

+# _ i

by using
four left

rectangles.
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To measure the areas of these six rectangles, you need the width and height
of each. Each rectangle’s width is 0.5. Its height and area are determined by
the value of the function at its right edge, as shown in Table 3-2.

Table 3-2 Approximating Area by Using Right Rectangles
Rectangle Width Height Area

#1 0.5 . .0 5 0 707. 0.354

#2 0.5 1 1= 0.5

#3 0.5 . .1 5 1 225. 0.613

#4 0.5 .2 1 414. 0.707

#5 0.5 . .2 5 1 581. 0.791

#6 0.5 .3 1 732. 0.866

To approximate the shaded area, add up the areas of these six rectangles:

. . . . . . .x dx 0 354 0 5 0 613 0 707 0 791 0 866 3 831
0

3

. + + + + + =#

Finding a middle ground: The Midpoint Rule
Both left and right rectangles give you a decent approximation of area. So, it
stands to reason that slicing an area vertically and measuring the height of
each rectangle from the midpoint of each slice might give you a slightly better
approximation of area.

x

y

1 2 3

y = xFigure 3-2:
Approxi-

mating 

x dx
0

3

#

by using
six right

rectangles.
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For example, suppose that you want to use midpoint rectangles to approxi-
mate the shaded area in Figure 3-3.

To draw these three rectangles, start by drawing vertical lines that intersect 
both the function and the x-axis at x = 0, π

3 , π
3

2 , and π. Next, find where the 

midpoints of these three regions — that is, π
6 , π

2 , and π
6

5 — intersect the 

function. Now, draw horizontal lines through these three points to make the
tops of the three rectangles.

To measure these three rectangles, you need the width and height of each to 
compute the area. The width of each rectangle is π

3 , and the height is given in
Table 3-3.

Table 3-3 Approximating Area by Using the Midpoint Rule
Rectangle Width Height Area

#1 π
3 sin π

6 = 2
1 π

6

#2 π
3 sin π

2 = 1 π
3

#3 π
3 sin π

6 = 2
1 π

6

To approximate the shaded area, add up the areas of these three rectangles:

.sinx dx π π π π
6 3 6 3

2 2 0944
π

0

. .+ + =#

x

y

π π
3

2π
3 y = sinx

Figure 3-3:
Approxi-

mating 

sin x dx
π

0

#

by using
three

midpoint
rectangles.
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The slack factor
The formula for the definite integral is based on Riemann sums (see Chapter 1).
This formula allows you to add up the area of infinitely many infinitely thin 
rectangular slices to find the exact solution to an area problem.

And here’s the strange part: Within certain parameters, the Riemann sum for-
mula doesn’t care how you do the slicing. All three slicing methods that I dis-
cuss in the previous section work equally well. That is, although each method
yields a different approximate area for a given finite number of slices, all these
differences are smoothed over when the limit is applied. In other words, all
three methods work to provide you the exact area for infinitely many slices.

I call this feature of measuring rectangles the slack factor. Understanding the
slack factor helps you understand why using rectangles drawn at the left end-
point, right endpoint, or midpoint all lead to the same exact value of an area:
As you measure progressively thinner slices, the slack factor never increases
and tends to decrease. As the number of slices approaches ∞, the width of
each slice approaches 0, so the slack factor also approaches 0.

Figure 3-4 shows the range of this slack in choosing a rectangle. In this exam-
ple, to find the area under f(x), you need to measure a rectangle inside the
given slice. The height of this rectangle must be inclusively between p and q,
the local maximum and minimum of f(x). Within these parameters, however,
you can measure any rectangle.

p

q ƒ(x )

Figure 3-4:
For each

slice you’re
measuring,

you can
use any

rectangle
that passes
through the
function at

one point or
more.
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Two more ways to approximate area
Although slicing a region into rectangles is the simplest way to approximate
its area, rectangles aren’t the only shape that you can use. For finding many
areas, other shapes can yield a better approximation in fewer slices.

In this section, I show you two common alternatives to rectangular slicing:
the Trapezoid Rule (which, not surprisingly, uses trapezoids) and Simpson’s
Rule (which uses rectangles topped with parabolas).

Feeling trapped? The Trapezoid Rule
In case you feel restricted — dare I say boxed in? — by estimating areas with
only rectangles, you can get an even closer approximation by drawing trape-
zoids instead of rectangles.

For example, suppose that you want to use six trapezoids to estimate this
area:

x dx9 2

3

3

-
-

#

You can probably tell just by looking at the graph in Figure 3-5 that using trape-
zoids gives you a closer approximation than rectangles. In fact, the area of a
trapezoid drawn on any slice of a function will be the average of the areas of
the left and right rectangles drawn on that slice.

y

9

1–1 2

y = 9 – x2

–2 3–3
x

Figure 3-5:
Approxi-

mating 

x dx9 2

3

3

-
-

#

by using six
trapezoids.
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To draw these six trapezoids, first plot points along the function at x = –3, –2,
–1, 0, 1, 2, and 3. Next, connect adjacent points to make the top edges of the
trapezoids. Finally, draw vertical lines through these points.

Two of the six “trapezoids” are actually triangles. This fact doesn’t affect the
calculation; just think of each triangle as a trapezoid with one height equal
to zero.

To find the area of these six trapezoids, use the formula for the area of a trape-

zoid that you know from geometry: 
w b b

2
1 2+_ i

. In this case, however, the two 

bases — that is, the parallel sides of the trapezoid — are the heights on the left
and right sides. As always, the width is easy to calculate — in this case, it’s 1.
Table 3-4 shows the rest of the information for calculating the area of each
trapezoid.

Table 3-4 Approximating Area by Using Trapezoids
Trapezoid Width Left Height Right Height Area

#1 1 9 – (–3)2 = 0 9 – (–2)2 = 5 2
1 0 5+^ h

= 2.5

#2 1 9 – (–2)2 = 5 9 – (–1)2 = 8 2
1 5 8+^ h

= 6.5

#3 1 9 – (–1)2 = 8 9 – (0)2 = 9 2
1 8 9+^ h

= 8.5

#4 1 9 – (0)2 = 9 9 – (1)2 = 8 2
1 9 8+^ h

= 8.5

#5 1 9 – (1)2 = 8 9 – (2)2 = 5 2
1 8 5+^ h

= 6.5

#6 1 9 – (2)2 = 5 9 – (3)2 = 0 2
1 5 0+^ h

= 2.5

To approximate the shaded area, find the sum of the six areas of the trapezoids:

. . . . . .x dx9 2 5 6 5 8 5 8 5 6 5 2 5 352

3

3

.- + + + + + =
-

#

Don’t have a cow! Simpson’s Rule
You may recall from geometry that you can draw exactly one circle through
any three nonlinear points. You may not recall, however, that the same is true
of parabolas: Just three nonlinear points determine a parabola.

Simpson’s Rule relies on this geometric theorem. When using Simpson’s Rule,
you use left and right endpoints as well as midpoints as these three points for
each slice.
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1. Begin slicing the area that you want to approximate into strips that
intersect the function.

2. Mark the left endpoint, midpoint, and right endpoint of each strip.

3. Top each strip with the section of the parabola that passes through
these three points.

4. Add up the areas of these parabola-topped strips.

At first glance, Simpson’s Rule seems a bit circular: You’re trying to approxi-
mate the area under a curve, but this method forces you to measure the area
inside a region that includes a curve. Fortunately, Thomas Simpson, who
invented this rule, is way ahead on this one. His method allows you to mea-
sure these strangely shaped regions without too much difficulty.

Without further ado, here’s Simpson’s Rule:

Given that n is an even number,

f x dx# ^ h ∞ f(x) dx

≈ n
b a

3
- [f(x0) + 4f(x1) + 2f(x2) + 4f(x0) + ... + 4f(x3) + 2f(x0) + 4f(x0) + f(x0)]

What does it all mean? As with every approximation method you’ve encoun-
tered, the key to Simpson’s Rule is measuring the width and height of each of
these regions (with some adjustments):

� The width is represented by n
b a- — but Simpson’s Rule adjusts this 

value to n
b a

3
- .

� The heights are represented by f(x) taken at various values of x — but
Simpson’s Rule multiplies some of these by a coefficient of either 4 or 2.
(By the way, these choices of coefficients are based on the known result
of the area under a parabola — not just picked out of the air!)

The best way to show you how this rule works is with an example. Suppose
that you want to use Simpson’s Rule to approximate the following:

x dx1

1

5

#

First, divide the area that you want to approximate into an even number of
regions — say, eight — by drawing nine vertical lines from x = 1 to x = 5. Now
top these regions off with parabolas as I show you in Figure 3-6.
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The width of each region is 0.5, so adjust this by dividing by 3:

n
b a

3
- = .

3
0 5 ≈ 0.167

Moving on to the heights, find f(x) when x = 1, 1.5, 2, ... , 4.5, and 5 (see the
second column of Table 3-5). Adjust all these values except the first and the
last by multiplying by 4 or 2, alternately.

Table 3-5 Approximating Area by Using Simpson’s Rule
n f(xn) Coefficient Total

0 f (1) = 1 1 f (1) = 1

1 f (1.5) = 0.667 4 4f (1.5) = 2.668

2 f (2) = 0.5 2 2f (2) = 1

3 f (2.5) = 0.4 4 4f (2.5) = 1.6

4 f (3) = 0.333 2 2f (3) = 0.666

5 f (3.5) = 0.290 4 4f (3.5) = 1.160

6 f (4) = 0.25 2 2f (4) = 0.5

7 f (4.5) = 0.222 4 4f (4.5) = 0.888

8 f (5) = 0.2 1 f (5) = 0.2

y

x
1 5

y = 1
x

Figure 3-6:
Approxi-

mating 

x dx1
1

5

#

by using
Simpson’s

Rule.

82 Part I: Introduction to Integration 

07_225226-ch03.qxd  5/1/08  5:17 PM  Page 82



Now, apply Simpson’s Rule as follows:

x dx1

1

5

#

≈ 0.167 (1 + 2.668 + 1 + 1.6 + 0.666 + 1.16 + 0.5 + 0.888 + 0.2)

= 0.167 (9.682) ≈ 1.617

So Simpson’s Rule approximates the area of the shaded region in Figure 3-6 as
1.617. (By the way, the actual area to three decimal places is about 1.609 —
so Simpson’s Rule provides a pretty good estimate.)

In fact, Simpson’s Rule often provides an even better estimate than this exam-
ple leads you to believe, because a lot of inaccuracy arises from rounding off
decimals. In this case, when you perform the calculations with enough preci-
sion, Simpson’s Rule provides the correct area to three decimal places!

Knowing Sum-Thing about
Summation Formulas

In Chapter 1, I introduce you to the Riemann sum formula for the definite
integral. This formula includes a summation using sigma notation (Σ). (Please
flip to Chapter 2 if you need a refresher on this topic.)

In practice, evaluating a summation can be a little tricky. Fortunately, three
important summation formulas exist to help you. In this section, I introduce
you to these formulas and show you how to use them. In the next section,
I show you how and when to apply them when you’re using the Riemann
sum formula to solve an area problem.

The summation formula 
for counting numbers
The summation formula for counting numbers gives you an easy way to find
the sum 1 + 2 + 3 + ... + n for any value of n:

i
n n

2
1

i

n

1
=

+

=

! ^ h
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To see how this formula works, suppose that n = 9:

i 1 2 3 4 5 6 7 8 9 45
i 1

9

= + + + + + + + + =
=

!

The summation formula for counting numbers also produces this result:

n n
2

1+^ h
= 2

9 10^ h
= 45

According to a popular story, mathematician Karl Friedrich Gauss discovered
this formula as a schoolboy, when his teacher gave the class the boring task
of adding up all the counting numbers from 1 to 100 so that he (the teacher)
could nap at his desk. Within minutes, Gauss arrived at the correct answer,
5,050, disturbing his teacher’s snooze time and making mathematical history.

The summation formula 
for square numbers
The summation formula for square numbers gives you a quick way to add up
1 + 4 + 9 + ... + n2 for any value of n:

i
n n n

6
1 2 1

i

n
2

1
=

+ +

=

! ^ ^h h

For example, suppose that n = 7:

i 1 4 9 16 25 36 49 140
i

2

1

7

= + + + + + + =
=

!

The summation formula for square numbers gives you the same answer:

n n n
6

1 2 1+ +^ ^h h
= 6

7 8 15^ ^h h
= 140

The summation formula for cubic numbers
The summation formula for cubic numbers gives you a quick way to add up
1 + 8 + 27 + ... + n3 for any value of n:

i
n n

2
1

i

n
3

2

1
=

+

=

! ^ h
= G
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For example, suppose that n = 5:

i 1 8 27 64 125 225
i

3

1

5

= + + + + =
=

!

The summation formula for cubic numbers produces the same result:

n n
2

1
2

+^ h
= G = 2

5 6
2

^ h
= G = 152 = 225

As Bad as It Gets: Calculating Definite
Integrals by Using the Riemann Sum
Formula

In Chapter 1, I introduce you to this hairy equation for calculating the definite
integral:

limf x dx f x n
b a*

n
i

i

n

a

b

1
= -

"3 =

# !^ _ ch i m= G

You may be wondering how practical this little gem is for calculating area.
That’s a valid concern. The bad news is that this formula is, indeed, hairy and
you’ll need to understand how to use it to pass your first Calculus II exam.

But I have good news, too. In the beginning of Calculus I, you work with
an equally hairy equation for calculating derivatives (see Chapter 2 for a
refresher). Fortunately, later on, you find a bunch of easier ways to calculate
derivatives.

This good news applies to integration, too. Later in this chapter, I show you
how to make your life easier. In this section, however, I focus on how to use
the Riemann sum formula to calculate the definite integral.

Before I get started, take another look at the Riemann sum formula and notice
that the right side of this equation breaks down into four separate “chunks”:

� The limit: lim
n "3

� The sum: 
i

n

1=

!

� The function: f(x*i)

� The limits of integration: n
b a-
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To solve an integral by using this formula, work backwards, step by step, 
as follows:

1. Plug the limits of integration into the formula.

2. Rewrite the function f(x*i) as a summation in terms of i and n.

3. Calculate the sum.

4. Evaluate the limit.

Plugging in the limits of integration
In this section, I show you how to calculate the following integral:

x dx2

0

4

#

This step is a no-brainer: You just plug the limits of integration — that is, the
values of a and b — into the formula:

limx dx f x n
4 0*

n
i

i

n
2

1
0

4

= -
"3 =

# ! _ ci m= G

Before moving on, I know that you just can’t go on living until you simplify 4 – 0:

lim f x n
4*

n
i

i

n

1
=

"3 =

! _ i; E

That’s it!

Expressing the function as 
a sum in terms of i and n
This is the tricky step. It’s more of an art than a science, so if you’re an art
major who just happens to be taking a Calculus II course, this just might be
your lucky day (or maybe not).

To start out, think about how you would estimate x dx2

0

4

# by using right 

rectangles, as I explain earlier in this chapter. Table 3-6 shows you how to do
this, using one, two, four, and eight rectangles.
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Table 3-6 Using Right Rectangles to Estimate x dx2

0

4

#

n Height Width Expression

1 42 4 i4 4
i

2

1

1

=

!^ ^h h

2 22 + 42 2 i2 2
i

2

1

2

=

!^ ^h h

4 12 + 22 + 32 + 42 1 i 1
i

2

1

4

=

! ^ h

8 0.52 + 12 + 1.52 + 22 + 2.52 + 32 + 3.52 + 42 0.5 . .i0 5 0 5
i

2

1

8

=

!^ ^h h

Your goal now is to find a general expression of the form 
i

n

1=

! that works for 

every value of n. In the last section, you find that n
4 produces the correct 

width. So, here’s the general expression that you’re looking for:

n
i

n
4 4

i

n 2

1=

!c cm m

Make sure that you understand why this expression works for all values of n
before moving on. The first fraction represents the height of the rectangles 
and the second fraction represents the width, expressed as n

b a- .

You can simplify this expression as follows:

n
i64

i

n

3

2

1
=

=

!

Don’t forget before moving on that the entire expression is a limit as n
approaches infinity:

lim
n

i64
n i

n

3

2

1"3 =

!

At this point in the problem, you have an expression that’s based on two vari-
ables: i and n. Remember that the two variables i and n are in the sum, and
the variable x should already have exited.
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Calculating the sum
Now you need a few tricks for calculating the summation portion of this
expression:

lim
n

i64
n i

n

3

2

1"3 =

!

You can ignore the limit in this section — it’s just coming along for the ride.
You can move a constant outside of a summation without changing the value
of that expression:

lim
n
i64

n i

n

3

2

1
=

"3 =

!

At this point, only the variables i and n are left inside the summation.

Remember that i stands for icky and n stands for nice. The variable n is nice
because you can move it outside the summation just as if it were a constant:

lim
n

i64
n i

n

3
2

1
=

"3 =

!

Solving the problem with 
a summation formula
To handle the icky variable, i, you need a little help. Earlier in the chapter, in
“Knowing Sum-Thing about Summation Formulas,” I give you some important
formulas for handling this summation and others like it.

Getting back to the example, here’s where you left off:

lim
n

i64
n i

n

3
2

1"3 =

!

To evaluate the sum i
i

n
2

1=

! , use the summation formula for square 
numbers:

lim
n

n n n64
6

1 2 1
n

3

+ +

"3
$

^ ^h h

A bit of algebra — which I omit because I know you can do it! — makes the
problem look like this:

lim n n3
64 1

3
1

n
3+ +

"3

You’re now set up for the final — and easiest — step.
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Evaluating the limit
At this point, the limit that you’ve probably been dreading all this time turns
out to be the simplest part of the problem. As n approaches infinity, the two
terms with n in the denominator approach 0, so they drop out entirely:

lim n n3
64 1

3
1

3
64

n
3+ + =

"3

Yes, this is your final answer! Please note that because you used the Riemann
sum formula, this is not an approximation, but the exact area under the curve
y = x2 from 0 to 4.

Light at the End of the Tunnel: The
Fundamental Theorem of Calculus

Finding the area under a curve — that is, solving an area problem — can be
formalized by using the definite integral (as you discover in Chapter 1). And
the definite integral, in turn, is defined in terms of the Riemann sum formula.
But, as you find out earlier in this chapter, the Riemann sum formula usually
results in lengthy and difficult calculations.

There must be a better way! And, indeed, there is.

The Fundamental Theorem of Calculus (FTC) provides the link between deriva-
tives and integrals. At first glance, these two ideas seem entirely unconnected,
so the FTC seems like a bit of mathematical black magic. On closer examina-
tion, however, the connection between a function’s derivative (its slope) and
its integral (the area underneath it) becomes clearer.

In this section, I show you the connection between slope and area. After you
see this, the FTC will make more intuitive sense. At that point, I introduce
the exact theorem and show you how to use it to evaluate integrals as anti-
derivatives — that is, by understanding integration as the inverse of 
differentiation.

Without further ado, here’s the Fundamental Theorem of Calculus (FTC) in its
most useful form:

f x f b f a
a

b

= -# l ^ ^ ^h h h
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The mainspring of this equality is the connection between f and its derivative
function f'. To solve an integral, you need to be able to undo differentiation
and find the original function f.

Many math books use the following notation for the FTC:

f x dx F b F a F x f xwhere
a

b

= - =# l^ ^ ^ ^ ^h h h h h

Both notations are equally valid, but I find this version a bit less intuitive
than the version that I give you.

The FTC makes evaluating integrals a whole lot easier. For example, suppose
that you want to evaluate the following:

sinx dx
π

0

#

This is the function that you see in Figure 3-3. The FTC allows you to solve
this problem by thinking about it in a new way. First notice that the following
statement is true:

f(x) = –cos x → f'(x) = sin x

So the FTC allows you to draw this conclusion:

sin cos cosx dx π 0
π

0

= - - -# ^ ^h h

Now you can solve this problem by using simple trig:

= 1 + 1 = 2

So the exact (not approximate) shaded area in Figure 3-3 is 2 — all without
drawing rectangles! The approximation using the Midpoint Rule (see “Finding
a middle ground: The Midpoint Rule” earlier in this chapter) is 2.0944.

As another example, here’s the integral that, earlier in the chapter, you
solved by using the Riemann sum formula:

x dx2

0

4

#

Begin by noticing that the following statement is true:

f(x) 3
1 x3 → f'(x) = x2
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Now use the FTC to write this equation:

x dx 3
1 4 3

1 02 3

0

4
3= -# c cm m

At this point, the solution becomes a matter of arithmetic:

3
64 0 3

64- =

In just three simple steps, the definite integral is solved without resorting to
the hairy Riemann sum formula!

Understanding the Fundamental
Theorem of Calculus

In the previous section, I show you just how useful the Fundamental Theorem
of Calculus (FTC) can be for finding the exact value of a definite integral with-
out using the Riemann sum formula. But why does the theorem work?

The FTC implies a connection between derivatives and integrals that isn’t
intuitively obvious. In fact, the theorem implies that derivatives and integrals
are inverse operations. It’s easy to see why other pairs of operations — such
as addition and subtraction — are inverses. But how do you see this same
connection between derivatives and integrals?

In this section, I give you a few ways to better understand this connection.
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Solving a 200-year-old problem
The connection between derivatives and inte-
grals as inverse operations was first noticed by
Isaac Barrow (the teacher of Isaac Newton) in
the 17th century. Newton and Gottfried Leibniz
(the two key inventors of calculus) both made
use of it as a conjecture — that is, as a mathe-
matical statement that’s suspected to be true
but hasn’t been proven yet.

But the FTC wasn’t officially proven in all its
glory until your old friend Bernhard Riemann
demonstrated it in the 19th century. During this
200-year lag, a lot of math — most notably, real
analysis — had to be invented before Riemann
could prove that derivatives and integrals are
inverses.
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What’s slope got to do with it?
The idea that derivatives and integrals are connected — that is, the slope of a
curve and the area under it are linked mathematically — seems odd until you
spend some time thinking about it.

If you have a head for business, here’s a practical way to understand the con-
nection. Imagine that you own your own company. Envision a graph with a
line as your net income (money coming in) and the area under the graph as
your net savings (money in the bank). To keep this simple, imagine for the
moment that this is a happy world where you have no expenses draining
your savings account.

When the line on the graph is horizontal, your net income stays the same,
so money comes in at a steady rate — that is, your paycheck every week or
month is the same. So, your bank account (the area under the line) grows at
a steady rate as time passes — that is, as your x-value moves to the right.

But suppose that business starts booming. As the line on the graph starts
to rise, your paychecks rise proportionally. So, your bank account begins
growing at a faster rate.

Now suppose that business slows down. As the line on the graph starts to
fall, your paychecks fall proportionally. So, your bank account still grows, but
its rate of growth slows down. But beware: If business goes so sour that it can
no longer support itself, you may find that you’re dipping into savings to sup-
port the business, so for the first time your savings goes down.

In this analogy, every paycheck is like the area inside a one-unit-wide slice of
the graph. And the bank account on any particular day is like the total area
between the y-axis and that day as shown on the graph.

So, when you give it some thought, it would be hard to imagine how slope
and area could not be connected. The Fundamental Theorem of Calculus is
just the exact mathematical representation of this connection.

Introducing the area function
This connection between income (the size of your paycheck) and savings
(the amount in your bank account) is a perfect analogy for two important,
connected ideas. The income graph represents a function f(x) and the sav-
ings graph represents that function’s area function A(x).
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Figure 3-7 illustrates this connection between f(x) and A(x). This figure repre-
sents the steady income situation that I describe in the previous section. I
choose f(x) = 1 to represent income. The resulting savings graph is A(x) = x,
which rises steadily.

In comparison, look at Figure 3-8, which represents rising income. This time,
I choose f(x) = x to represent income. This function produces the area function 

A(x) = 2
1 x2, which rises at an increasing rate.

Finally, take a peek at Figure 3-9, which represents falling income. In this case,
I use f(x) = 2 – x to represent income. This function results in the area func-
tion A(x) = 2x – 2

1 x2, which rises at a decreasing rate until the original func-
tion drops below 0, and then starts falling.

Take a moment to think about these three examples. Make sure that you see
how, in a very practical sense, slope and area are connected: In other words,
the slope of a function is the qualitative factor that governs what the related
area function looks like.

A (x )

x

ƒ (x )

ƒ (x ) = x

x

A (x ) = x 21
2Figure 3-8:

The function
f(x) = x

produces an
area

function

A(x) = 2
1 x2.

ƒ (x) A (x )

A (x ) = x
ƒ (x) = 1

x x

Figure 3-7:
The function

f(x) = 1
produces an

area
function
A(x) = x.

93Chapter 3: From Definite to Indefinite: The Indefinite Integral

07_225226-ch03.qxd  5/1/08  5:35 PM  Page 93



Connecting slope and area mathematically
In the previous section, I discuss three functions f(x) and their related area
functions A(x). Table 3-7 summarizes this information.

Table 3-7 A Closer Look at Functions 
and Their Area Functions

Description Equation of Description of Equation of Derivative of 
of Function Function Area Function Area Function Area Function

Constant f(x) = 1 Rising steadily A(x) = x A'(x) = 1

Rising f(x) = x Rising at A(x) = 1⁄2 x2 A'(x) = x
increasing rate

Falling f(x) = 2 – x Rising at decreasing A(x) = 2x – 2
1 x2 A'(x) = 2 – x

rate, and then falling 
when f(x) < 0

At this point, the big connection is only a heartbeat away. Notice that each
function is the derivative of its area function:

A'(x) = f(x)

Is this mere coincidence? Not at all. Table 3-7 just adds mathematical preci-
sion to the intuitive idea that slope of a function (that is, its derivative) is
related to the area underneath it.

Because area is mathematically described by the definite integral, as I discuss
in Chapter 1, this connection between differentiation and integration makes
a whole lot of sense. That’s why finding the area under a function — that is, 
integration — is essentially undoing a derivative — that is, anti-differentiation.

A (x )ƒ (x )

ƒ (x ) = 2 – x

x x

A (x ) = 2x – x 21
2

Figure 3-9:
The function

f(x) = 2 – x
produces an

area
function

A(x) = 2x – 

2
1 x2.
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Seeing a dark side of the FTC
Earlier in this chapter, I give you this piece of the Fundamental Theorem of
Calculus:

f x f b f a
a

b

= -# l ^ ^ ^h h h

Now that you understand the connection between a function f(x) and its area
function A(x), here’s another piece of the FTC:

A x f t dtt

s

x

= #^ ^h h

This piece of the theorem is generally regarded as less useful than the first
piece, and it’s also harder to grasp because of all the extra variables. I won’t
belabor it too much, but here are a few points that may help you understand
it better:

� The variable s — the lower limit of integration — is an arbitrary starting
point where the area function equals zero. In my examples in the previ-
ous section, I start the area function at the origin, so s = 0. This point
represents the day when you opened your bank account, before you
deposited any money.

� The variable x — the upper limit of integration — represents any time
after you opened your bank account. It’s also the independent variable
of the area function.

� The variable t is the variable of the function. If you were to draw a graph,
t would be the independent variable and f(t) the dependent variable. 

In short, don’t worry too much about this version of the FTC. The most impor-
tant thing is that you remember the first version and know how to use it. The
other important thing is that you understand how slope and area — that is,
derivatives and integrals — are intimately related.

Your New Best Friend: 
The Indefinite Integral

The Fundamental Theorem of Calculus gives you insight into the connection
between a function’s slope and the area underneath it — that is, between dif-
ferentiation and integration.
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On a practical level, the FTC gives you an easier way to integrate, with-
out resorting to the Riemann sum formula. This easier way is called anti-
differentiation — in other words, undoing differentiation. Anti-differentiation
is the method that you’ll use to integrate throughout the remainder of
Calculus II. It leads quickly to a new key concept: the indefinite integral.

In this section, I show you step by step how to use the indefinite integral to
solve definite integrals, and I introduce the important concept of signed area.
To finish the chapter, I make sure that you understand the important distinc-
tions between definite and indefinite integrals.

Introducing anti-differentiation
Integration without resorting to the Riemann sum formula depends upon
undoing differentiation (anti-differentiation). Earlier in this chapter, in “Light
at the End of the Tunnel: The Fundamental Theorem of Calculus,” I calculate
a few areas informally by reversing a few differentiation formulas that you
know from Calculus I. But anti-differentiation is so important that it deserves
its own notation: the indefinite integral.

An indefinite integral is simply the notation representing the inverse of the
derivative function:

dx
d f x dx f x=# ^ ^h h

Be careful not to confuse the indefinite integral with the definite integral. For
the moment, notice that the indefinite integral has no limits of integration.
Later in this chapter, in “Distinguishing definite and indefinite integrals,”
I outline the differences between these two types of integrals.

Here are a few examples that informally connect derivatives that you know
with indefinite integrals that you want to be able to solve:

dx
d

sin x = cos x → cos sinx dx x=#

dx
d

ex = ex → dxe ex x=#

dx
d

ln |x| = x
1 → lnx dx x1 =#

There’s a small but important catch in this informal analysis. Notice that the
following three statements are all true:

dx
d

sin x + 1 = cos x

dx
d

sin x – 100 = cos x

dx
d

sin x + 1,000,000 = cos x
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Because any constant differentiates to 0, you need to account for the possible
presence of a constant when integrating. So, here are the more precise formu-
lations of the indefinite integrals I just introduced:

cos sinx dx x C= +#

dx Ce ex x= +#

lnx dx x C1 = +#

The formal solution of every indefinite integral is an anti-derivative up to the
addition of a constant C, which is called the constant of integration. So, just
mechanically attach a + C whenever you evaluate an indefinite integral.

Solving area problems without
the Riemann sum formula
After you know how to solve an indefinite integral by using anti-differentiation
(as I show you in the previous section), you have at your disposal a very
useful method for solving area problems. This announcement should come as
a great relief, especially after reading the earlier section “As Bad as It Gets:
Calculating Definite Integrals by Using the Riemann Sum Formula.”

Here’s how you solve an area problem by using indefinite integrals — that is,
without resorting to the Riemann sum formula:

1. Formulate the area problem as a definite integral (as I show you in
Chapter 1).

2. Solve the definite integral as an indefinite integral evaluated between
the given limits of integration.

3. Plug the limits of integration into this expression and simplify to find
the area.

This method is, in fact, the one that you use for solving area problems for the
rest of Calculus II. For example, suppose that you want to find the shaded
area in Figure 3-10.
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Here’s how you do it:

1. Formulate the area problem as a definite integral:

cosx dx3
π

π

2

2

-

#

2. Solve this definite integral as an indefinite integral:

sinx3
x

x

π

π

2

2=
= -

=

I replace the integral with the expression 3 sin x, because dx
d 3 sin x = 

3 cos x. I also introduce the notation
x

x

π

π

2

2

= -

=

. You can read it as evaluated 

from x equals π
2- to x equals π

2 . This notation is commonly used so that 
you can show your teacher that you know how to integrate and post-
pone worrying about the limits of integration until the next step.

3. Plug these limits of integration into the expression and simplify:

= 3 sin π
2 – 3 sin π

2-

As you can see, this step comes straight from the FTC, subtracting 
f(b) – f(a). Now, I just simplify this expression to find the area:

= 3 – (–3) = 6

So, the area of the shaded region in Figure 3-10 equals 6.

x

y

y = 3 cos x

π
2

π
2

3

Figure 3-10:
The shaded

area 

.cos x dx3
π

π

2

2

-

#
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Understanding signed area
In the real world, the smallest possible area is 0, so area is always a nonnega-
tive number. On the graph, however, area can be either positive or negative.

This idea of negative area relates back to a discussion earlier in this chapter,
in “Introducing the area function,” where I talk about what happens when a
function dips below the x-axis.

To use the analogy of income and savings, this is the moment when your
income dries up and money starts flowing out. In other words, you’re spend-
ing your savings, so your savings account balance starts to fall.

So, area above the x-axis is positive, but area below the x-axis is measured as
negative area.

The definite integral takes this important distinction into account. It provides
not just the area but the signed area of a region on the graph. For example,
suppose that you want to measure the shaded area in Figure 3-11.

99Chapter 3: From Definite to Indefinite: The Indefinite Integral

No C, no problem!
You may wonder why the constant of integration
C — which is so important when you’re evalu-
ating an indefinite integral — gets dropped
when you’re evaluating a definite integral. This
one is easy to explain.

Remember that every definite integral is
expressed as the difference between a function
evaluated at one point and the same function
evaluated at another point. If this function
includes a constant C, one C cancels out the
other.

For example, take the definite integral 

cos x dx

π

0

6

# . Technically speaking, this integral 

is evaluated as follows:

x 0=
sin x c

πx
6+

=

= (sin π
6 + C) – (sin 0 + C)

= 2
1 + C – 0 – C = 2

1

As you can clearly “C,” the two Cs cancel each
other out, so there’s no harm in dropping them at
the beginning of the evaluation rather than
at the end.
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Here’s how you do it using the steps that I outline in the previous section:

1. Formulate the area problem as a definite integral:

cosx dx3
π

π

2

2
3

#

2. Solve this definite integral as an indefinite integral:

sinx3
x

x

π

π

2

2
3

=
=

=

3. Plug these limits of integration into the expression and simplify:

= 3 sin π
2

3 – 3 sin π
2

= –3 – 3 = –6

So, the signed area of the shaded region in Figure 3-11 equals –6. As you
can see, the computational method for evaluating the definite integral
gives the signed area automatically.

As another example, suppose that you want to find the total area of the two
shaded regions in Figure 3-10 and Figure 3-11. Here’s how you do it using the
steps that I outline in the previous section:

1. Formulate the area problem as a definite integral:

cosx dx
π

π

2

2
3

-

#

x

y

y = 3 cos x dx

π
2

3π
2

Figure 3-11:
Measuring

signed area
on the graph

cos x dx3
π

π

2

2
3

# .
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2. Solve this definite integral as an indefinite integral:

sinx3
x

x

π

π

2

2
3

=
= -

=

3. Plug these limits of integration into the expression and simplify:

= –3 sin π
2

3 – 3 sin π
2

= 3 – 3 = 0

This time, the signed area of the shaded region is 0. This answer makes
sense, because the unsigned area above the x-axis equals the unsigned
area below it, so these two areas cancel each other out.

Distinguishing definite and 
indefinite integrals
Don’t confuse the definite and indefinite integrals. Here are the key differ-
ences between them:

A definite integral

� Includes limits of integration (a and b)

� Represents the exact area of a specific set of points on a graph

� Evaluates to a number

An indefinite integral

� Doesn’t include limits of integration

� Can be used to evaluate an infinite number of related definite integrals

� Evaluates to a function

For example, here’s a definite integral:

sec x dx

π

2

0

4

#

As you can see, it includes limits of integration (0 and π
4 ), so you can draw a 

graph of the area that it represents. You can then use a variety of methods
to evaluate this integral as a number. This number equals the signed area
between the function and the x-axis inside the limits of integration, as I dis-
cuss earlier in “Understanding signed area.”
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In contrast, here’s an indefinite integral:

sec x dx2#

This time, the integral doesn’t include limits of integration, so it doesn’t rep-
resent a specific area. Thus, it doesn’t evaluate to a number, but to a function:

= tan x + C

You can use this function to evaluate any related definite integral. For exam-
ple, here’s how to use it to evaluate the definite integral I just gave you:

sec x dx

π

2

0

4

#

tanx
x

x π

0
4=

=

=

= 2 tan π
4 – tan 0

= 1 – 0 = 1

So, the area of the shaded region in the graph is 1.

As you can see, the indefinite integral encapsulates an infinite number
of related definite integrals. It also provides a practical means for evaluat-
ing definite integrals. Small wonder that much of Calculus II focuses on 
evaluating indefinite integrals. In Part II, I give you an ordered approach
to evaluating indefinite integrals.
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In this part . . .
You begin calculating the indefinite integral as an 

anti-derivative — that is, as the inverse of a deriva-
tive. In practice, this is easier for some functions than
others. So, I show you four important tricks — variable
substitution, integration by parts, trig substitution, and
integrating with partial fractions — for turning a function
you don’t know how to integrate into one that you do.
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Chapter 4

Instant Integration: 
Just Add Water (And C)

In This Chapter
� Calculating simple integrals as anti-derivatives

� Using 17 integral formulas and 3 integration rules

� Integrating more difficult functions by using more than one integration tool

� Clarifying the difference between integrative and nonintegrable functions

F irst the good news: Because integration is the inverse of differentiation,
you already know how to evaluate a lot of basic integrals.

Now the bad news: In practice, integration is often a lot trickier than differen-
tiation. I’m telling you this upfront because a) it’s true; b) I believe in honesty;
and c) you should prepare yourself before your first exam. (Buying and read-
ing this book, by the way, are great first steps!)

In this chapter — and also in Chapters 5 through 8 — I focus exclusively on
one question: How do you integrate every single function on the planet?
Okay, I’m exaggerating, but not by much. I give you a manageable set of inte-
gration techniques that you can do with a pencil and paper, and if you know
when and how to apply them, you’ll be able to integrate everything but the
kitchen sink.

First, I show you how to start integrating by thinking about integration as
anti-differentiation — that is, as the inverse of differentiation. I give you a not-
too-long list of basic integrals, which mirrors the list of basic derivatives from
Chapter 2. I also give you a few rules for breaking down functions into man-
ageable chunks that are easier to integrate.

After that, I show you a few techniques for tweaking functions to make them
look like the functions you already know how to integrate. By the end of this
chapter, you have the tools to integrate dozens of functions quickly and easily.
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Evaluating Basic Integrals
In Calculus I (which I cover in Chapter 2), you find that a few algorithms —
such as the Product Rule, Quotient Rule, and Chain Rule — give you the tools
to differentiate just about every function your professor could possibly throw
at you. In Calculus II, students often greet the news that “there’s no Chain
Rule for integration” with celebratory cheers. By the middle of the semester,
they usually revise this opinion.

Using the 17 basic anti-derivatives
for integrating
In Chapter 2, I give you a list of 17 derivatives to know, cherish, and above all
memorize (yes, I said memorize). Reading that list may lead you to believe
that I’m one of those harsh über-math dudes who takes pleasure in cruel and
unusual curricular activities.

But math is kind of like the Ghost of Christmas Past — the stuff you thought
was long ago dead and buried comes back to haunt you. And so it is with
derivatives. If you already know them, you’ll find this section easy.

The Fundamental Theorem of Calculus shows that integration is the inverse
of differentiation up to a constant C. This key theorem gives you a way to
begin integrating. In Table 4-1, I show you how to integrate a variety of
common functions by identifying them as the derivatives of functions you
already know.

Table 4-1 The 17 Basic Integrals (Anti-Derivatives)
Derivative Integral (Anti-Derivative)

dx
d n = 0 dx C0 =#

dx
d x = 1 dx x C1 = +#

dx
d ex = ex Ce ex x= +#

dx
d ln x = x

1 lnx dx x C1 = +#

dx
d nx = nx ln n lnn dx n

n Cx
x

= +#

dx
d sin x = cos x cos sinx dx x C= +#
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Derivative Integral (Anti-Derivative)

dx
d cos x = –sin x sin cosx dx x C= - +#

dx
d tan x = sec2 x sec tanx dx x C2 = +#

dx
d cot x = –csc2 x csc cotx dx x C2 = - +#

dx
d sec x = sec x tan x sec tan secx x dx x C= +#

dx
d csc x = –csc x cot x csc cot cscx x dx x C= - +#

arcsindx
d x

x1
1

2
=

-
arcsin

x
dx x C

1
1

2-
= +#

arccosdx
d x

x1
1

2
=

-

- arccos
x

dx x C
1

1
2

-
-

= +#

dx
d arctan x = 

x1
1

2+
arctan

x
dx x C

1
1

2+
= +#

dx
d arccot x = 

x1
1

2-
+

cotx dx x C1
1 arc-
+

= +#

secdx
d x

x x 1
1arc

2
=

-
sec

x x
dx x C

1
1 arc

2 -
= +#

cscdx
d x

x x 1
1arc

2
=-

-
csc

x x
x C

1
1 arc

2
-

-
= +#

As I discuss in Chapter 3, you need to add the constant of integration C
because constants differentiate to 0. For example:

dx
d

sin x = cos x

dx
d

sin x + 1 = cos x

dx
d

sin x – 100 = cos x

So when you integrate by using anti-differentiation, you need to account for
the potential presence of this constant:

cos sinx dx x C= +#

Three important integration rules
After you know how to integrate by using the 17 basic anti-derivatives in
Table 4-1, you can expand your repertoire with three additional integration
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rules: the Sum Rule, the Constant Multiple Rule, and the Power Rule. These
three rules mirror those that you know from differentiation.

The Sum Rule for integration
The Sum Rule for integration tells you that integrating long expressions term
by term is okay. Here it is formally:

f x g x dx f x dx g x dx+ = + ### ^ ^ ^ ^h h h h8 B

For example:

cos cosx x x dx x dx x dx x dx1 12 2+ - = + - #### c m

Note that the Sum Rule also applies to expressions of more than two terms.
It also applies regardless of whether the term is positive or negative. (Some
books call this variation the Difference Rule, but you get the idea.) Splitting
this integral into three parts allows you to integrate each separately by using
a different anti-differentiation rule:

= sin x + 3
1 x3 – ln x + C

Notice that I add only one C at the end. Technically speaking, you should add
one variable of integration (say, C1, C2, and C3) for each integral that you eval-
uate. But, at the end, you can still declare the variable C = C1 + C2 + C3 to con-
solidate all these variables. In most cases when you use the Sum Rule, you
can skip this step and just tack a C onto the end of the answer.

The Constant Multiple Rule for integration
The Constant Multiple Rule tells you that you can move a constant outside of
a derivative before you integrate. Here it is expressed in symbols:

nf x dx n f x dx= ## ^ ^h h

For example:

tan sec tan secx x dx x x dx3 3= ##

As you can see, this rule mirrors the Constant Multiple Rule for differentia-
tion. With the constant out of the way, integrating is now easy using an anti-
differentiation rule:

= 3 sec x + C
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The Power Rule for integration
The Power Rule for integration allows you to integrate any real power of x
(except –1). Here’s the Power Rule expressed formally:

x dx n x C1
1n n 1=
+

++#

For example:

x dx x C2
1 2= +#

x dx x C3
12 3= +#

x dx x C101
1100 101= +#

The Power Rule works fine for negative powers of x, which are powers of x in
the denominator. For example:

x
dx1

2#

x dx2= -#

= –x–1 + C

= – x
1 + C

The Power Rule also works for rational powers of x, which are roots of x. For
example:

x dx3#

x dx2
3

= #

= x5
2

2
5

+ C

x C5
2 5= +

The only real-number power that the Power Rule doesn’t work for is –1.
Fortunately, you have an anti-differentiation rule to handle this case:

x dx1#

x dx1= -#

= ln |x| + C
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What happened to the other rules?
Integration contains formulas that mirror the Sum Rule, the Constant Multiple
Rule, and the Power Rule for differentiation. But it lacks formulas that look
like the Product Rule, Quotient Rule, and Chain Rule. This fact may sound like
good news, but the lack of formulas makes integration a lot trickier in prac-
tice than differentiation is.

In fact, Chapters 5 through 8 focus on a bunch of methods that mathemati-
cians have devised for getting around this difficulty. Chapter 5 focuses on
variable substitution, which is a limited form of the Chain Rule. And in
Chapter 6, I show you integration by parts, which is an adaptation of the
Product Rule.

Evaluating More Difficult Integrals
The anti-differentiation rules for integrating, which I explain earlier in this
chapter, greatly limit how many integrals you can compute easily. In many
cases, however, you can tweak a function to make it easier to integrate.

In this section, I show you how to integrate certain fractions and roots
by using the Power Rule. I also show you how to use the trig identities in
Chapter 2 to stretch your capacity to integrate trig functions.

Integrating polynomials
You can integrate any polynomial in three steps by using the rules from this
section:

1. Use the Sum Rule to break the polynomial into its terms and integrate
each of these separately.

2. Use the Constant Multiple Rule to move the coefficient of each term
outside its respective integral.

3. Use the Power Rule to evaluate each integral. (You only need to add a
single C to the end of the resulting expression.)

For example, suppose that you want to evaluate the following integral:

x x x dx10 3 2 56 3- + -# _ i
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1. Break the expression into four separate integrals:

x dx x dx x dx dx10 3 2 56 3= - + -# # # #

2. Move each of the four coefficients outside its respective integral:

x dx x dx x dx dx10 3 2 56 3= - + -# # ##

3. Integrate each term separately using the Power Rule:

= 7
10 x7 – 4

3 x4 + x2 – 5x + C

You can integrate any polynomial by using this method. Many integration
methods I introduce later in this book rely on this fact. So, practice integrat-
ing polynomials until you feel so comfortable that you could do it in your
sleep.

Integrating rational expressions
In many cases, you can untangle hairy rational expressions and integrate
them by using the anti-differentiation rules plus the other three rules in this
chapter.

For example, here’s an integral that looks like it may be difficult:

x

x x
dx

5 32 2
+ -

#
_ ^i h

You can split the function into several fractions, but without the Product Rule
or Quotient Rule, you’re then stuck. Instead, expand the numerator and put
the denominator in exponential form:

x
x x x x dx6 14 30 45

2
1

4 3 2

= - + - +#

Next, split the expression into five terms:

x x x x x dx6 14 30 452
7

2
5

2
3

2
1

2
1

= - + - + -# a k

Then, use the Sum Rule to separate the integral into five separate integrals
and the Constant Multiple Rule to move the coefficient outside the integral in
each case:

x dx x dx x dx x dx x dx6 14 30 452
7

2
5

2
3

2
1

2
1

= - + - + -# # # # #

Now, you can integrate each term separately using the Power Rule:

= x x x x x C9
2

7
12

5
28 20 902

9
2
7

2
5

2
3

2
1

- + - + +
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Using identities to integrate trig functions
At first glance, some products or quotients of trig functions may seem impos-
sible to integrate by using the formulas I give you earlier in this chapter. But,
you’ll be surprised how much headway you can often make when you inte-
grate an unfamiliar trig function by first tweaking it using the Basic Five trig
identities that I list in Chapter 2.

The unseen power of these identities lies in the fact that they allow you to
express any combination of trig functions into a combination of sines and
cosines. Generally speaking, the trick is to simplify an unfamiliar trig function
and turn it into something that you know how to integrate.

When you’re faced with an unfamiliar product or quotient of trig functions,
follow these steps:

1. Use trig identities to turn all factors into sines and cosines.

2. Cancel factors wherever possible.

3. If necessary, use trig identities to eliminate all fractions.

For example:

sin cot secx x x dx2#

In its current form, you can’t integrate this expression by using the rules from
this chapter. So you follow these steps to turn it into an expression you can
integrate:

1. Use the identities cot x = x
x

sin
cos and sec x = x

1
cos :

sin sin
cos

cosx x
x

x dx12= $ $#

2. Cancel both sin x and cos x in the numerator and denominator:

sinx dx= #

In this example, even without Step 3, you have a function that you can 
integrate.

= –cos x + C

Here’s another example:

tan sec cscx x x dx#
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Again, this integral looks like a dead end before you apply the five basic trig
identities to it:

1. Turn all three factors into sines and cosines:

cos
sin

cos sinx
x

x x dx1 1= $ $#

2. Cancel sin x in the numerator and denominator:

cos x
dx1

2= #

3. Use the identity cos x = x
1

sec to eliminate the fraction:

sec x dx2= #

= tan x + C

Again, you turn an unfamiliar function into one of the ten trig functions that
you know how to integrate.

I show you lots more tricks for integrating trig functions in Chapter 7.

Understanding Integrability
By now, you’ve probably figured out that, in practice, integration is usually
harder than differentiation. The lack of any set rules for integrating products,
quotients, and compositions of functions makes integration something of an
art rather than a science.

So, you may think that a large number of functions are differentiable, with a
smaller subset of these being integrable. It turns out that this conclusion is
false. In fact, the set of integrable functions is larger, with a smaller subset of
these being differentiable. To understand this fact, you need to be clear on
what the words integrable and differentiable really mean.

In this section, I shine some light on two common mistakes that students
make when trying to understand what integrability is all about. After that,
I discuss what it means for a function to be integrable, and I show you why
many functions that are integrable aren’t differentiable.
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Understanding two red herrings 
of integrability
In trying to understand what makes a function integrable, you first need to
understand two related issues: difficulties in computing integrals and represent-
ing integrals as functions. These issues are valid, but they’re red herrings —
that is, they don’t really affect whether a function is integrable.

Computing integrals
For many input functions, integrals are more difficult to compute than deriva-
tives are. For example, suppose that you want to differentiate and integrate
the following function:

y = 3x5e2x

You can differentiate this function easily by using the Product Rule (I take an
additional step to simplify the answer):

dx
dy

dx
d x dx

d x3 e ex x5 2 2 5= +_ _i i; E

= 3(5x4e2x + 2e2xx5)

= 3x4e2x(2x + 5)

Because no such rule exists for integration, in this example you’re forced to
seek another method. (You find this method in Chapter 6, where I discuss
integration by parts.) 

Finding solutions to integrals can be tricky business. In comparison, finding
derivatives is comparatively simple — you learned most of what you need to
know about it in Calculus I.

Representing integrals as functions
Beyond difficulties in computation, the integrals of certain functions simply
can’t be represented by using the functions that you’re used to.

More precisely, some integrals can’t be represented as elementary functions —
that is, as combinations of the functions you know from Pre-Calculus. (See
Chapter 14 for a more in-depth look at elementary functions.)

For example, take the following function:

y e x 2

=
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You can find the derivative of the function easily by using the Chain Rule:

dx
d e x 2

dx
d xe x 22

= c m

x2e x 2

= ^ h

x2 e x 2

=

However, the integral of the same function, e x 2

, can’t be expressed as a 
function — at least, not any function that you’re used to.

Instead, you can express this integral either exactly — as an infinite series —
or approximately — as a function that approximates the integral to a given
level of precision. (See Part IV for more on infinite series.) Alternatively,
you can just leave it as an integral, which also expresses it just fine for some
purposes.

Understanding what integrable
really means
When mathematicians discuss whether a function is integrable, they aren’t
talking about the difficulty of computing that integral — or even whether a
method has been discovered. Each year, mathematicians find new ways to
integrate classes of functions. However, this fact doesn’t mean that previ-
ously nonintegrable functions are now integrable.

Similarly, a function’s integrability also doesn’t hinge upon whether its inte-
gral can be easily represented as another function, without resorting to infi-
nite series.

In fact, when mathematicians say that a function is integrable, they mean
only that the integral is well defined — that is, that it makes mathematical
sense.

In practical terms, integrability hinges on continuity: If a function is continu-
ous on a given interval, it’s integrable on that interval. Additionally, if a func-
tion has only a finite number of discontinuities on an interval, it’s also
integrable on that interval.

You probably remember from Calculus I that many functions — such as those
with discontinuities, sharp turns, and vertical slopes — are nondifferentiable.
Discontinuous functions are also nonintegrable. However, functions with
sharp turns and vertical slopes are integrable.
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For example, the function y = |x| contains a sharp point at x = 0, so the func-
tion is nondifferentiable at this point. However, the same function is integrable
for all values of x. This is just one of infinitely many examples of a function
that’s integrable but not differentiable in the entire set of real numbers.

So, surprisingly, the set of differentiable functions is actually a subset of the
set of integrable functions. In practice, however, computing the integral of
most functions is more difficult than computing the derivative.
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Chapter 5

Making a Fast Switch:
Variable Substitution

In This Chapter
� Understanding how variable substitution works

� Recognizing when variable substitution can help you

� Knowing a shortcut for using substitution with definite integrals

Unlike differentiation, integration doesn’t have a Chain Rule. This fact
makes integrating compositions of functions (functions within functions)

a little bit tricky. The most useful trick for integrating certain common com-
positions of functions uses variable substitution.

With variable substitution, you set a variable (usually u) equal to part of the
function that you’re trying to integrate. The result is a simplified function
that you can integrate by using the anti-differentiation formulas and the three
basic integration rules (Sum Rule, Constant Multiple Rule, and Power Rule —
all discussed in Chapter 4).

In this chapter, I show you how to use variable substitution. Then I show you
how to identify a few common situations where variable substitution is help-
ful. After you get comfortable with the process, I give you a quick way to inte-
grate by just looking at the problem and writing down the answer. Finally, I
show you how to skip a step when using variable substitution to evaluate def-
inite integrals.
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Knowing How to Use Variable
Substitution

The anti-differentiation formulas plus the Sum Rule, Constant Multiple Rule,
and Power Rule (all discussed in Chapter 4) allow you to integrate a variety
of common functions. But as functions begin to get a little bit more complex,
these methods become insufficient. For example, these methods don’t work
on the following:

sin x dx2#

To evaluate this integral, you need some stronger medicine. The sticking
point here is the presence of the constant 2 inside the sine function. You have
an anti-differentiation rule for integrating the sine of a variable, but how do
you integrate the sine of a variable times a constant?

The answer is variable substitution, a five-step process that allows you to
integrate where no integral has gone before:

1. Declare a variable u and set it equal to an algebraic expression that
appears in the integral, and then substitute u for this expression in
the integral.

2. Differentiate u to find dx
du , and then isolate all x variables on one side

of the equal sign.

3. Make another substitution to change dx and all other occurrences of x
in the integral to an expression that includes du.

4. Integrate by using u as your new variable of integration.

5. Express this answer in terms of x.

I don’t expect these steps to make much sense until you see how they work in
action. In the rest of this section, I show you how to use variable substitution
to solve problems that you wouldn’t be able to integrate otherwise.

Finding the integral of nested functions
Suppose that you want to integrate the following:

sin x dx2#
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The difficulty here lies in the fact that this function is the composition of two
functions: the function 2x nested inside a sine function. If you were differenti-
ating, you could use the Chain Rule. Unfortunately, no Chain Rule exists for
integration.

Fortunately, this function is a good candidate for variable substitution. Follow
the five steps I give you in the previous section:

1. Declare a new variable u as follows and substitute it into the integral:

Let u = 2x

Now, substitute u for 2x as follows:

sin sinx dx u dx2 = ##

This may look like the answer to all your troubles, but you have one
more problem to resolve. As it stands, the symbol dx tells you that vari-
able of integration is still x.

To integrate properly, you need to find a way to change dx to an expres-
sion containing du. That’s what Steps 2 and 3 are about.

2. Differentiate the function u = 2x and isolate the x terms on one side of
the equal sign:

dx
du = 2

Now, treat the symbol dx
du as if it’s a fraction, and isolate the x terms on 

one side of the equal sign. I do this in two steps:

du = 2 dx

2
1 du = dx

3. Substitute 2
1 du for dx into the integral:

sinu du2
1# c m

You can treat the 2
1 just like any coefficient and use the Constant 

Multiple Rule to bring it outside the integral:

sinu du2
1= #

4. At this point, you have an expression that you know how to evaluate:

= 2
1- cos u + C

119Chapter 5: Making a Fast Switch: Variable Substitution

10_225226-ch05.qxd  5/1/08  6:11 PM  Page 119



5. Now that the integration is done, the last step is to substitute 2x back
in for u:

2
1- cos 2x + C

You can check this solution by differentiating using the Chain Rule:

dx
d

( 2
1- cos 2x + C)

= cosdx
d x dx

d C2
1 2- +c m

= 2
1- (–sin 2x) (2) + 0

= sin 2x

Finding the integral of a product
Imagine that you’re faced with this integral:

sin cosx x dx3#

The problem in this case is that the function that you’re trying to integrate is
the product of two functions — sin3 x and cos x. This would be simple to dif-
ferentiate with the Product Rule, but integration doesn’t have a Product Rule.
Again, variable substitution comes to the rescue:

1. Declare a variable as follows and substitute it into the integral:

Let u = sin x

You may ask how I know to declare u equal to sin x (rather than, say, sin3 x
or cos x). I answer this question later in the chapter. For now, just follow
along and get the mechanics of variable substitution.

You can substitute this variable into the expression that you want to
integrate as follows:

sin cos cosx x dx u x dx3 3= ##

Notice that the expression cos x dx still remains and needs to be
expressed in terms of u.

2. Differentiate the function u = sin x and isolate the x variables on one
side of the equal sign:

dx
du = cos x

Isolate the x variables on one side of the equal sign:

du = cos x dx
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3. Substitute du for cos x dx in the integral:

u du3#

4. Now you have an expression that you can integrate:

= 4
1 u4 + C

5. Substitute sin x for u:

= 4
1 sin4 x + C

And again, you can check this answer by differentiating with the Chain Rule:

dx
d ( 4

1 sin4 x + C)

= dx
d

4
1 sin4 x + dx

d C

= 4
1 (4 sin3 x) (cos x) + 0

= sin3 x cos x

This derivative matches the original function, so the integration is correct.

Integrating a function multiplied 
by a set of nested functions
Suppose that you want to integrate the following:

x x dx3 72 +#

This time, you’re trying to integrate the product of a function (x) and a com-
position of functions (the function 3x2 + 7 nested inside a square root func-
tion). If you were differentiating, you could use a combination of the Product
Rule and the Chain Rule, but these options aren’t available for integration.
Here’s how you integrate, step by step, by using variable substitution:

1. Declare a variable u as follows and substitute it into the integral:

Let u = 3x2 + 7

Here, you may ask how I know what value to assign to u. Here’s the short
answer: u is the inner function, as you would identify if you were using
the Chain Rule. (See Chapter 2 for a review of the Chain Rule.) I explain
this more fully later in “Recognizing When to Use Substitution.”

Now, substitute u into the integral:

x x dx x u dx3 72 + = ##
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Make one more small rearrangement to place all the remaining x terms
together:

u x dx= #

This rearrangement makes clear that I still have to find a substitution for
x dx.

2. Now differentiate the function u = 3x2 + 7:

dx
du = 6x

From Step 1, I know that I need to replace x dx in the integral:

du = 6x dx

6
1 du = x dx

3. Substitute du
6 for x dx:

u du6
1= # c m

You can move the fraction 6
1 outside the integral:

u du6
1= #

4. Now you have an integral that you know how to evaluate.

I take an extra step, putting the square root in exponential form, to make
sure that you see how to do this:

u du6
1

2
1

= #

u C6
1

3
2

2
3

= +c m

u C9
1

2
3

= +

5. To finish up, substitute 3x2 + 7 for u:

= x C9
1 3 72 2

3

+ +_ i

As with the first two examples in this chapter, you can always check your
integration by differentiating the result:

dx
d x C9

1 3 72 2
3

+ +_ i< F

dx
d x dx

d C9
1 3 72 2

3

= + +_ i

x x9
1

2
3 3 7 6 02 2

1

= + +c _ ^m i h

x x3 72= +

As if by magic, the derivative brings you back to the function you started with.
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Recognizing When to Use Substitution
In the previous section, I show you the mechanics of variable substitution —
that is, how to perform variable substitution. In this section, I clarify when to
use variable substitution.

You may be able to use variable substitution in three common situations. In
these situations, the expression you want to evaluate is one of the following:

� A composition of functions — that is, a function nested in a function

� A function multiplied by a function

� A function multiplied by a computation of functions

Integrating nested functions
Compositions of functions — that is, one function nested inside another —
are of the form f(g(x)). You can integrate them by substituting u = g(x) when

� You know how to integrate the outer function f.

� The inner function g(x) differentiates to a constant — that is, it’s of the
form ax or ax + b.

Example #1
Here’s an example. Suppose that you want to integrate the function

csc2 (4x + 1) dx

Again, this is a composition of two functions:

� The outer function f is the csc2 function, which you know how to integrate.

� The inner function is g(x) = 4x + 1, which differentiates to the constant 4.

This time the composition is held together by the equality u = 4x + 1. That is,
the two basic functions f(u) = csc2 u and g(x) = 4x + 1 are composed by the
equality u = 4x + 1 to produce the function f(g(x)) = csc2 (4x + 1).

Both criteria are met, so this integral is another prime candidate for substitu-
tion using u = 4x + 1. Here’s how you do it:

1. Declare a variable u and substitute it into the integral:

Let u = 4x + 1

csc cscx dx u dx4 12 2+ = ## ^ h
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2. Differentiate u = 4x + 1 and isolate the x term:

dx
du = 4

du
4 = dx

3. Substitute du
4 for dx in the integral:

csc u du4
12# c m

csc u du4
1 2= #

4. Evaluate the integral:

= 4
1- cot u + C

5. Substitute back 4x + 1 for u:

= 4
1- cot (4x + 1) + C

Example #2
Here’s one more example. Suppose that you want to evaluate the following
integral:

x dx3
1
-

#

Again, this is a composition of two functions:

� The outer function f is a fraction — technically, an exponent of –1 —
which you know how to integrate.

� The inner function is g(x) = x – 3, which differentiates to 1.

Here, the composition is held together by the equality u = x – 3. That is, the 

two basic functions f(u) = u
1 and g(x) = x – 3 are composed by the equality 

u = x – 3 to produce the function f(g(x)) = x 3
1
-

.

The criteria are met, so you can integrate by using the equality u = x – 3:

1. Declare a variable u and substitute it into the integral:

Let u = x – 3

x dx u dx3
1 1
-

=# #

2. Differentiate u = x – 3 and isolate the x term:

dx
du = 1

du = dx

124 Part II: Indefinite Integrals 

10_225226-ch05.qxd  5/1/08  6:19 PM  Page 124



3. Substitute du for dx in the integral:

u du1#

4. Evaluate the integral:

= ln |u| + C

5. Substitute back x – 3 for u:

= ln |x – 3| + C

Knowing a shortcut for nested functions
After you work through enough examples of variable substitution, you may
begin to notice certain patterns emerging. As you get more comfortable with
the concept, you can use a shortcut to integrate compositions of functions —
that is, nested functions of the form f(g(x)). Technically, you’re using the vari-
able substitution u = g(x), but you can bypass this step and still get the right
answer.

This shortcut works for compositions of functions f(g(x)) for which

� You know how to integrate the outer function f.

� The inner function g(x) is of the form ax or ax + b — that is, it differenti-
ates to a constant.

When these two conditions hold, you can integrate f(g(x)) by using the fol-
lowing three steps:

1. Write down the reciprocal of the coefficient of x.

2. Multiply by the integral of the outer function, copying the inner func-
tion as you would when using the Chain Rule in differentiation.

3. Add C.

Example #1
For example:

cos x dx4#

Notice that this is a function nested within a function, where the following
are true:

� The outer function f is the cosine function, which you know how to 
integrate.

� The inner function is g(x) = 4x, which is of the form ax.
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So, you can integrate this function quickly as follows:

1. Write down the reciprocal of 4 — that is, 4
1 :

4
1

2. Multiply this reciprocal by the integral of the outer function, copying
the inner function:

4
1 sin 4x

3. Add C:

4
1 sin 4x + C

That’s it! You can check this easily by differentiating, using the Chain Rule:

sindx
d x C4

1 4 +c m

= 4
1 cos 4x (4)

= cos 4x

Example #2
Here’s another example:

sec x dx102#

Remember as you begin that sec2 10x dx is a notational shorthand for [sec
(10x)]2. So, the outer function f is the sec2 function and the inner function is
g(x) = 10x. (See Chapter 2 for more on the ins and outs of trig notation.)
Again, the criteria for variable substitution are met:

1. Write down the reciprocal of 10 — that is, 10
1 :

10
1

2. Multiply this reciprocal by the integral of the outer function, copying
the inner function:

10
1 tan 10x

3. Add C:

10
1 tan 10x + C
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Here’s the check:

tandx
d x C10

1 10 +c m

tandx
d x dx

d C10
1 10= +

= 10
1 sec2 10x (10) + 0

= sec2 10x

Example #3
Here’s another example:

x dx7 2
1
+

#

In this case, the outer function is division, which counts as a function, as I
explain earlier in “Recognizing When to Use Substitution.” The inner function
is 7x + 2. Both of these functions meet the criteria, so here’s how to perform
this integration:

1. Write down the reciprocal of the coefficient 7 — that is, 7
1 :

7
1

2. Multiply this reciprocal by the integral of the outer function, copying
the inner function:

7
1 ln |7x + 2|

3. Add C:

7
1 ln |7x + 2| + C

You’re done! As always, you can check your result by differentiating, using
the Chain Rule:

lndx
d x C7

1 7 2+ +c m

x7
1

7 2
1 7=
+

c ^m h

x7 2
1=
+
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Example #4
Here’s one more example:

x dx12 5-#

This time, the outer function f is a square root — that is, an exponent of 2
1 —

and g(x) = 12x – 5, so you can use a quick substitution:

1. Write down the reciprocal of 12 — that is, 12
1 :

12
1

2. Multiply the integral of the outer function, copying down the inner
function:

x12
1

3
2 12 5 2

3

-^ h

x18
1 12 5 2

3

= -^ h

3. Add C:

x C18
1 12 5 2

3

- +^ h

Table 5-1 gives you a variety of integrals in this form. As you look over this
chart, get a sense of the pattern so that you can spot it when you have an
opportunity to integrate quickly.

Table 5-1 Using the Shortcut for Integrating Nested Functions
Integral Evaluation

e dxx5# 5
1 e5x + C

sin x dx7# 7
1- cos 7x + C

sec x dx3
2# 3 tan x

3 + C

tan secx x dx8 8# 8
1 sec 8x + C

e dxx5 2+# 5
1 e5x + 2 + C

cos x dx4-# ^ h sin (x – 4) + C

128 Part II: Indefinite Integrals 

10_225226-ch05.qxd  5/1/08  6:25 PM  Page 128



Substitution when one part of a function
differentiates to the other part
When g'(x) = f(x), you can use the substitution u = g(x) to integrate the 
following:

� Expressions of the form f(x) · g(x)

� Expressions of the form f(x) · h(g(x)), provided that h is a function that
you already know how to integrate

Don’t worry if you don’t understand all this math-ese. In the following sections,
I show you how to recognize both of these cases and integrate each. As usual,
variable substitution helps to fill the gaps left by the absence of a Product Rule
and a Chain Rule for integration.

Expressions of the form f(x) · g(x)
Some products of functions yield quite well to variable substitution. Look for
expressions of the form f(x) · g(x) where

� You know how to integrate g(x).

� The function f(x) is the derivative of g(x).

For example:

tan secx x dx2#

The main thing to notice here is that the derivative of tan x is sec2 x. This is a
great opportunity to use variable substitution:

1. Declare u and substitute it into the integral:

Let u = tan x

tan sec secx x dx u x dx2 2= ##

2. Differentiate as planned:

dx
du = sec2 x

du = sec2 x dx

3. Perform another substitution:

u du= #
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4. This integration couldn’t be much easier:

= 2
1 u2 + C

5. Substitute back tan x for u:

= 2
1 tan2 x + C

Expressions of the form f(x) · h(g(x))
Here’s a hairy-looking integral that actually responds well to substitution:

x tx

x
dx

5

2 1
2 3

4

-

+
#
_

^

i

h

The key insight here is that the numerator of this fraction is the derivative
of the inner function in the denominator. Watch how this plays out in this 
substitution:

1. Declare u equal to the denominator and make the substitution:

Let u = x2 + x – 5

Here’s the substitution:

u
x dx2 1

3
4= +#

2. Differentiate u:

dx
du = 2x + 1

du = (2x + 1) dx

3. The second part of the substitution now becomes clear:

u
du1

3
4= #

Notice how this substitution hinges on the fact that the numerator is the
derivative of the denominator. (You may think that this is quite a coinci-
dence, but coincidences like these happen all the time on exams!)

4. Integration is now quite straightforward:

I take an extra step to remove the fraction before I integrate.

u du3
4

= -#

= –3u 3
1

- + C

5. Substitute back x2 + x – 5 for u:

= –3(x2 + x – 5) 3
1

-

+ C
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Checking the answer by differentiating with the Chain Rule reveals how this
problem was set up in the first place:

dx
d [–3(x2 + x – 5) 3

1
-

+ C]

= (x2 + x – 5) 3
4

- (2x + 1)

= 
x x

x

5

2 1
2 3

4

+ -

+

_ i

By now, if you’ve worked through the examples in this chapter, you’re proba-
bly seeing opportunities to make variable substitutions. For example:

x x dx13 4 -#

Notice that the derivative of x4 – 1 is x3, off by a constant factor. So here’s the
declaration, followed by the differentiation:

Let u = x4 – 1

dx
du

= 4x3

du
4 = x3 dx

Now you can just do both substitutions at once:

u du4
1$# c m

u du4
1= #

At this point, you can solve the integral simply — I’ll leave this as an exercise
for you!

Similarly, here’s another example:

csc x e dxcot x2#

At first glance, this integral looks just plain horrible. But on further inspec-
tion, notice that the derivative of cot x is –csc2 x, so this looks like another
good candidate:

Let u = cot x

dx
du

= –csc2 x

–du = csc2 x dx
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This results in the following substitution:

due u= -# ^ h

due u=- #

Again, this is another integral that you can solve.

Using Substitution to Evaluate
Definite Integrals

In the first two sections of this chapter, I cover how and when to evaluate
indefinite integrals with variable substitution. All this information also
applies to evaluating definite integrals, but I also have a timesaving trick that
you should know.

When using variable substitution to evaluate a definite integral, you can save
yourself some trouble at the end of the problem. Specifically, you can leave
the solution in terms of u by changing the limits of integration.

For example, suppose that you’re evaluating the following definite integral:

x x dx1
x

x

0

1
2 +

=

=

#

Notice that I give the limits of integration as x = 0 and x = 1. This is just a
notational change to remind you that the limits of integration are values of x.
This fact becomes important later in the problem.

You can evaluate this equation simply by using variable substitution.

If you’re not sure why this substitution works, read the section “Recognizing
When to Use Substitution” earlier in this chapter. Follow Steps 1 through 3 of
variable substitution:

Let u = x2 + 1

dx
du

= 2x
du
2 = x dx

u du2
1

x

x

0

2

=
=

-

#
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If this were an indefinite integral, you’d be ready to integrate. But because
this is a definite integral, you still need to express the limits of integration in
terms of u rather than x. Do this by substituting values 0 and 1 for x in the
substitution equation u = x2 + 1:

u = 12 + 1 = 2

u = 02 + 1 = 1

Now use these values of u as your new limits of integration:

u du2
1

v

v

1

2

=
=

=

#

At this point, you’re ready to integrate:

u2
1

3
2

u

u

2
3

1

2

=
=

=

$

u3
1

v

v

2
3

1

2

=
=

=

Because you changed the limits of integration, you can now find the answer
without switching the variable back to x:

3
1 2 12

3
2
3

= -a k

3
1 8 1= -` j

3
8

3
1= -
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Chapter 6

Integration by Parts
In This Chapter
� Making the connection between the Product Rule and integration by parts

� Knowing how and when integration by parts works

� Integrating by parts by using the DI-agonal method

� Practicing the DI-agonal method on the four most common products of functions

In Calculus I, you find that the Product Rule allows you to find the deriva-
tive of any two functions that are multiplied together. (I review this in

Chapter 2, in case you need a refresher.) But integrating the product of two
functions isn’t quite as simple. Unfortunately, no formula allows you to inte-
grate the product of any two functions. As a result, a variety of techniques
have been developed to handle products of functions on a case-by-case basis.

In this chapter, I show you the most widely applicable technique for integrat-
ing products, called integration by parts. First, I demonstrate how the formula
for integration by parts follows the Product Rule. Then I show you how the
formula works in practice. After that, I give you a list of the products of func-
tions that are likely to yield to this method.

After you understand the principle behind integration by parts, I give you
a method — called the DI-agonal method — for performing this calculation
efficiently and without errors. Then I show you examples of how to use this
method to integrate the four most common products of functions.

Introducing Integration by Parts
Integration by parts is a happy consequence of the Product Rule (discussed
in Chapter 2). In this section, I show you how to tweak the Product Rule to
derive the formula for integration by parts. I show you two versions of this
formula — a complicated version and a simpler one — and then recommend
that you memorize the second. I show you how to use this formula, and then
I give you a heads up as to when integration by parts is likely to work best.
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Reversing the Product Rule
The Product Rule (see Chapter 2) enables you to differentiate the product of
two functions:

dx
d [f(x) · g(x)] = f'(x) · g(x) + g'(x) · f(x)

Through a series of mathematical somersaults, you can turn this equation
into a formula that’s useful for integrating. This derivation doesn’t have any
truly difficult steps, but the notation along the way is mind-deadening, so
don’t worry if you have trouble following it. Knowing how to derive the for-
mula for integration by parts is less important than knowing when and how
to use it, which I focus on in the rest of this chapter.

The first step is simple: Just rearrange the two products on the right side of the
equation:

dx
d [f(x) · g(x)] = f(x) · g'(x) + g(x) · f'(x)

Next, rearrange the terms of the equation:

f(x) · g'(x) = dx
d [f(x) · g(x)] – g(x) · f'(x)

Now, integrate both sides of this equation:

f x g x dx dx
d f x g x g x f x dx= -## l l^ ^ ^ ^ ^ ^h h h h h h8 B' 1

Use the Sum Rule to split the integral on the left in two:

f x g x dx dx
d f x g x dx g x f x dx= -# ##l l^ ^ ^ ^ ^ ^h h h h h h8 B

The first of these two integrals undoes the derivative:

f x g x dx f x g x g x f x dx= - ## l l^ ^ ^ ^ ^ ^h h h h h h

This is the formula for integration by parts. But because it’s so hairy looking,
the following substitution is used to simplify it:

Let u = f(x) Let v = g(x)

du = f'(x) dx dv = g'(x) dx

Here’s the friendlier version of the same formula, which you should 
memorize:

u dv uv v du= - ##
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Knowing how to integrate by parts
The formula for integration by parts gives you the option to break the prod-
uct of two functions down to its factors and integrate it in an altered form.

To integrate by parts:

1. Decompose the entire integral (including dx) into two factors.

2. Let the factor without dx equal u and the factor with dx equal dv.

3. Differentiate u to find du, and integrate dv to find v.

4. Use the formula u dv uv= - v du# # .

5. Evaluate the right side of this equation to solve the integral.

For example, suppose that you want to evaluate this integral:

lnx x dx#

In its current form, you can’t perform this computation, so integrate by parts:

1. Decompose the integral into ln x and x dx.

2. Let u = ln x and dv = x dx.

3. Differentiate ln x to find du and integrate x dx to find v:

Let u = ln x Let dv = x dx

dx
du = x

1 dv x dx=# #

du = x
1 dx v = 2

1 x2

4. Using these values for u, du, v, and dv, you can use the formula for
integration by parts to rewrite the integral as follows:

ln lnx x dx x x x x dx2
1

2
1 12 2= -# #^ c c ch m m m

At this point, algebra is useful to simplify the right side of the equation:

lnx x x dx2
1

2
12= - #

5. Evaluate the integral on the right:

lnx x x C2
1

2
1

2
12 2= - +c m

You can simplify this answer just a bit:

lnx x x C2
1

4
12 2= - +
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Therefore, lnx x dx# . To check this answer, differentiate it by using the 

Product Rule:

lndx
d x x x C2

1
4
12 2- +c m

ln lndx
d x x dx

d x x x2
1

4
1 22 2= + -c cm m= G

lnx x x x x2
1 2 1

2
12= + -$c m= G

Now, simplify this result to show that it’s equivalent to the function you
started with:

ln lnx x x x x x2
1

2
1= + - =

Knowing when to integrate by parts
After you know the basic mechanics of integrating by parts, as I show you in
the previous section, it’s important to recognize when integrating by parts is
useful.

To start off, here are two important cases when integration by parts is defi-
nitely the way to go:

� The logarithmic function ln x

� The first four inverse trig functions (arcsin x, arccos x, arctan x, and
arccot x)

Beyond these cases, integration by parts is useful for integrating the product
of more than one function. For example:

� x ln x

� x arcsec x

� x2 sin x

� ex cos x

Notice that in each case, you can recognize the product of functions because
the variable x appears more than once in the function.
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Whenever you’re faced with integrating the product of functions, consider
variable substitution (which I discuss in Chapter 5) before you think about
integration by parts. For example, x cos (x2) is a job for variable substitution,
not integration by parts. (To see why, flip to Chapter 5.)

When you decide to use integration by parts, your next question is how to
split up the function and assign the variables u and dv. Fortunately, a helpful
mnemonic exists to make this decision: Lovely Integrals Are Terrific, which
stands for Logarithmic, Inverse trig, Algebraic, Trig. (If you prefer, you can
also use the mnemonic Lousy Integrals Are Terrible.) Always choose the first
function in this list as the factor to set equal to u, and then set the rest of the
product (including dx) equal to dv.

You can use integration by parts to integrate any of the functions listed in
Table 6-1.

Table 6-1 When You Can Integrate by Parts
Function Example Differentiate Integrate dv 

u to Find du to Find v

Log function ln x dx# ln x dx

Log times algebraic lnx x dx4# ln x x 4 dx

Log composed with algebraic ln x dx3# ln x 3 dx

Inverse trig forms arcsinx dx# arcsin x dx

Algebraic times sine sinx x dx2# x 2 sin x dx

Algebraic times cosine cosx x dx3 5# 3x 5 sin x dx

Algebraic times exponential x dx2
1 e x2 3# 2

1 x 2 e3 dx

Sine times exponential sin x dxe
x
2# e

x
2 sin x dx

Cosine times exponential cos x dxe x# ex cos x dx

When you’re integrating by parts, here’s the most basic rule when deciding
which term to integrate and which to differentiate: If you only know how to
integrate one of the two, that’s the one you integrate!
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Integrating by Parts with 
the DI-agonal Method

The DI-agonal method is basically integration by parts with a chart that helps
you organize information. This method is especially useful when you need to
integrate by parts more than once to solve a problem. In this section, I show
you how to use the DI-agonal method to evaluate a variety of integrals.

Looking at the DI-agonal chart
The DI-agonal method avoids using u and dv, which are easily confused (espe-
cially if you write the letters u and v as sloppily as I do!). Instead, a column for
differentiation is used in place of u, and a column for integration replaces dv.

Use the following chart for the DI-agonal method:

As you can see, the chart contains two columns: the D column for differentia-
tion, which has a plus sign and a minus sign, and the I column for integration.
You may also notice that the D and the I are placed diagonally in the chart —
yes, the name DI-agonal method works on two levels (so to speak).

Using the DI-agonal method
Earlier in this chapter, I provide a list of functions that you can integrate by
parts. The DI-agonal method works for all these functions. I also give you the
mnemonic Lovely Integrals Are Terrific (which stands for Logarithmic, Inverse
trig, Algebraic, Trig) to help you remember how to assign values of u and dv —
that is, what to differentiate and what to integrate.

I

D

+

−
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To use the DI-agonal method:

1. Write the value to differentiate in the box below the D and the value
to integrate (omitting the dx) in the box below the I.

2. Differentiate down the D column and integrate down the I column.

3. Add the products of all full rows as terms.

I explain this step in further detail in the examples that follow.

4. Add the integral of the product of the two lowest diagonally adjacent
boxes.

I also explain this step in greater detail in the examples.

Don’t spend too much time trying to figure this out. The upcoming examples
show you how it’s done and give you plenty of practice. I show you how to
use the DI-agonal method to integrate products that include logarithmic,
inverse trig, algebraic, and trig functions.

L is for logarithm
You can use the DI-agonal method to evaluate the product of a log function
and an algebraic function. For example, suppose that you want to evaluate
the following integral:

lnx x dx2#

Whenever you integrate a product that includes a log function, the log func-
tion always goes in the D column.

1. Write the log function in the box below the D and the rest of the func-
tion value (omitting the dx) in the box below the I.

2. Differentiate ln x and place the answer in the D column.

Notice that in this step, the minus sign already in the box attaches to x
1 .

I

x 2D

In x+

−
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3. Integrate x2 and place the answer in the I column.

4. Add the product of the full row that’s circled.

Here’s what you write:

lnx x3
1 3+ c m

5. Add the integral of the two lowest diagonally adjacent boxes that are
circled.

I

x 2D

In x+

− 1
x

x 31
3

I

x 2D

In x+

− 1
x

x 31
3

I

x 2D

In x+

−

x 31
3

1
x

I

x 2D

In x+

− 1
x
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Here’s what you write:

lnx x3
1 3+ +^ ch m x x dx1

3
1 3-# c cm m

At this point, you can simplify the first term and integrate the second term:

lnx x x dx3
1

3
13 2= - #

lnx x x C3
1

3
1

3
13 3= - +c cm m

lnx x x C3
1

9
13 3= - +

You can verify this answer by differentiating by using the Product Rule:

ln

ln

ln

ln

dx
d x x x C

x x x x x

x x x x

x x

3
1

9
1

3
1 3 1

3
1

3
1

3
1

3 3

2 3 2

2 2 2

2

- +

= + -

= + -

=

$

c

c

m

m

Therefore, this is the correct answer:

ln lnx x dx x x x C3
1

9
12 3 3= - +#

I is for inverse trig
You can integrate four of the six inverse trig functions (arcsin x, arccos x,
arctan x, and arccot x) by using the DI-agonal method. By the way, if you
haven’t memorized the derivatives of the six inverse trig functions (which I
give you in Chapter 2), this would be a great time to do so.

Whenever you integrate a product that includes an inverse trig function, this
function always goes in the D column.

For example, suppose that you want to integrate

arccos x dx#
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1. Write the inverse trig function in the box below the D and the rest of
the function value (omitting the dx) in the box below the I.

Note that a 1 goes into the I column.

2. Differentiate arccos x and place the answer in the D column, and then
integrate 1 and place the answer in the I column.

3. Add the product of the full row that’s circled.

Here’s what you write:

(+arccos x)(x)

I

1D

arccos x x+

− 1
1 − x 2

I

1D

arccos x x+

− 1
1 − x 2

I

1D

arccos x+

−
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4. Add the integral of the lowest diagonal that’s circled.

Here’s what you write:

arccosx x
x

x dx
1

1
2

+ + - -
-

#
J

L

K
K^ ^ ^

N

P

O
Oh h h

Simplify and integrate:

arccosx x
x

x dx
1 2

= +
-

#

Let u = 1 – x2

du = –2x dx

2
1- du = x dx

This variable substitution introduces a new variable u. Don’t confuse this u
with the u used for integration by parts.

arccosx x
u

du1
2
1= + -# c m

arccosx x u C2
1 2= - +` j

arccosx x u C= - +

Substituting 1 – x2 for u and simplifying gives you this answer:

arccosx x x C1 2= - - +

Therefore, arccos arccosx dx x x x C1 2= - - +# .

A is for algebraic
If you’re a bit skeptical that the DI-agonal method is really worth the trouble,
I guarantee you that you’ll find it useful when handling algebraic factors.

I

1D

arccos x x+

− 1
1 − x 2
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For example, suppose that you want to integrate the following:

sinx x dx3#

This example is a product of functions, so integration by parts is an option.
Going down the LIAT checklist, you notice that the product doesn’t contain a
log factor or an inverse trig factor. But it does include the algebraic factor x3,
so place this factor in the D column and the rest in the I column. By now,
you’re probably getting good at using the chart, so I fill it in for you here.

Your next step is normally to write the following

cos cosx x x x dx33 2+ - + - -#_ ^ _ ^i h i h

But here comes trouble: The only way to calculate the new integral is by
doing another integration by parts. And, peeking ahead a bit, here’s what you
have to look forward to:

cos sin sinx x x x x x dx3 63 2= - - - - -#_ ^ _ ^ ^ ^i h i h h h; E

cos sin cos cosx x x x x x x dx3 6 63 2= - - - - - #_ ^ _ ^ ^ ^i h i h h h; E) 3

At last, after integrating by parts three times, you finally have an integral that
you can solve directly. If evaluating this expression looks like fun (and if you
think you can do it quickly on an exam without dropping a minus sign along
the way!), by all means go for it. If not, I show you a better way. Read on.

To integrate an algebraic function multiplied by a sine, a cosine, or an expo-
nential function, place the algebraic factor in the D column and the other
factor in the I column. Differentiate the algebraic factor down to zero, and
then integrate the other factor the same number of times. You can then copy
the answer directly from the chart.

I

sin xD

−+

−

cos xx 3

3x 2
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Simply extend the DI chart as I show you here.

Notice that you just continue the patterns in both columns. In the D column,
continue alternating plus and minus signs and differentiate until you reach 0.
And in the I column, continue integrating.

The very pleasant surprise is that you can now copy the answer from the
chart. This answer contains four terms (+ C, of course), which I copy directly
from the four circled rows in the chart:

x3 (–cos x) – 3x2 (–sin x) + 6x (cos x) – 6 (sin x) + C

But wait! Didn’t I forget the final integral on the diagonal? Actually, no — but 
this integral is sindx x C0 =$# , which explains where that final C comes from.

Here’s another example, just to show you again how easy the DI-agonal
method is for products with algebraic factors:

x dx3 e x5 2#

Without the DI chart, this problem is one gigantic miscalculation waiting to
happen. But the chart keeps track of everything.

I

sin xD

sin x

−+

−

cos xx 3

3x 2

cos x6x+

−

−

+

sin x6

0
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Now, just copy from the chart, add C, and simplify:

x x x x

x C

3 2
1 15 4

1 60 8
1 180 16

1

360 32
1 360 64

1

e e e e

e e

x x x x

x x

5 2 4 2 3 2 2 2

2 2

= + - + -

+ - +

_ c _ c _ c _ c

^ c ^ c

i m i m i m i m

h m h m

x x x x x C2
3

4
15

2
15

4
45

4
45

8
45e e e e e ex x x x x x5 2 4 2 3 2 2 2 2 2= - + - + - +

This answer is perfectly acceptable, but if you want to get fancy, factor out 3⁄8
e2x and leave a reduced polynomial:

= 8
3 e2x (4x5 – 10x4 + 20x3 – 30x2 + 30x – 15) + C

T is for trig
You can use the DI-agonal method to integrate the product of either a sine or
a cosine and an exponential. For example, suppose that you want to evaluate
the following integral:

sinx dxe
x
3#

When integrating either a sine or cosine function multiplied by an exponen-
tial function, make your DI-agonal chart with five rows rather than four. Then
place the trig function in the D column and the exponential in the I column.

I

e2xD

+

−

3x 5

15x 4

60x 3+

−

+

180x 2

360x

− 360

+ 0

e2x1
2

e2x1
4

e2x1
8

e2x1
16

e2x1
32

e2x1
64
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This time, you have two rows to add, as well as the integral of the product of
the lowest diagonal:

sin cos sinx x x dx3 9 9e e e
x x x
3 3 3+ - + -#^ a ^ a ^ ah k h k h k

This may seem like a dead end because the resulting integral looks so similar
to the one that you’re trying to evaluate. Oddly enough, however, this similar-
ity makes solving the integral possible. In fact, the next step is to make the
integral that results look exactly like the one you’re trying to solve:

sin cos sinx x x dx3 9 9e e e
x x x
3 3 3= + - - #^ a ^ ah k h k

Next, substitute the variable I for the integral that you’re trying to solve. This
action isn’t strictly necessary, but it makes the course of action a little clearer.

I = (sin x)(3e
x
3 ) + (–cos x)(9e

x
3 ) – 9I

Now solve for I using a little basic algebra:

10I = (sin x)(3e
x
3 ) + (–cos x)(9e

x
3 )

I = 
sin cosx x

10

3 9e e
x x
3 3+ -^ a ^ ah k h k

Finally, substitute the original integral back into the equation, and add C:

sin sin cosx dx x x C10
1 3 9e e e

x x x
3 3 3= + - +# ^ a ^ ah k h k; E

Optionally, you can clean up this answer a bit by factoring:

sin sin cosx dx x x C10
3 3e e

x x
3 3= - +# ^ h

I

D

+

−

sin x

cos x

(–sin x )+

3e

e
x
3

x
3

x
3

9e
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If you’re skeptical that this method really gives you the right answer, check it
by differentiating by using the Product Rule:

sin cos

sin cos sin cos

sin cos cos sin

dx
d x x C

dx
d x x dx

d x x

x x x x

10
3 3

10
3 3 3

10
3

3
1 3 3

e

e e

e e

x

x x

x x

3

3 3

3 3

- +

= - + -

= - + +

^c

^ ^ a

c ^ ^ a

h m

h h k

m h h k

;

=

E

G

At this point, algebra shows that this expression is equivalent to the original
function:

sin cos cos sin

sin cos cos sin

sin sin

sin

x x x x

x x x x

x x

x

10
1 3 10

3 3

10
1

10
3

10
3

10
9

10
1

10
9

e e

e e e e

e e

e

x x

x x x x

x x

x

3 3

3 3 3 3

3 3

3

= - + +

= - + +

= +

=

a ^ ^ ak h h k
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Chapter 7

Trig Substitution: Knowing 
All the (Tri)Angles

In This Chapter
� Memorizing the basic trig integrals

� Integrating powers of sines and cosines, tangents and secants, and cotangents 
and cosecants

� Understanding the three cases for using trig substitution

� Avoiding trig substitution when possible

Trig substitution is another technique to throw in your ever-expanding
bag of integration tricks. It allows you to integrate functions that contain 

radicals of polynomials such as x4 2- and other similar difficult functions.

Trig substitution may remind you of variable substitution, which I discuss in
Chapter 5. With both types of substitution, you break the function that you
want to integrate into pieces and express each piece in terms of a new variable.
With trig substitution, however, you express these pieces as trig functions.

So, before you can do trig substitution, you need to be able to integrate a
wider variety of products and powers of trig functions. The first few parts of
this chapter give you the skills that you need. After that, I show you how to
use trig substitution to express very complicated-looking radical functions in
terms of trig functions.

Integrating the Six Trig Functions
You already know how to integrate sin x and cos x from Chapter 4, but for
completeness, here are the integrals of all six trig functions:
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sin cosx dx x C= - +#

cos sinx dx x C= +#

tan ln secx dx x C= +#

cot ln sinx dx x C= +#

sec ln sec tanx dx x x C= + +#

csc ln csc cotx dx x x C= - +#

Please commit these to memory — you need them! For practice, you can also
try differentiating each result to show why each of these integrals is correct.

Integrating Powers of Sines and Cosines
Later in this chapter, when I show you trig substitution, you need to know
how to integrate powers of sines and cosines in a variety of combinations.
In this section, I show you what you need to know.

Odd powers of sines and cosines
You can integrate any function of the form sinm x cosn x when m is odd, for
any real value of n. For this procedure, keep in mind the handy trig identity 
sin2 x + cos2 x = 1. For example, here’s how you integrate sin7 x cos 3

1
x:

1. Peel off a sin x and place it next to the dx:

sin cos sin cos sinx x dx x x x dx7
3
1 6

3
1

= ##

2. Apply the trig identity sin2 x = 1 – cos2 x to express the rest of the sines
in the function as cosines:

cos cos sinx x x dx1 2 3
3
1

= -# _ i

3. Use the variable substitution u = cos x and du = –sin x dx:

u u du1 2 3
3
1

=- -# _ i
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Now that you have the function in terms of powers of u, the worst is over. You
can expand the function out, turning it into a polynomial. This is just algebra:

u u u u du1 1 12 2 2
3
1

=- - - -# _ _ _i i i

u u u u du1 3 32 4 6
3
1

=- - + -# _ i

u u u u du3 33
1

3
7

3
13

3
19

=- - + -# a k

To continue, use the Sum Rule and Constant Multiple Rule to separate this
into four integrals, as I show you in Chapter 4. Don’t forget to distribute that
minus sign to all four integrals!

u du u du u du u du3 33
1

3
7

3
13

3
19

=- + - + ####

At this point, you can evaluate each integral separately by using the
Power Rule:

u u u u C4
3

10
9

16
9

22
3

3
4

3
10

3
16

3
22

= + - + +

Finally, use u = cos x to reverse the variable substitution:

cos cos cos cosx x x x C4
3

10
9

16
9

22
3

3
4

3
10

3
16

3
22

= + - + +

Notice that when you substitute back in terms of x, the power goes next to
the cos rather than the x, because you’re raising the entire function cos x to a
power. (See Chapter 2 if you’re unclear about this point.)

Similarly, you integrate any function of the form sinm x cosn x when n is odd,
for any real value of m. These steps are practically the same as those in the
previous example. For example, here’s how you integrate sin–4 x cos9 x:

1. Peel off a cos x and place it next to the dx:

sin cos sin cos cosx x dx x x x dx4 9 4 8=- -# #

2. Apply the trig identity cos2 x = 1 – sin2 x to express the rest of the
cosines in the function as sines:

sin sin cosx x x dx14 2 4
= --# _ i

3. Use the variable substitution u = sin x and du = cos x dx:

u u du14 2 4
= --# _ i

At this point, you can distribute the function to turn it into a polynomial and
then integrate it as I show you in the previous example.

153Chapter 7: Trig Substitution: Knowing All the (Tri)Angles

12_225226-ch07.qxd  5/1/08  8:43 PM  Page 153



Even powers of sines and cosines
To integrate sin2 x and cos2 x, use the two half-angle trig identities that I show
you in Chapter 2:

sin2 x = cos x
2

1 2-

cos2 x = cos x
2

1 2+

For example, here’s how you integrate cos2 x:

1. Use the half-angle identity for cosine to rewrite the integral in terms
of cos 2x:

cos cosx dx x dx2
1 22 = +# #

2. Use the Constant Multiple Rule to move the denominator outside the
integral:

cos x dx2
1 1 2= +# ^ h

3. Distribute the function and use the Sum Rule to split it into several
integrals:

cosdx x dx2
1 1 2= + ##c m

4. Evaluate the two integrals separately:

sinx x C2
1

2
1 2= + +c m

sinx x C2
1

4
1 2= + +

As a second example, here’s how you integrate sin2 x cos4 x:

1. Use the two half-angle identities to rewrite the integral in terms of
cos 2x:

sin cos cos cosx x dx x x dx2
1 2

2
1 22 4

2

= - +## c m

2. Use the Constant Multiple Rule to move the denominators outside the
integral:

cos cosx x dx8
1 1 2 1 2

2
= - +# ^ ^h h

3. Distribute the function and use the Sum Rule to split it into several
integrals:

cos cos cosdx x dx x dx x dx8
1 1 2 2 22 3= + - -# ###c m
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4. Evaluate the resulting odd-powered integrals by using the procedure
from the earlier section “Odd powers of sines and cosines,” and evalu-
ate the even-powered integrals by returning to Step 1 of the previous
example.

Integrating Powers of 
Tangents and Secants

When you’re integrating powers of tangents and secants, here’s the rule to
remember: Eeeven powers of seeecants are eeeasy. The threee Es in the keeey
words should help you remember this rule. By the way, odd powers of tan-
gents are also easy. You’re on your own remembering this fact!

In this section, I show you how to integrate tanm x secn x for all positive inte-
ger values of m and n. You use this skill later in this chapter, when I show you
how to do trig substitution.

Even powers of secants with tangents
To integrate tanm x secn x when n is even — for example, tan8 x sec6 x — follow
these steps:

1. Peel off a sec2 x and place it next to the dx:

tan sec tan sec secx x dx x x x dx8 6 8 4 2=# #

2. Use the trig identity 1 + tan2 x = sec2 x to express the remaining secant
factors in terms of tangents:

tan tan secx x x dx18 2 2 2= +# _ i

3. Use the variable substitution u = tan x and du = sec2 x dx:

u u du18 2 2
+# _ i

At this point, the integral is a polynomial, and you can evaluate it as I show
you in Chapter 4.
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Odd powers of tangents with secants
To integrate tanm x secn x when m is odd — for example, tan7 x sec9 x — follow
these steps:

1. Peel off a tan x and a sec x and place them next to the dx:

tan sec tan sec sec tanx x x x x x dx7 9 6 8=# #

2. Use the trig identity tan2 x = sec2 x – 1 to express the remaining tan-
gent factors in terms of secants:

sec sec sec tanx x x x dx12 3 8= -# _ i

3. Use the variable substitution u = sec x and du = sec x tan x dx:

u u du12 3 8= -# _ i

At this point, the integral is a polynomial, and you can evaluate it as I show
you in Chapter 4.

Odd powers of tangents without secants
To integrate tanm x when m is odd, use a trig identity to convert the function
to sines and cosines as follows:

tan cos
sin sin cosx dx x

x dx x x dxm
m

m
m m= = -# # #

After that, you can integrate by using the procedure from the earlier section,
“Odd powers of sines and cosines.”

Even powers of tangents without secants
To integrate tanm x when m is even — for example, tan8 x — follow these steps:

1. Peel off a tan2 x and use the trig identity tan2 x = sec2 x – 1 to express it
in terms of tan x:

tan tan secx dx x x dx18 6 2= -## _ i

2. Distribute to split the integral into two separate integrals:

tan sec tanx x dx x dx6 2 6= - ##
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3. Evaluate the first integrals using the procedure I show you in the ear-
lier section “Even powers of secants with tangents.”

4. Return to Step 1 to evaluate the second integral.

Even powers of secants without tangents
To integrate secn x when n is even — for example, sec4 x — follow these steps:

1. Use the trig identity 1 + tan2 x = sec2 x to express the function in terms
of tangents:

sec tanx dx x dx14 2 2
= +# # _ i

2. Distribute and split the integral into three or more integrals:

tan tandx x dx x dx1 2 2 4= + + ###

3. Integrate all powers of tangents by using the procedures from the sec-
tions on powers of tangents without secants.

Odd powers of secants without tangents
This is the hardest case, so fasten your seat belt. To integrate secn x when n
is odd — for example, sec3 x — follow these steps:

1. Peel off a sec x:

sec sec secx dx x x dx3 2=# #

2. Use the trig identity 1 + tan2 x = sec2 x to express the remaining
secants in terms of tangents:

tan secx x dx1 2= +# _ i

3. Distribute and split the integral into two or more integrals:

sec tan secx x x dx2= + ##

4. Evaluate the first integral:

ln sec tan tan secx x x x dx2= + + #

You can omit the constant C because you still have an integral that you
haven’t evaluated yet — just don’t forget to put it in at the end.
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5. Integrate the second integral by parts by differentiating tan x and inte-
grating sec x tan x (see Chapter 6 for more on integration by parts):

ln sec tan tan sec secx x x x x dx3= + + - #

At this point, notice that you’ve shown the following equation to be true:

sec ln sec tan tan sec secx dx x x x x x dx3 3= + + - ##

6. Follow the algebraic procedure that I outline in Chapter 6.

First, substitute the variable I for the integral on both sides of the 
equation:

ln sec tan tan secI x x x x I= + + -

Now, solve this equation for I:

ln sec tan tan secI x x x x2 = + +

ln sec tan tan secI x x x x2
1

2
1= + +

Now, you can substitute the integral back for I. Don’t forget, however,
that you need to add a constant to the right side of this equation, to
cover all possible solutions to the integral:

sec ln sec tan tan secx dx x x x x C2
1

2
13 = + + +#

That’s your final answer. I truly hope that you never have to integrate
sec5 x, let alone higher odd powers of a secant. But if you do, the basic 
procedure I outline here will provide you with a value for sec x dx5# in 
terms of sec x dx3# . Good luck!

Even powers of tangents with 
odd powers of secants
To integrate tanm x secn x when m is even and n is odd, transform the function
into an odd power of secants, and then use the method that I outline in the
previous section “Odd powers of secants without tangents.”

For example, here’s how you integrate tan4 x sec3 x:

1. Use the trusty trig identity tan2 x = sec2 x – 1 to convert all the tan-
gents to secants:

tan sec sec secx x dx x x dx14 3 2 2 3= -# # _ i
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2. Distribute the function and split the integral by using the Sum Rule:

sec sec secx dx x dx x dx27 5 3= - + ###

3. Solve the resulting odd-powered integrals by using the procedure
from “Odd powers of secants without tangents.”

Unfortunately, this procedure brings you back to the most difficult case in
this section. Fortunately, most teachers are fairly merciful when you’re work-
ing with these functions, so you probably won’t have to face this integral on
an exam. If you do, however, you have my deepest sympathy.

Integrating Powers of Cotangents
and Cosecants

The methods for integrating powers of cotangents and cosecants are very
close to those for tangents and secants, which I show you in the preceding
section. For example, in the earlier section “Even powers of secants with tan-
gents,” I show you how to integrate tan8 x sec6 x. Here’s how to integrate cot8

x csc6 x:

1. Peel off a csc2 x and place it next to the dx:

cot csc cot csc cscx x dx x x x dx8 6 8 4 2= ##

2. Use the trig identity 1 + cot2 x = csc2 x to express the remaining 
cosecant factors in terms of cotangents:

cot cot cscx x x dx18 2 2 2= +# _ i

3. Use the variable substitution u = cot x and du = –csc2 x dx:

u u du18 2 2
=- +# _ i

At this point, the integral is a polynomial, and you can evaluate it as I show
you in Chapter 4.

Notice that the steps here are virtually identical to those for tangents and
secants. The biggest change here is the introduction of a minus sign in Step 3.
So, to find out everything you need to know about integrating cotangents and
cosecants, try all the examples in the previous section, but switch every tan-
gent to a cotangent and every secant to a cosecant.
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Sometimes, knowing how to integrate cotangents and cosecants can be useful
for integrating negative powers of other trig functions — that is, powers of
trig functions in the denominator of a fraction.

For example, suppose that you want to integrate 
sin

cos
x
x

6

2

-
. The methods that 

I outline earlier don’t work very well in this case, but you can use trig identi-
ties to express it as cotangents and cosecants.

sin
cos

sin
cos

sin
cot csc

x
x

x
x

x
x x1

6

2

2

2

4
2 4= =$

I show you more about this in the next section “Integrating Weird
Combinations of Trig Functions.”

Integrating Weird Combinations 
of Trig Functions

You don’t really have to know how to integrate every possible trig function
to pass Calculus II. If you can do all the techniques that I introduce earlier in
this chapter — and I admit that’s a lot to ask! — then you’ll be able to handle
most of what your professor throws at you with ease. You’ll also have a good
shot at hitting any curveballs that come at you on an exam.

But in case you’re nervous about the exam and would rather study than
worry, in this section I show you how to integrate a wider variety of trig func-
tions. I don’t promise to cover all possible trig functions exhaustively. But I
do give you a few additional ways to think about and categorize trig functions
that could help you when you’re in unfamiliar territory.

Using identities to tweak functions
You can express every product of powers of trig functions, no matter how
weird, as the product of any pair of trig functions. The three most useful pair-
ings (as you may guess from earlier in this chapter) are sine and cosine, tan-
gent and secant, and cotangent and cosecant. Table 7-1 shows you how to
express all six trig functions as each of these pairings.
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Table 7-1 Expressing the Six Trig Functions 
As a Pair of Trig Functions

Trig Function As Sines & As Tangents & As Cotangents & 
Cosines Secants Cosecants

sin x sin x sec
tan

x
x

csc x
1

cos x cos x sec x
1

csc
cot

x
x

tan x cos
sin

x
x tan x cot x

1

cot x sin
cos

x
x

tan x
1 cot x

sec x cos x
1 sec x cot

csc
x
x

csc x sin x
1

tan
sec

x
x csc x

For example, look at the following function:

sin tan sec
cos cot csc

x x x
x x x
2

3 2

As it stands, you can’t do much to integrate this monster. But try expressing
it in terms of each possible pairing of trig functions:

= 
sin
cos

x
x

8

6

= 
tan
sec

x
x

8

2

= cot6 x csc2 x

As it turns out, the most useful pairing for integration in this case is cot6 x
csc2 x. No fraction is present — that is, both terms are raised to positive
powers — and the cosecant term is raised to an even power, so you can use
the same basic procedure that I show you in the earlier section “Even powers
of secants with tangents.”

Using Trig Substitution
Trig substitution is similar to variable substitution (which I discuss in
Chapter 5), using a change in variable to turn a function that you can’t inte-
grate into one that you can. With variable substitution, you typically use the
variable u. With trig substitution, however, you typically use the variable θ.
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Trig substitution allows you to integrate a whole slew of functions that you
can’t integrate otherwise. These functions have a special, uniquely scary look
about them, and are variations on these three themes:

(a2 – bx2)n

(a2 + bx2)n

(bx2 – a2)n

Trig substitution is most useful when n is 2
1 or a negative number — that is, 

for hairy square roots and polynomials in the denominator of a fraction.
When n is a positive integer, your best bet is to express the function as a
polynomial and integrate it as I show you in Chapter 4.

In this section, I show you how to use trig substitution to integrate functions
like these. But, before you begin, take this simple test:

Trig substitution is:

� A) Easy and fun — even a child can do it!

� B) Not so bad when you know how.

� C) About as attractive as drinking bleach.

I wish I could tell you that the answer is A, but then I’d be a big liarmouth and
you’d never trust me again. So I admit that trig substitution is less fun than a
toga party with a hot date. At the same time, your worst trig substitution
nightmares don’t have to come true, so please put the bottle of bleach back
in the laundry room.

I have the system right here, and if you follow along closely, I give you the
tool that you need to make trig substitution mostly a matter of filling in the
blanks. Trust me — have I ever lied to you?

Distinguishing three cases 
for trig substitution
Trig substitution is useful for integrating functions that contain three very
recognizable types of polynomials in either the numerator or denominator.
Table 7-2 lists the three cases that you need to know about.
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Table 7-2 The Three Trig Substitution Cases
Case Radical of Polynomial Example

Sine case (a2 – bx2)n x dx4 2-#

Tangent case (a2 + bx2)n

x
dx

4 9
1

2 2
+

#
_ i

Secant case (bx2 – a2)n

x
dx

16 1
1

2 -
#

The first step to trig substitution is being able to recognize and distinguish
these three cases when you see them.

Knowing the formulas for differentiating the inverse trig functions can help
you remember these cases.

arcsindx
d x

x1
1

2
=

-

arctandx
d x

x1
1

2=
+

secdx
d x

x x 1
1arc

2
=

-

Note that the differentiation formula for arcsin x contains a polynomial that
looks like the sine case: a constant minus x2. The formula for arctan x con-
tains a polynomial that looks like the tangent case: a constant plus x2. And
the formula for arcsec x contains a polynomial that looks like the secant case:
x2 minus a constant. So, if you already know these formulas, you don’t have to
memorize any additional information.

Integrating the three cases
Trig substitution is a five-step process:

1. Draw the trig substitution triangle for the correct case.

2. Identify the separate pieces of the integral (including dx) that you
need to express in terms of θ.

3. Express these pieces in terms of trig functions of θ.

4. Rewrite the integral in terms of θ and evaluate it.

5. Substitute x for θ in the result.
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Don’t worry if these steps don’t make much sense yet. In this section, I show
you how to do trig substitution for each of the three cases.

The sine case
When the function you’re integrating includes a term of the form (a2 – bx2)n,
draw your trig substitution triangle for the sine case. For example, suppose
that you want to evaluate the following integral:

x dx4 2-#

This is a sine case, because a constant minus a multiple of x2 is being raised 
to a power 2

1
c m. Here’s how you use trig substitution to handle the job:

1. Draw the trig substitution triangle for the correct case.

Figure 7-1 shows you how to fill in the triangle for the sine case. Notice
that the radical goes on the adjacent side of the triangle. Then, to fill in
the other two sides of the triangle, I use the square roots of the two
terms inside the radical — that is, 2 and x. I place 2 on the hypotenuse
and x on the opposite side.

You can check to make sure that this placement is correct by using the 

Pythagorean theorem: x x4 22 2
2

2+ - =` j .

2. Identify the separate pieces of the integral (including dx) that you
need to express in terms of θ.

In this case, the function contains two separate pieces that contain x: 
x4 2- and dx.

3. Express these pieces in terms of trig functions of θ.

This is the real work of trig substitution, but when your triangle is set up
properly, this work becomes a lot easier. In the sine case, all trig func-
tions should be sines and cosines.

4 − x 2

θ

x
2

Figure 7-1:
A trig

substitution
triangle for

the sine
case.
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To represent the radical portion as a trig function of θ, first build a frac-
tion using the radical x4 2- as the numerator and the constant 2 as the
denominator. Then set this fraction equal to the appropriate trig function:

cos
x θ2

4 2-
=

Because the numerator is the adjacent side of the triangle and the 

denominator is the hypotenuse H
A

c m, this fraction is equal to ccs θ. Now, 

a little algebra gets the radical alone on one side of the equation:

cosx θ4 22- =

Next, you want to express dx as a trig function of θ. To do so, build
another fraction with the variable x in the numerator and the constant
2 in the denominator. Then set this fraction equal to the correct trig
function:

x
2 = sin θ

This time, the numerator is the opposite side of the triangle and the 

denominator is the hypotenuse H
O

c m, so this fraction is equal to sin θ. 

Now, solve for x and then differentiate:

x = 2 sin θ

dx = 2 cos θ dθ

4. Rewrite the integral in terms of θ and evaluate it:

x dx4 2-#

cos cos dθ θ θ2 2:#

cos dθ θ4 2= #

Knowing how to evaluate trig integrals really pays off here. I cut to the
chase in this example, but earlier in this chapter (in “Integrating Powers
of Sines and Cosines”), I show you how to integrate all sorts of trig func-
tions like this one:

= 2θ + sin 2θ + C

5. To change those two θ terms into x terms, reuse the following equation:

x
2 = sin θ

θ = arcsin x
2
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So here’s a substitution that gives you an answer:

= 2 arcsin x
2 + sin(2 arcsin x

2 ) + C

This answer is perfectly valid so, technically speaking, you can stop here.
However, some professors frown upon the nesting of trig and inverse trig 
functions, so they’ll prefer a simplified version of sin(2 arcsin x

2 ). To find 
this, start by applying the double-angle sine formula (see Chapter 2) to sin 2θ:

sin sin cosθ θ θ2 2=

Now, use your trig substitution triangle to substitute values for sin θ and cos
θ in terms of x:

x x

x x

2 2 2
4

2
1 4

2

2

=
-

= -

J

L

K
Kc

N

P

O
Om

To finish up, substitute this expression for that problematic second term to
get your final answer in a simplified form:

2 θ + sin 2 θ + C

arcsin x x x C2 2 2
1 4 2= + - +

The tangent case
When the function you’re integrating includes a term of the form (a2 + x2)n,
draw your trig substitution triangle for the tangent case. For example, sup-
pose that you want to evaluate the following integral:

x
dx

4 9
1

2 2
+

#
_ i

This is a tangent case, because a constant plus a multiple of x2 is being raised
to a power (–2). Here’s how you use trig substitution to integrate:

1. Draw the trig substitution triangle for the tangent case.

Figure 7-2 shows you how to fill in the triangle for the tangent case.
Notice that the radical of what’s inside the parentheses goes on the
hypotenuse of the triangle. Then, to fill in the other two sides of the trian-
gle, use the square roots of the two terms inside the radical — that is, 2
and 3x. Place the constant term 2 on the adjacent side and the variable
term 3x on the opposite side.
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With the tangent case, make sure not to mix up your placement of the
variable and the constant.

2. Identify the separate pieces of the integral (including dx) that you
need to express in terms of θ.

In this case, the function contains two separate pieces that contain x: 

x4 9
1

2 2
+_ i

and dx.

3. Express these pieces in terms of trig functions of θ.

In the tangent case, all trig functions should be initially expressed as tan-
gents and secants.

To represent the rational portion as a trig function of θ, build a fraction 
using the radical x4 9 2+ as the numerator and the constant 2 as the
denominator. Then set this fraction equal to the appropriate trig function:

sec
x θ2

4 9 2+
=

Because this fraction is the hypotenuse of the triangle over the adjacent 

side A
H

c m, it’s equal to sec θ. Now, use algebra and trig identities to 

tweak this equation into shape:

secx θ4 9 22+ =

secx θ4 9 82 2 4+ =_ i

secx θ4 9
1

8
1

2 2 4
+

=
_ i

Next, express dx as a trig function of θ. To do so, build another fraction
with the variable 3x in the numerator and the constant 2 in the 
denominator:

x
2

3 = tan θ

2

θ

3x4 + 9x2
Figure 7-2:

A trig
substitution
triangle for
the tangent

case.
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This time, the fraction is the opposite side of the triangle over the adja-

cent side A
O

c m, so it equals tan θ. Now, solve for x and then differentiate:

x = 3
2 tan θ

dx = 3
2 sec2 θ dθ

4. Express the integral in terms of θ and evaluate it:

x
dx

4 9
1

2 2
+

#
_ i

sec
sec dθ θ θ

8
1

3
2

4
2= $#

Now, some cancellation and reorganization turns this nasty-looking inte-
gral into something manageable:

cos dθ θ12
1 2= #

At this point, use your skills from the earlier section “Even Powers of
Sines and Cosines” to evaluate this integral:

sin Cθ θ24
1

48
1 2= + +

5. Change the two θ terms back into x terms:

You need to find a way to express θ in terms of x. Here’s the simplest way:

tan θ = x
2

3

θ = arctan x
2

3

So here’s a substitution that gives you an answer:

sin arctan sin arctanC x x Cθ θ24
1

48
1 2 24

1
2

3
48
1 2 2

3+ + = + +c m

This answer is valid, but most professors won’t be crazy about that ugly second
term, with the sine of an arctangent. To simplify it, apply the double-angle sine 

formula (see Chapter 2) to sin θ48
1 2 :

sin sin cosθ θ θ48
1 2 24

1=

Now, use your trig substitution triangle to substitute values for sin θ and cos
θ in terms of x:
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x
x

x

x
x

x
x

24
1

4 9
3

4 9
2

24 4 9
6

16 36

2 2

2

2

=
+ +

=
+

=
+

J

L

K
K

J

L

K
K

_

_

N

P

O
O

N

P

O
O

i

i

Finally, use this result to express the answer in terms of x:

sin

arctan

C

x
x

x C

θ θ24
1

48
1 2

24
1

2
3

16 36 2

+ +

= +
+

+
_ i

The secant case
When the function that you’re integrating includes a term of the form (bx2 – a2)n,
draw your trig substitution triangle for the secant case. For example, suppose
that you want to evaluate this integral:

x
dx

16 1
1

2 -
#

This is a secant case, because a multiple of x2 minus a constant is being raised 

to a power 2
1-c m. Integrate by using trig substitution as follows:

1. Draw the trig substitution triangle for the secant case.

Figure 7-3 shows you how to fill in the triangle for the secant case. Notice
that the radical goes on the opposite side of the triangle. Then, to fill in
the other two sides of the triangle, use the square roots of the two terms
inside the radical — that is, 1 and 4x. Place the constant 1 on the adja-
cent side and the variable 4x on the hypotenuse.

You can check to make sure that this placement is correct by using the 
Pythagorean theorem: x x1 16 1 42 2

2 2
+ - =` ^j h .

16x 2 − 1

θ

4x

1

Figure 7-3:
A trig

substitution
triangle for
the secant

case.
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2. Identify the separate pieces of the integral (including dx) that you
need to express in terms of θ.

In this case, the function contains two separate pieces that contain x:

x16 1
1

2 -
and dx.

3. Express these pieces in terms of trig functions of θ.

In the secant case (as in the tangent case), all trig functions should be
initially represented as tangents and secants.

To represent the radical portion as a trig function of θ, build a fraction 
by using the radical x16 12 - as the numerator and the constant 1 as
the denominator. Then set this fraction equal to the appropriate trig
function:

tan
x θ1

16 12 -
=

Notice that this fraction is the opposite side of the triangle over the
adjacent side A

O
c m, so it equals tan θ. Simplifying it a bit gives you this

equation:

tanx θ16 1
1 1

2 -
=

Next, express dx as a trig function of θ. To do so, build another
fraction with the variable x in the numerator and the constant 1 in
the denominator:

x
1

4 = sec θ

This time, the fraction is the hypotenuse over the adjacent side of the 

triangle A
H

c m, which equals sec θ. Now, solve for x and differentiate to
find dx:

x = 4
1 sec θ

dx = 4
1 sec θ tan θ dθ

4. Express the integral in terms of θ and evaluate it:

tan sec tan
x

dx dθ θ θ θ
16 1

1 1
4
1

2 -
= $# #

sec dθ θ4
1= #

Now, use the formula for the integral of the secant function from
“Integrating the Six Trig Functions” earlier in this chapter:

= 4
1 ln |sec θ + tan θ| + C
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5. Change the two θ terms back into x terms:

In this case, you don’t have to find the value of θ because you already
know the values of sec θ and tan θ in terms of x from Step 3. So, substi-
tute these two values to get your final answer:

ln x x C4
1 4 16 12= + - +

Knowing when to avoid trig substitution
Now that you know how to use trig substitution, I give you a skill that can be
even more valuable: avoiding trig substitution when you don’t need it. For
example, look at the following integral:

x dx1 4 2
2

-# _ i

This might look like a good place to use trig substitution, but it’s an even
better place to use a little algebra to expand the problem into a polynomial:

x x dx1 8 162 4= - +# _ i

Similarly, look at this integral:

x
x dx

492 -
#

You can use trig substitution to evaluate this integral if you want to. (You can
also walk to the top of the Empire State Building instead of taking the elevator
if that tickles your fancy.) However, the presence of that little x in the numera-
tor should tip you off that variable substitution will work just as well (flip to
Chapter 5 for more on variable substitution):

Let u = x2 – 49

du = 2x dx

2
1

du = x dx

Using this substitution results in the following integral:

u
du2

1 1= #

u C= +

x C492= - +

Done! I probably don’t need to tell you how much time and aggravation you
can save by working smarter rather than harder. So I won’t!

171Chapter 7: Trig Substitution: Knowing All the (Tri)Angles

12_225226-ch07.qxd  5/1/08  9:21 PM  Page 171



172 Part II: Indefinite Integrals 

12_225226-ch07.qxd  5/1/08  9:21 PM  Page 172



Chapter 8

When All Else Fails: Integration
with Partial Fractions

In This Chapter
� Rewriting complicated fractions as the sum of two or more partial fractions

� Knowing how to use partial fractions in four distinct cases

� Integrating with partial fractions

� Using partial fractions with improper rational expressions

Let’s face it: At this point in your math career, you have bigger things to
worry about than adding a couple of fractions. And if you’ve survived

integration by parts (Chapter 6) and trig integration (Chapter 7), multiplying
a few polynomials isn’t going to kill you either.

So, here’s the good news about partial fractions: They’re based on very simple
arithmetic and algebra. In this chapter, I introduce you to the basics of partial
fractions and show you how to use them to evaluate integrals. I illustrate four
separate cases in which partial fractions can help you integrate functions that
would otherwise be a big ol’ mess.

Now, here’s the bad news: Although the concept of partial fractions isn’t 
difficult, using them to integrate is just about the most tedious thing you
encounter in this book. And as if that weren’t enough, partial fractions only
work with proper rational functions, so I show you how to distinguish these
from their ornery cousins, improper rational functions. I also give you a big
blast from the past, a refresher on polynomial division, which I promise is
easier than you remember it to be.
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Strange but True: Understanding
Partial Fractions

Partial fractions are useful for integrating rational functions — that is, functions
in which a polynomial is divided by a polynomial. The basic tactic behind par-
tial fractions is to split up a rational function that you can’t integrate into two
or more simpler functions that you can integrate.

In this section, I show you a simple analogy for partial fractions that involves
only arithmetic. After you understand this analogy, partial fractions make a
lot more sense. At the end of the section, I show you how to solve an integral
by using partial fractions.

Looking at partial fractions
Suppose that you want to split the fraction 15

14 into a sum of two smaller frac-
tions. Start by decomposing the denominator down to its factors — 3 and 5 —
and setting the denominators of these two smaller fractions to these numbers:

A B A B
15
14

3 5 15
5 3= + = +

So, you want to find an A and a B that satisfy this equation:

5A + 3B = 14

Now, just by eyeballing this fraction, you can probably find the nice integer
solution A = 1 and B = 3, so:

15
14

3
1

5
3= +

If you include negative fractions, you can find integer solutions like this for 
every fraction. For example, the fraction 15

1 seems too small to be a sum of
thirds and fifths, until you discover:

3
2

5
3

15
1- =
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Using partial fractions with
rational expressions
The technique of breaking up fractions works for rational expressions. It can
provide a strategy for integrating functions that you can’t compute directly.
For example, suppose that you’re trying to find this integral:

x
dx

9
6

2 -
#

You can’t integrate this function directly, but if you break it into the sum of
two simpler rational expressions, you can use the Sum Rule to solve them sep-
arately. And, fortunately, the polynomial in the denominator factors easily:

x x x9
6

3 3
6

2 -
=

+ -^ ^h h

So, set up this polynomial fraction just as I do with the regular fractions in
the previous section:

x x x
A

x
B

x x
A x B x

3 3
6

3 3

3 3
3 3

+ -
=

+
+

-

=
+ -

- + +

^ ^

^ ^

^ ^

h h

h h

h h

This gives you the following equation:

A(x – 3) + B(x + 3) = 6

This equation works for all values of x. You can exploit this fact to find the
values of A and B by picking helpful values of x. To solve this equation for A
and B, substitute the roots of the original polynomial (3 and –3) for x and
watch what happens:

A(3 – 3) + B(3 + 3) = 6 A(–3 – 3) + B(–3 + 3) = 6

6B = 6 –6A = 6

B = 1 A = –1

Now substitute these values of A and B back into the rational expressions:

x x x x3 3
6

3
1

3
1

+ -
= -

+
+

-^ ^h h
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This sum of two rational expressions is a whole lot friendlier to integrate than
what you started with. Use the Sum Rule followed by a simple variable substi-
tution (see Chapter 5):

x x dx3
1

3
1-

+
+

-
# c m

x dx x dx3
1

3
1=-

+
+

-
# #

= –ln |x + 3| + ln |x – 3| + C

As with regular fractions, you can’t always break rational expressions apart
in this fashion. But in four distinct cases, which I discuss in the next section,
you can use this technique to integrate complicated rational functions.

Solving Integrals by Using
Partial Fractions

In the last section, I show you how to use partial fractions to split a compli-
cated rational function into several smaller and more-manageable functions.
Although this technique will certainly amaze your friends, you may be won-
dering why it’s worth learning.

The payoff comes when you start integrating. Lots of times, you can integrate
a big rational function by breaking it into the sum of several bite-sized chunks.
Here’s a bird’s-eye view of how to use partial fractions to integrate a rational
expression:

1. Set up the rational expression as a sum of partial fractions with
unknowns (A, B, C, and so forth) in the numerators.

I call these unknowns rather than variables to distinguish them from x,
which remains a variable for the whole problem.

2. Find the values of all the unknowns and plug them into the partial
fractions.

3. Integrate the partial fractions separately by whatever method works.

In this section, I focus on these three steps. I show you how to turn a compli-
cated rational function into a sum of simpler rational functions and how to
replace unknowns (such as A, B, C, and so on) with numbers. Finally, I give
you a few important techniques for integrating the types of simpler rational
functions that you often see when you use partial fractions.
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Setting up partial fractions case by case
Setting up a sum of partial fractions isn’t difficult, but there are four distinct
cases to watch out for. Each case results in a different setup — some easier
than others.

Try to get familiar with these four cases, because I use them throughout this
chapter. Your first step in any problem that involves partial fractions is to
recognize which case you’re dealing with so that you can solve the problem.

Each of these cases is listed in Table 8-1.

Table 8-1 The Four Cases for Setting up Partial Fractions
Case Example As Partial Fractions

Case #1: Distinct linear x x
x

4 7+ -^ ^h h x
A

x
B

4 7+
+

-
factors

Case #2: Distinct irreducible 
x x3 9

8
2 2+ +_ _i i x x

A Bx
x

C Dx
3 3 92

- +

+ +
+

+

` `j jquadratic factors

Case #3: Repeated 
x
x

5
2 2

2
+

+

^ h x
A

x
B

5 5
2+

+
+^ hlinear factors

Case #4: Repeated 
x
x

6
2

2 2

2

+

-

_ i x
A Bx

x
C Dx

6 6
2 2 2+
+ +

+

+

_ iquadratic factors

Case #1: Distinct linear factors
The simplest case in which partial fractions are helpful is when the denomi-
nator is the product of distinct linear factors — that is, linear factors that are
nonrepeating.

For each distinct linear factor in the denominator, add a partial fraction of the
following form:

A
linear factor

For example, suppose that you want to integrate the following rational
expression:

x x x2 5
1

+ -^ ^h h
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The denominator is the product of three distinct linear factors — x, (x + 2),
and (x – 5) — so it’s equal to the sum of three fractions with these factors as
denominators:

x
A

x
B

x
C

2 5= +
+

+
-

The number of distinct linear factors in the denominator of the original expres-
sion determines the number of partial fractions. In this example, the presence
of three factors in the denominator of the original expression yields three par-
tial fractions.

Case #2: Distinct quadratic factors
Another not-so-bad case where you can use partial fractions is when the
denominator is the product of distinct quadratic factors — that is, quadratic
factors that are nonrepeating.

For each distinct quadratic factor in the denominator, add a partial fraction
of the following form:

A Bx
quadratic factor

+

For example, suppose that you want to integrate this function:

x x
x

2 3
5 6

2- +
-

^ _h i

The first factor in the denominator is linear, but the second is quadratic
and can’t be decomposed to linear factors. So, set up your partial fractions
as follows:

x
A

x
Bx C

2 32=
-

+
+
+

As with distinct linear factors, the number of distinct quadratic factors in the
denominator tells you how many partial fractions you get. So in this example,
two factors in the denominator yield two partial fractions.

Case #3: Repeated linear factors
Repeated linear factors are more difficult to work with because each factor
requires more than one partial fraction.

For each squared linear factor in the denominator, add two partial fractions
in the following form:

A B
linear factor linear factor

2+
^ h
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For each quadratic factor in the denominator that’s raised to the third power,
add three partial fractions in the following form:

A B C
linear factor linear factor linear factor

32+ +
^ ^h h

Generally speaking, when a linear factor is raised to the nth power, add n par-
tial fractions. For example, suppose that you want to integrate the following
expression:

x x
x
5 1

3
3

2

+ -

-

^ ^h h

This expression contains all linear factors, but one of these factors (x + 5) is
nonrepeating and the other (x – 1) is raised to the third power. Set up your
partial fractions this way:

x
A

x
B

x
C

x
D

5 1 1 1
2 3=

+
+

-
+

-
+

-^ ^h h

As you can see, I add one partial fraction to account for the nonrepeating
factor and three to account for the repeating factor.

Case #4: Repeated quadratic factors
Your worst nightmare when it comes to partial fractions is when the denomi-
nator includes repeated quadratic factors.

For each squared quadratic factor in the denominator, add two partial frac-
tions in the following form:

Ax B Cx D
quadratic factor quadratic factor

2
+ + +

_ i

For each quadratic factor in the denominator that’s raised to the third power,
add three partial fractions in the following form:

Ax B Cx D Ex F
quadratic factor quadratic factor quadratic factor

2 3
+ + + + +

_ _i i

Generally speaking, when a quadratic factor is raised to the nth power, add n
partial fractions. For example:

x x x x
x

8 1 3
7

2 2 2
- + + +

+

^ _ _h i i

This denominator has one nonrepeating linear factor (x – 8), one nonrepeate-
ing quadratic factor (x 2 + x – 1), and one quadratic expression that’s squared
(x 2 + 3). Here’s how you set up the partial fractions:

x
A x x x x

x
D Ex

x
F Gx

Σ Σ8 1 1 5 1 5
3 3

2
2 2 2=

-
+ + - = - - + - - - +

+
+ +

+

+$
J

L

K
K

J

L

K
Ke e

_

N

P

O
O

N

P

O
Oo o

i
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This time, I added one partial fraction for each of the nonrepeating factors
and two partial fractions for the squared factor.

Beyond the four cases: Knowing how to set up any partial fraction
At the outset, I have some great news: You’ll probably never have to set up a
partial fraction any more complex than the one that I show you in the previ-
ous section. So relax.

I’m aware that some students like to get this stuff on a case-by-case basis,
so that’s why I introduce it that way. However, other students prefer to be
shown an overall pattern, so they can get the Zen math experience. If this
is your path, read on. If not, feel free to skip ahead.

You can break any rational function into a sum of partial fractions. You just
need to understand the pattern for repeated higher-degree polynomial fac-
tors in the denominator. This pattern is simplest to understand with an exam-
ple. Suppose that you’re working with the following rational function:

x x x
x

7 1 2 1
5 1

4 5 2 2 2
+ + +

+

_ ^ _i h i

In this factor, the denominator includes a problematic factor that’s a fourth-
degree polynomial raised to the fifth power. You can’t decompose this factor
further, so the function falls outside the four cases I outline earlier in this
chapter. Here’s how you break this rational function into partial fractions:

x
Ax Bx Cx D

7 14

3 2

=
+

+ + + +

x
Ex Fx Gx H

7 14 2

3 2

+

+ + + +
_ i

x
Ix Jx Kx L

7 14 3

3 2

+

+ + + +
_ i

x
Mx Nx Ox P

7 14 4

3 2

+

+ + + +
_ i

x

Qx Rx Sx T

7 14 5

3 2

+

+ + +
+

_ i

x
U

x
V

2 2
2+

+
+

+
^ h

x
Wx X

x
Yx Z

1 1
2 2 2
+
+ +

+

+
_ _i i
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As you can see, I completely run out of capital letters. As you can also see,
the problematic factor spawns five partial fractions — that is, the same
number as the power it’s raised to. Furthermore:

� The numerator of each of these fractions is a polynomial of one degree
less than the denominator.

� The denominator of each of these fractions is a carbon copy of the origi-
nal denominator, but in each case raised to a different power up to and
including the original.

The remaining two factors in the denominator — a repeated linear (Case #3)
and a repeated quadratic (Case #4) — give you the remaining four fractions,
which look tiny and simple by comparison.

Clear as mud? Spend a little time with this example and the pattern should
become clearer. Notice, too, that the four cases that I outline earlier in this
chapter all follow this same general pattern.

You’ll probably never have to work with anything as complicated as this —
let alone try to integrate it! — but when you understand the pattern, you can
break any rational function into partial fractions without worrying which
case it is.

Knowing the ABCs of finding unknowns
You have two ways to find the unknowns in a sum of partial fractions. The
easy and quick way is by using the roots of polynomials. Unfortunately, this
method doesn’t always find all the unknowns in a problem, though it often
finds a few of them. The second way is to set up a system of equations.

Rooting out values with roots
When a sum of partial fractions has linear factors (either distinct or
repeated), you can use the roots of these linear factors to find the values of
unknowns. For example, in the earlier section “Case #1: Distinct linear fac-
tors,” I set up the following equation:

x x x x
A

x
B

x
C

2 5
1

2 5+ -
= +

+
+

-^ ^h h

To find the values of the unknowns A, B, and C, first get a common denomina-
tor on the right side of this equation (the same denominator that’s on the left
side):

x x x x x x
A x x Bx x Cx x

2 5
1

2 5
2 5 5 2

+ -
=

+ -

+ - + - + +

^ ^ ^ ^

^ ^ ^ ^

h h h h

h h h h

181Chapter 8: When All Else Fails: Integration with Partial Fractions

13_225226-ch08.qxd  5/1/08  9:43 PM  Page 181



Now, multiply both sides by this denominator:

1 = A(x + 2)(x – 5) + Bx(x – 5) + Cx(x + 2)

To find the values of A, B, and C, substitute the roots of the three factors (0,
–2, and 5):

1 = A(2)(–5) 1 = B(–2)(–2 – 5) 1 = C(5)(5 + 2)

A = 10
1- B = 14

1 C = 35
1

Plugging these values back into the original integral gives you:

x x x10
1

14 2
1

35 5
1- +

+
+

-^ ^h h

This expression is equivalent to what you started with, but it’s much easier
to integrate. To do so, use the Sum Rule to break it into three integrals, the
Constant Multiple Rule to move fractional coefficients outside each integral,
and variable substitution (see Chapter 5) to do the integration. Here’s the
answer so that you can try it out:

x x x
dx10

1
14 2

1
35 5

1- +
+

+
-

#
^ ^h h

R

T

S
SS

V

X

W
WW

ln ln lnx x x K10
1

14
1 2 35

1 5= - + + + - +^ ^h h

In this answer, I use K rather than C to represent the constant of integration
to avoid confusion, because I already use C in the earlier partial fractions.

Working systematically with a system of equations
Setting up a system of equations is an alternative method for finding the value
of unknowns when you’re working with partial fractions. It’s not as simple as
plugging in the roots of factors (which I show you in the last section), but it’s
your only option when the root of a quadratic factor is imaginary.

To illustrate this method and why you need it, I use the problem that I set up
in “Case #2: Distinct quadratic factors”:

x x
x

x
A

x
Bx C

2 3
5 6

2 32 2
- +

- =
-

+
+
+

^ _h i

To start out, see how far you can get by plugging in the roots of equations.
As I show you in “Rooting out values with roots,” begin by getting a common
denominator on the right side of the equation:

x x
x

x x
A x Bx C x

2 3
5 6

2 3
3 2

2 2

2

- +
- =

- +

+ + + -

^ _ ^ _

^ _ ^ ^

h i h i

h i h h
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Now, multiply the whole equation by the denominator:

5x – 6 = (A)(x2 + 3) + (Bx + C)(x – 2)

The root of x – 2 is 2, so let x = 2 and see what you get:

5(2) – 6 = A(22 + 3)

A = 7
4

Now, you can substitute 7
4 for A:

x
x

Bx C x5 6
7 3

4 22- =
+

+ + -
_

^ ^
i

h h

Unfortunately, x2 + 3 has no root in the real numbers, so you need a different
approach. First, get rid of the parentheses on the right side of the equation:

x x Bx Bx Cx C5 6 7
4

7
12 2 22 2- = + + - + -

Next, combine similar terms (using x as the variable by which you judge simi-
larity). This is just algebra, so I skip a few steps here:

x B x B C C7
4 2 5 7

12 2 6 02 + + - + - + - + =c ^ cm h m

Because this equation works for all values of x, I now take what appears to be
a questionable step, breaking this equation into three separate equations as
follows:

7
4 + B = 0

–2B + C – 5 = 0

7
12 – 2C + 6 = 0

At this point, a little algebra tells you that B = 7
4- and C = 7

27 . So you can 
substitute the values of A, B, and C back into the partial fractions:

x x
x

x x

x

2 3
5 6

7 2
4

3
7
4

7
27

2 2
- +

- =
-

+
+

- +

^ _ ^h i h

You can simplify the second fraction a bit:

x x
x

7 2
4

7 3
4 27

2-
+

+
- +

^ _h i
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Integrating partial fractions
After you express a hairy rational expression as the sum of partial fractions,
integrating becomes a lot easier. Generally speaking, here’s the system:

1. Split all rational terms with numerators of the form Ax + B into two
terms.

2. Use the Sum Rule to split the entire integral into many smaller 
integrals.

3. Use the Constant Multiple Rule to move coefficients outside each 
integral.

4. Evaluate each integral by whatever method works.

Linear factors: Cases #1 and #3
When you start out with a linear factor — whether distinct (Case #1) or
repeated (Case #3) — using partial fractions leaves you with an integral in
the following form:

ax b
dx1

n
+

#
^ h

Integrate all these cases by using the variable substitution u = ax + b so that 
du = a dx and a

du = dx. This substitution results in the following integral:

a u du1 1
n= #

Here are a few examples:

lnx dx x C3 5
1

3
1 3 5

+
= + +#

x
dx

x
C

6 1
1

6 6 1
1

2
-

=-
-

+#
^ ^h h

x
dx

x
C

9
1

2 9
1

3 2
+

=-
+

+#
^ ^h h

Quadratic factors of the form (ax2 + C): Cases #2 and #4
When you start out with a quadratic factor of the form (ax2 + C ) — whether
distinct (Case #2) or repeated (Case #4) — using partial fractions results in
the following two integrals:

ax C
x dxn2 +

#
_ i

ax C
dx1

n2 +
#
_ i
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Integrate the first by using the variable substitution u = ax2 + C so that 
du = ax dx and a

du = x dx. This substitution results in the following integral:

a u du1 1
n= #

This is the same integral that arises in the linear case that I describe in the
previous section. Here are some examples:

ln
x

x dx x C
7 1 14

1 7 12
2

+
= + +#

x
x dx

x
C

4 4
2

2 2 2
+

= -
+

+#
_ _i i

x
x dx

x
C

8 2 32 8 2
1

2 3 2 2
-

=
-

- +#
_ _i i

To evaluate the second integral, use the following formula:

arctan
x n

dx n n
x C1 1

2 2+
= +#

Quadratic factors of the form (ax2 + bx + C): Cases #2 and #4
Most math teachers have at least a shred of mercy in their hearts, so they
don’t tend to give you problems that include this most difficult case. When
you start out with a quadratic factor of the form (ax2 + bx + C ) — whether
distinct (Case #2) or repeated (Case #4) — using partial fractions results in
the following integral:

ax bx C
hx k dxn2 + +

+#
_ i

I know, I know — that’s way too many letters and not nearly enough numbers.
Here’s an example:

x x
x dx
6 13

5
2 + +

-#

This is about the hairiest integral you’re ever going to see at the far end of
a partial fraction. To evaluate it, you want to use the variable substitution 
u = x2 + 6x + 13 so that du = (2x + 6) dx. If the numerator were 2x + 6, you’d be
in great shape. So you need to tweak the numerator a bit. First multiply it by
2 and divide the whole integral by 2:

x x
x dx2

1
6 13

2 10
2=
+ +

-#
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Because you multiplied the entire integral by 1, no net change has occurred.
Now, add 16 and –16 to the numerator:

x x
x dx2

1
6 13

2 6 16
2=
+ +
+ -#

This time, you add 0 to the integral, which doesn’t change its value. At this
point, you can split the integral in two:

x x
x dx

x x
dx2

1
6 13

2 6 16
6 13
1

2 2=
+ +

+ -
+ +

##< F

At this point, you can use the desired variable substitution (which I mention
a few paragraphs earlier) to change the first integral as follows:

x x
x dx u du
6 13

2 6 1
2 + +

+ =# #

= ln |u| + C

= ln |x2 + 6x + 13| + C

To solve the second integral, complete the square in the denominator: Divide
the b term (6) by 2 and square it, and then represent the C term (13) as the
sum of this and whatever’s left:

x x
dx16

6 9 4
1

2-
+ + +

#

Now, split the denominator into two squares:

x
dx16

3 2
1

2 2
=-

+ +
#
^ h

To evaluate this integral, use the same formula that I show you in the previ-
ous section:

arctan
x n

dx n n
x C1 1

2 2+
= +#

So here’s the final answer for the second integral:

arctan x C8 2
3- + +

Therefore, piece together the complete answer as follows:

x x
x dx
6 13

5
2 + +

-#

ln arctanx x x C2
1 6 13 8 2

32= + + - + +; E

ln arctanx x x C2
1 6 13 4 2

32= + + - + +
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Integrating Improper Rationals
Integration by partial fractions works only with proper rational expressions,
but not with improper rational expressions. In this section, I show you how to
tell these two beasts apart. Then I show you how to use polynomial division
to turn improper rationals into more acceptable forms. Finally, I walk you
through an example in which you integrate an improper rational expression
by using everything in this chapter.

Distinguishing proper and improper 
rational expressions
Telling a proper fraction from an improper one is easy: A fraction b

a is proper if 
the numerator (disregarding sign) is less than the denominator, and improper
otherwise.

With rational expressions, the idea is similar, but instead of comparing the
value of the numerator and denominator, you compare their degrees. The
degree of a polynomial is its highest power of x (flip to Chapter 2 for a
refresher on polynomials).

A rational expression is proper if the degree of the numerator is less than the
degree of the denominator, and improper otherwise.

For example, look at these three rational expressions:

x
x 2

3

2 +

x
x

3 12

5

-

x
x

3 2
5
4

4

-
-

In the first example, the numerator is a second-degree polynomial and the
denominator is a third-degree polynomial, so the rational is proper. In the
second example, the numerator is a fifth-degree polynomial and the denomi-
nator is a second-degree polynomial, so the expression is improper. In the
third example, the numerator and denominator are both fourth-degree poly-
nomials, so the rational function is improper.
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Recalling polynomial division
Most math students learn polynomial division in Algebra II, demonstrate that
they know how to do it on their final exam, and then promptly forget it. And,
happily, they never need it again — except to pass the time at extremely dull
parties — until Calculus II.

It’s time to take polynomial division out of mothballs. In this section, I show
you everything you forgot to remember about polynomial division, both with
and without a remainder.

Polynomial division without a remainder
When you multiply two polynomials, you always get another polynomial.
For example:

(x3 + 3)(x2 – x) = x5 – x4 + 3x2 – 3x

Because division is the inverse of multiplication, the following equation
makes intuitive sense:

x
x x x x x x

3
3 3

3

5 4 2
2

+
- + - = -_ i

Polynomial division is a reliable method for dividing one polynomial by
another. It’s similar to long division, so you probably won’t have too much
difficulty understanding it even if you’ve never seen it.

The best way to show you how to do polynomial division is with an example.
Start with the example I’ve already outlined. Suppose that you want to divide
x5 – x4 + 3x2 – 3x by x3 + 3. Begin by setting up the problem as a typical long
division problem (notice that I fill with zeros for the x3 and constant terms):

x x x x x x3 0 3 3 03 5 4 3 2+ - + + - +g

Start by focusing on the highest degree exponent in both the divisor (x3) and
dividend (x5). Ask how many times x3 goes into x5 — that is, x5 ÷ x3 = ? Place
the answer in the quotient, and then multiply the result by the divisor as you
would with long division:

x x x x x x
x

x x

3 0 3 3 0

3

3 5 4 3 2

2

5 2

+ - + + - +

- +_ i

g
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As you can see, I multiply x 2 by x3 to get the result of x5 + 3x2, aligning this
result to keep terms of the same degree in similar columns. Next, subtract
and bring down the next term, just as you would with long division:

x x x x x x
x

x x

x x

3 0 3 3 0

3

3

3 5 4 3 2

2

5 2

4

+ - + + - +

- +

- -

_ i

g

Now, the cycle is complete, and you ask how many times x3 goes into –x4 —
that is, –x4 ÷ x3 = ? Place the answer in the quotient, and multiply the result
by the divisor:

x x x x x x
x x

x x

x x

x x

3 0 3 3 0

3

3

3

3 5 4 3 2

2

5 2

4

4

+ - + + - +
-

- +

- -

- - -

_

_

i

i

g

In this case, the subtraction that results works out evenly. Even if you bring
down the final zero, you have nothing left to divide, which shows the follow-
ing equality:

x
x x x x x x

3
3 3

3

5 4 2
2

+
- + - = -

Polynomial division with a remainder
Because polynomial division looks so much like long division, it makes sense
that polynomial division should, at times, leave a remainder. For example,
suppose that you want to divide x4 – 2x3 + 5x by 2x2 – 6:

x x x x x2 6 2 0 5 02 4 3 2- - + + +g

This time, I fill in two zero coefficients as needed. To begin, divide x4 by 2x2,
multiply through, and subtract:

x x x x x

x

x x

x x

2 6 2 0 5 0
2
1

3

2 3

2 4 3 2

2

4 2

3 2

- - + + +

- -

- +

_ i

g
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Don’t let the fractional coefficient deter you. Sometimes polynomial division
results in fractional coefficients.

Now bring down the next term (5x) to begin another cycle. Then, divide –2x3

by 2x2, multiply through, and subtract:

x x x x x

x x

x x

x x x

x x

x x

2 6 2 0 5 0
2
1

3

2 3 5

2 6

3

2 4 3 2

2

4 2

3 2

3

2

- - + + +

-

- -

- + +

- - +

-

_

_

i

i

g

Again, bring down the next term (0) and begin another cycle by dividing 3x2

by 2x2:

x x x x x

x x

x x

x x x

x x

x x

x

x

2 6 2 0 5 0
2
1

2
3

3

2 3 5

2 6

3 0

3 9

9

2 4 3 2

2

4 2

3 2

3

2

2

- - + + +

- +

- -

- + +

- - +

- +

- -

- +

_

_

_

i

i

i

g

As with long division, the remainder indicates a fractional amount left over:
the remainder divided by the divisor. So, when you have a remainder in poly-
nomial division, you write the answer by using the following formula:

Polynomial = Quotient + Divisor
Remainder

If you get confused deciding how to write out the answer, think of it as a
mixed number. For example, 7 ÷ 3 = 2 with a remainder of 1, which you write 

as 2 3
1 .

So, the polynomial division in this case provides the following equality:

x
x x x x x

x
x

2 6
2 5

2
1

2
3

2 6
9

2

4 3
2

2-
- + = - + +

-
- +
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Although this result may look more complicated than the fraction you started
with, you have made progress: You turned an improper rational expression
(where the degree of the numerator is greater than the degree of the denomi-
nator) into a sum that includes a proper rational expression. This is similar
to the practice in arithmetic of turning an improper fraction into a mixed
number.

Trying out an example
In this section, I walk you through an example that takes you through just
about everything in this chapter. Suppose that you want to integrate the fol-
lowing rational function:

x x
x x x dx

2 3
5 4

2

4 3

- +
- - +

^ _h i

This looks like a good candidate for partial fractions, as I show you earlier
in this chapter in “Case #2: Distinct quadratic factors.” But before you can
express it as partial fractions, you need to determine whether it’s proper or
improper. The degree of the numerator is 4 and (because the denominator is
the product of a linear and a quadratic) the degree of the entire denominator
is 3. Thus, this is an improper polynomial fraction (see “Distinguishing proper
and improper rational expressions” earlier in this chapter), so you can’t inte-
grate by parts.

However, you can use polynomial division to turn this improper polynomial
fraction into an expression that includes a proper polynomial fraction (I omit
these steps here, but I show you how earlier in this chapter in “Recalling
polynomial division.”):

x x
x x x x

x x
x x

2 3
5 4 1

2 3
2 10

2

4 3

2

2

- +
- - + = + +

- +
- - +

^ _ ^ _h i h i

As you can see, the first two terms of this expression are simple to integrate
(don’t forget about them!). To set up the remaining term for integration, use
partial fractions:

x x
x x

x
A

x
Bx C

2 3
2 10

2 32

2

2
- +

- - + =
-

+
+
+

^ _h i

Get a common denominator on the right side of the equation:

x x
x x

x x
A x Bx C x

2 3
2 10

2 3
3 2

2

2

2

2

- +
- - + =

- +

+ + + -

^ _ ^ _

_ ^ ^

h i h i

i h h
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Now multiply both sides of the equation by this denominator:

–x2 – 2x + 10 = A(x2 + 3) + (Bx + C)(x – 2)

Notice that (x – 2) is a linear factor, so you can use the root of this factor to
find the value of A. To find this value, let x = 2 and solve for A:

–(22) – 2(2) + 10 = A(22 + 3) + (B2 + C)(2 – 2)

2 = 7A

A = 7
2

Substitute this value into the equation:

–x2 – 2x + 10 = 7
2 (x2 + 3) + (Bx + C)(x – 2)

At this point, to find the values of B and C, you need to split the equation into
a system of two equations (as I show you earlier in “Working systematically
with a system of equations”):

x x x Bx Cx Bx C

B x B C x C

2 10 7
2

7
6 2 2

7
2 1 2 2 7

6 2 10 0

2 2 2

2

- - + = + + + - -

+ + + - + + + - - =c ^ cm h m

This splits into three equations:

7
2 + B + 1 = 0

–2B + C + 2 = 0

7
6 – 2C – 10 = 0

The first and the third equations show you that B = 7
9- and C = 7

32- . Now 
you can plug the values of A, B, and C back into the sum of partial fractions:

x x
x

7 2
2

7 3
9 32

2-
+

+
- -

^ _h i

Make sure that you remember to add in the two terms (x + 1) that you left
behind just after you finished your polynomial division:

x x
x x x dx x

x x
x dx

2 3
5 4 1

7 2
2

7 3
9 32

2

4 3

2- +
- - + = + +

-
+

+
-# #

^ _ ^ _h i h i

R

T

S
SS

V

X

W
WW

Thus, you can rewrite the original integral as the sum of five separate integrals:

x dx dx x dx
x

x dx
x

dx7
2

2
1

7
9

3 7
32

3
1

2 2+ +
-

-
+

-
+

# # # ##

192 Part II: Indefinite Integrals 

13_225226-ch08.qxd  5/1/08  10:24 PM  Page 192



You can solve the first two of these integrals by looking at them, and the next
two by variable substitution (see Chapter 5). The last is done by using the fol-
lowing rule:

arctan
x n

dx n n
x C1 1

2 2+
= +#

Here’s the solution so that you can work the last steps yourself:

ln ln arctanx x x x x C2
1

7
2 2 14

9 3
7 3
32

3
2 2+ + - - + - +
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In this part . . .

With the basics of calculating integrals under your
belt, the focus becomes using integration as a

problem-solving tool. You discover how to solve more
complex area problems and how to find the surface area
and volume of solids.
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Chapter 9

Forging into New Areas:
Solving Area Problems

In This Chapter
� Evaluating improper integrals

� Solving area problems with more than one function

� Measuring the area between functions

� Finding unsigned areas

� Understanding the Mean Value Theorem and calculating average value

� Figuring out arc length

With your toolbox now packed with the hows of calculating integrals,
this chapter (and Chapter 10) introduces you to some of the whys of

calculating them.

I start with a simple rule for expressing an area as two separate definite inte-
grals. Then I focus on improper integrals, which are integrals that are either
horizontally or vertically infinite. Next, I give you a variety of practical strate-
gies for measuring areas that are bounded by more than one function. I look at
measuring areas between functions, and I also get you clear on the distinction
between signed area and unsigned area.

After that, I introduce you to the Mean Value Theorem for Integrals, which
provides the theoretical basis for calculating average value. Finally, I show
you a formula for calculating arc length, which is the exact length between
two points along a function.
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Breaking Us in Two
Here’s a simple but handy rule that looks complicated but is really very easy:

f x dx f x dx f x dx
n

b

a

n

a

b

= + ### ^ ^ ^h h h

This rule just says that you can split an area into two pieces, and then add up
the pieces to get the area that you started with.

For example, the entire shaded area in Figure 9-1 is represented by the follow-
ing integral, which you can evaluate easily:

sinx dx
π

0

#

cosx x π= - =

x 0=

= –cos π – –cos 0

= 1 + 1 = 2

Drawing a vertical line at x = π
3 and splitting this area into two separate 

regions results in two separate integrals:

sin sinx dx x dx
π

π
π

3
0

3

+ ##

x

y

π

π

3

y = sin x

x =

Figure 9-1:
Splitting
the area 

sin x dx
π

0

#
into two
smaller
pieces.
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It should come as no great shock that the sum of these two smaller regions
equals the entire area:

x x
=

= π
cos cosx x

π

π
3

3
= - +-

x 0=
x =

= –cos π
3 – –cos 0 + –cos π – –cos π

3
= cos 0 – cos π

= 1 + 1 = 2

Although this idea is ridiculously simple, splitting an integral into two or
more integrals becomes a powerful tool for solving a variety of the area prob-
lems in this chapter.

Improper Integrals
Improper integrals come in two varieties — horizontally infinite and verti-
cally infinite:

� A horizontally infinite improper integral contains either ∞ or –∞ (or both)
as a limit of integration. See the next section, “Getting horizontal,” for
examples of this type of integral.

� A vertically infinite improper integral contains at least one vertical
asymptote. I discuss this further in the later section “Going vertical.”

Improper integrals become useful for solving a variety of problems in
Chapter 10. They’re also useful for getting a handle on infinite series in
Chapter 12. Evaluating an improper integral is a three-step process:

1. Express the improper integral as the limit of an integral.

2. Evaluate the integral by whatever method works.

3. Evaluate the limit.

In this section, I show you, step by step, how to evaluate both types of
improper integrals.

Getting horizontal
The first type of improper integral occurs when a definite integral has a limit
of integration that’s either ∞ or –∞. This type of improper integral is easy to
spot because infinity is right there in the integral itself. You can’t miss it.
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For example, suppose that you want to evaluate the following improper 
integral:

x
dx1

3

1

3

#

Here’s how you do it, step by step:

1. Express the improper integral as the limit of an integral.

When the upper limit of integration is ∞, use this equation:

limf x dx f x dx
a

c
a

c

=
"

3

3
# #^ ^h h

So here’s what you do:

lim
x

dx
x

dx1 1
c

c

3

1

3

1

=
"

3

3
# #

2. Evaluate the integral:
x c=lim

x2
1

c
2-

"3 x 1=
d n

lim
c2
1

2
1

c
2= - +

"3
d n

3. Evaluate the limit:

= 2
1

Before moving on, reflect for one moment that the area under an infinitely
long curve is actually finite. Ah, the magic and power of calculus!

Similarly, suppose that you want to evaluate the following:

dxe x5
0

3-

#

Here’s how you do it:

1. Express the integral as the limit of an integral.

When the lower limit of integration is –∞, use this equation:

limf x dx f x dx
b

c
c

b

=
"

3
3

-
-

# #^ ^h h

So here’s what you write:

limdx dxe ex

c

x

c

5
0

5
0

=
" 3

3
-

-

# #
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2. Evaluate the integral:

x =lim 5
1 e

c

x5 0=
" 3-

x c=c m

lim 5
1

5
1e e

c

c0 5= -
" 3-

c m

lim 5
1

5
1 e

c

c5= -
" 3-

c m

3. Evaluate the limit — in this case, as c approaches –∞, the first term is
unaffected and the second term approaches 0:

= 5
1

Again, calculus tells you that, in this case, the area under an infinitely long
curve is finite.

Of course, sometimes the area under an infinitely long curve is infinite. In
these cases, the improper integral cannot be evaluated because the limit
does not exist (DNE). Here’s a quick example that illustrates this situation:

x dx1

1

3

#

It may not be obvious that this improper integral represents an infinitely
large area. After all, the value of the function approaches 0 as x increases.
But watch how this evaluation plays out:

1. Express the improper integral as the limit of an integral:

limx dx x dx1 1
c

c

1 1

, =
"

3

3
# #

2. Evaluate the integral:
x c=lim lnx

c
=

"3 x 0=

lim ln lnc 1
c

= -
"3

At this point, you can see that the limit explodes to infinity, so it doesn’t
exist. Therefore, the improper integral can’t be evaluated, because the area
that it represents is infinite.

Going vertical
Vertically infinite improper integrals are harder to recognize than those that
are horizontally infinite. An integral of this type contains at least one vertical
asymptote in the area that you’re measuring. (A vertical asymptote is a value
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of x where f(x) equals either ∞ or –∞. See Chapter 2 for more on asymptotes.)
The asymptote may be a limit of integration or it may fall someplace between
the two limits of integration.

Don’t try to slide by and evaluate improper integrals as proper integrals. In
most cases, you’ll get the wrong answer!

In this section, I show you how to handle both cases of vertically infinite
improper integrals.

Handling asymptotic limits of integration
Suppose that you want to evaluate the following integral:

x
dx1

0

1

#

At first glance, you may be tempted to evaluate this as a proper integral. But
this function has an asymptote at x = 0. The presence of an asymptote at one
of the limits of integration forces you to evaluate this one as an improper
integral:

1. Express the integral as the limit of an integral:

lim
x

dx
x

dx1 1
c

c0

1

0

1

=
"

+
# #

Notice that in this limit, c approaches 0 from the right — that is, from
the positive side — because this is the direction of approach from inside
the limits of integration. (That’s what the little plus sign (+) in the limit in
Step 2 means.)

2. Evaluate the integral:

This integral is easily evaluated as x 2
1

- , using the Power Rule as I show
you in Chapter 4, so I spare you the details here:

x =lim x2
c 0

1=
"

+ x c=

3. Evaluate the limit:

lim c2 1 2
c 0

= -
"

+

At this point, direct substitution provides you with your final answer:

= 2
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Piecing together discontinuous integrands
In Chapter 3, I discuss the link between integrability and continuity: If a func-
tion is continuous on an interval, it’s also integrable on that interval. (Flip to
Chapter 3 for a refresher on this concept.)

Some integrals that are vertically infinite have asymptotes not at the edges
but someplace in the middle. The result is a discontinuous integrand — that is,
function with a discontinuity on the interval that you’re trying to integrate.

Discontinuous integrands are the trickiest improper integrals to spot — you
really need to know how the graph of the function that you’re integrating
behaves. (See Chapter 2 to see graphs of the elementary functions.)

To evaluate an improper integral of this type, separate it at each asymptote
into two or more integrals, as I demonstrate earlier in this chapter in
“Breaking Us in Two.” Then evaluate each of the resulting integrals as an
improper integral, as I show you in the previous section.

For example, suppose that you want to evaluate the following integral:

sec x dx
π

2

0

#

Because the graph of sec x contains an asymptote at x = π
2 (see Chapter 2 for 

a view of this graph), the graph of sec2 x has an asymptote in the same place,
as you see in Figure 9-2.

To evaluate this integral, break it into two integrals at the value of x where
the asymptote is located:

sec sec secx dx x dx x dx
π

π
π

π
2 2 2

2
0

2

0

= + ###

y

x
–3π

2
−π
2

π
2

3π
2

y = sec2 x
Figure 9-2:

A graph
of the

improper
integral

sec x dx
π

2

0

# .
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Now, evaluate the sum of the two resulting integrals.

You can save yourself a lot of work by noticing when two regions are symmet-
rical. In this case, the asymptote at x = π

2 splits the shaded area into two 
symmetrical regions. So you can find one integral and then double it to get
your answer:

sec x dx2

π

2

0

2

= #

Now, use the steps from the previous section to evaluate this integral:

1. Express the integral as the limit of an integral:

lim sec x dx2
c

c

π
2

2

0

=
"

#

In this case, the vertical asymptote is at the upper limit of integration, 
so c approaches π

2 from the left — that is, from inside the interval where 
you’re measuring the area.

2. Evaluate the integral:
x c=lim tanx2

c π
2

=
"

x = 0a k

lim tan tanc2 0
c π

2

= -
"

^ h

3. Evaluate the limit:

Note that tan π
2 is undefined, because the function tan x has an asymptote 

at x = π
2 , so the limit does not exist (DNE). Therefore, the integral that 

you’re trying to evaluate also does not exist because the area that it 
represents is infinite.

Solving Area Problems with
More Than One Function

The definite integral allows you to find the signed area under any interval of
a single function. But when you want to find an area defined by more than
one function, you need to be creative and piece together a solution.
Professors love these problems as exam questions, because they test your
reasoning skills as well as your calculus knowledge.
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Fortunately, when you approach problems of this type correctly, you find that
they’re not terribly difficult. The trick is to break down the problem into two
or more regions that you can measure by using the definite integral, and then
use addition or subtraction to find the area that you’re looking for.

In this section, I get you up to speed on problems that involve more than one
definite integral.

Finding the area under more 
than one function
Sometimes, a single geometric area is described by more than one function. For
example, suppose that you want to find the shaded area shown in Figure 9-3.

The first thing to notice is that the shaded area isn’t under a single function,
so you can’t expect to use a single integral to find it. Instead, the region
labeled A is under y = sin x and the region labeled B is under y = cos x. First,
set up an integral to find the area of both of these regions:

sinx dxA

π

0

4

= #

cosx dxB
π

π

4

2

= #

Now, set up an equation to find their combined area:

sin cosx dx x dxA B
π

ππ

4

2

0

4

+ = + ##

ππ
2

y

y = sin x
y = cos x

A B

x  = π
4

x

Figure 9-3:
Finding the
area under

y = sin x and
y = cos x

from 0 to π
2 .

205Chapter 9: Forging into New Areas: Solving Area Problems

15_225226-ch09.qxd  5/1/08  10:49 PM  Page 205



At this point, you can evaluate each of these integrals separately. But there’s
an easier way.

Because region A and region B are symmetrical, they have the same area. So
you can find their combined area by doubling the area of a single region:

sinx dx2 2A

π

0

4

= = #

I choose to double region A because the integral limits of integration are
easier, but doubling region B also works. Now, integrate to find your answer:

x =

cosx2
π
4= -

x 0=
^ h

cos cosπ2 4 0= - --c m

2 2
2

1= - +
J

L

K
K

N

P

O
O

.2 2 0 586.= -

Finding the area between two functions
To find an area between two functions, you need to set up an equation with
a combination of definite integrals of both functions. For example, suppose
that you want to calculate the shaded area in Figure 9-4.

First, notice that the two functions y = x2 and y x= intersect where x = 1.
This is important information because it enables you to set up two definite
integrals to help you find region A:

y
y = x 2

x = 1

A
B

x

y = x

Figure 9-4:
Finding the

area
between 

y = x2 and
y x= .
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x dxA B
0

1

+ = #

x dxB 2

0

1

= #

Although neither equation gives you the exact information that you’re look-
ing for, together they help you out. Just subtract the second equation from
the first as follows:

x dx x dxA A B B
0

1
2

0

1

= + - = -# #

With the problem set up properly, now all you have to do is evaluate the two
integrals:

x x3
2

3
1

x

x

x

x

2
3

0

1
3

0

1

= - -
=

=

=

=

f fp p

3
2 0 3

1 0 3
1= - - - =c cm m

So the area between the two curves is 3
1 .

As another example, suppose that you want to find the shaded area in
Figure 9-5.

This time, the shaded area is two separate regions, labeled A and B. Region A is 
bounded above by y = x 3

1
and bounded below by y = x. However, for region B,

the situation is reversed, and the region is bounded above by y = x and 
bounded below by y = x 3

1
. I also label region C and region D, both of which

figure into the problem.

y y = x

x = 2

A

B

D
C

x

xy =
1
3

Figure 9-5:
Finding the

area
between 
y = x and 

y = x 3
1
.
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The first important step is finding where the two functions intersect — that
is, where the following equation is true:

x = x 3
1

Fortunately, it’s easy to see that x = 1 satisfies this equation.

Now, you want to build a few definite integrals to help you find the areas of
region A and region B. Here are two that can help with region A:

x dxA C 3
1

0

1

+ = #

x dx 2
1C

0

1

= =#

Notice that I evaluate the second definite integral without calculus, using
simple geometry as I show you in Chapter 1. This is perfectly valid and a
great timesaver.

Subtracting the second equation from the first provides an equation for the
area of region A:

x dx 2
1A A C C 3

1

0

1

= + - = -#

Now, build two definite integrals to help you find the area of region B:

x dx 2
3B D

1

2

+ = =#

x dxD 3
1

1

2

= #

This time, I evaluate the first definite integral by using geometry instead of
calculus. Subtracting the second equation from the first gives an equation for
the area of region B:

x dx2
3B B D D 3

1

1

2

= + - = - #
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Now you can set up an equation to solve the problem:

x dx x dx2
1

2
3A B 3

1
3
1

1

2

0

1

+ = - + - ##

x dx x dx 13
1

3
1

1

2

0

1

= - +##

At this point, you’re forced to do some calculus:

x x4
3

4
3 1

x

x

3
4

0

1

3
4

1

2

= - +
=

=

f fp p

4
3 1 0 4

3 2 4
3 1 13

4
3
4

3
4

= - - - +^c ^ ^ch m h h m

The rest is just arithmetic:

4
3

4
3 16 4

3 13
1

= - + +^ h

2
5

4
3 16 3

1

= - ^ h

≈ 0.6101

Looking for a sign
The solution to a definite integral gives you the signed area of a region (see
Chapter 3 for more). In some cases, signed area is what you want, but in
some problems you’re looking for unsigned area.

The signed area above the x-axis is positive, but signed area below the x-axis
is negative. In contrast, unsigned area is always positive. The concept of
unsigned area is similar to the concept of absolute value. So, if it’s helpful,
think of unsigned area as the absolute value of a definite integral.

In problems where you’re asked to find the area of a shaded region on a
graph, you’re looking for unsigned area. But if you’re unsure whether a ques-
tion is asking you to find signed or unsigned area, ask the professor. This
goes double if an exam question is unclear. Most professors will answer clari-
fying questions, so don’t be shy to ask.

For example, suppose that you’re asked to calculate the shaded unsigned
area that’s shown in Figure 9-6.
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This area is actually the sum of region A, which is above the x-axis, and
region B, which is below it. To solve the problem, you need to find the sum
of the unsigned areas of these two regions.

Fortunately, both functions intersect each other and the x-axis at the same
two values of x: x = –1 and x = 1. Set up definite integrals to find the area of
each region as follows:

x dx1A 4

1

1

= -
-

# _ i

x dx1B 2

1

1

=- -
-

# _ i

Notice that I negate the definite integral for region B to account for the fact
that the definite integral produces negative area below the x-axis. Now, just
add the two equations together:

x dx x dx1 1A B 4 2

1

1

1

1

+ = - - -
--

## _ _i i

Solving this equation gives you the answer that you’re looking for (be careful
with all those minus signs!):

x x x x5
1

3
1

x

x

x

x
5

1

1
3

1

1

= - - -
= -

=

= -

=J

L

K
K f

N

P

O
O p

1 5
1 1 5

1
3
1 1 3

1 1= - - - - - - - - - - -c c c cm m m m= =G G

5
4

5
4

3
2

3
2= + - - -c m

y

y = x 2 − 1

y = 1  − x 4

A

B
x

Figure 9-6:
Finding the

area
between 
y = x 2 – 1

and 
y = 1 – x 4.

210 Part III: Intermediate Integration Topics 

15_225226-ch09.qxd  5/1/08  11:02 PM  Page 210



Notice at this point that the expression in the parentheses — representing
the signed area of region B — is negative. But the minus sign outside the
parentheses automatically flips the sign as intended:

5
8

3
4

15
44= + =

Measuring unsigned area between
curves with a quick trick
After you understand the concept of measuring unsigned area (which I dis-
cuss in the previous section), you’re ready for a trick that makes measuring
the area between curves very straightforward. As I say earlier in this chapter,
professors love to stick these types of problem on exams. So here’s a difficult
exam question that’s worth spending some time with:

Find the unsigned shaded area in Figure 9-7. Approximate your answer to
two decimal places by using cos 4 = –0.65.

The first step is to find an equation for the solution (which will probably give
you partial credit), and then worry about solving it.

y

y = sin x

y = 4x  − x 2

x = π

x = 4

A

D B
C

x
Figure 9-7:
Finding the

area
between 

y = 4x – x2

and y = sin x
from x = 0

to x = 4.
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I split the shaded area into three regions labeled A, B, and C. I also label
region D, which you need to consider. Notice that x = π separates regions A
and B, and the x-axis separates regions B and C.

You could find three separate equations for regions A, B, and C, but there’s a
better way.

To measure the unsigned area between two functions, use this quick trick:

Area = Integral of Top Function – Integral of Bottom Function

That’s it! Instead of measuring the area above and below the x-axis, just plug
the two integrals into this formula. In this problem, the top function is 4x – x2

and the bottom function is sin x:

sinx x dx x dx4 2

0

4

0

4

= - - ## _ i

This evaluation isn’t too horrible:

x 0=

x 4= cosx x x2 3
1 x2 3 4

- - -
=

x 0=
c am k

cos cos2 4 3
1 4 0 4 0

2 3
= - - - - - -^ ^c ^h h m h= G

cos32 3
64 4 1= - + -

When you get to this point, you can already see that you’re on track, because
the professor was nice enough to give you an approximate value for cos 4:

≈ 32 – 21.33 – 0.65 – 1 = 9.02

So the unsigned area between the two functions is approximately 9.02 units.

If the two functions change positions — that is, the top becomes the bottom
and the bottom becomes the top — you may need to break the problem up
into regions, as I show you earlier in this chapter. But even in this case, you
can still save a lot of time by using this trick.

For example, earlier in this chapter, in “Finding the area between two func-
tions,” I measure the shaded area from Figure 9-5 by using four separate
regions. Here’s how to do it using the trick in this section.
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Notice that the two functions cross at x = 1. So, from 0 to 1, the top function is
x 3

1
and from 1 to 2 the top function is x. So, set up two separate equations,

one for region A and another for the region B:

x dx x dxA 3
1

0

1

0

1

= - ##

x dx x dxB 3
1

1

2

1

2

= - ##

When the calculations are complete, you get the following values for A and B:

A = 4
1

B = 4
9

4
3 16 3

1

- ^ h

Add these two values together to get your answer:

A + B = 2
5

4
3 16 3

1

- ^ h ≈ 0.6101

As you can see, the top-and-bottom trick gets you the same answer much
more simply than measuring regions.

The Mean Value Theorem for Integrals
The Mean Value Theorem for Integrals guarantees that for every definite 
integral, a rectangle with the same area and width exists. Moreover, if you
superimpose this rectangle on the definite integral, the top of the rectangle
intersects the function. This rectangle, by the way, is called the mean-value
rectangle for that definite integral. Its existence allows you to calculate the
average value of the definite integral.

Calculus boasts two Mean Value Theorems — one for derivatives and one for
integrals. This section discusses the Mean Value Theorem for Integrals. You
can find out about the Mean Value Theorem for Derivatives in Calculus For
Dummies by Mark Ryan (Wiley).

The best way to see how this theorem works is with a visual example. The
first graph in Figure 9-8 shows the region described by the definite integral 

A x dx x dx3
1

0

1

0

1

= -# # . This region obviously has a width of 1, and you can 

evaluate it easily to show that its area is 3
7 .
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The second graph in Figure 9-8 shows a rectangle with a width of 1 and an 
area of 3

7 . It should come as no surprise that this rectangle’s height is also 3
7 , 

so the top of this rectangle intersects the original function.

The fact that the top of the mean-value rectangle intersects the function is
mostly a matter of common sense. After all, the height of this rectangle repre-
sents the average value that the function attains over a given interval. This
value must fall someplace between the function’s maximum and minimum
values on that interval.

Here’s the formal statement of the Mean Value Theorem for Integrals:

If f(x) is a continuous function on the closed interval [a, b], then there exists
a number c in that interval such that:

f x dx f c b a
a

b

= -$# ^ ^ ^h h h

This equation may look complicated, but it’s basically a restatement of this
familiar equation for the area of a rectangle:

Area = Height · Width

In other words: Start with a definite integral that expresses an area, and then
draw a rectangle of equal area with the same width (b – a). The height of that
rectangle — f(c) — is such that its top edge intersects the function where x = c.

The value f(c) is the average value of f(x) over the interval [a, b]. You can cal-
culate it by rearranging the equation stated in the theorem:

f c b a f x dx1

a

b

=
- $ #^ ^h h

y

2

y = x 2 y = x 2

1
x

21
x

y

7
3

Figure 9-8:
A definite

integral and
its mean-

value
rectangle
have the

same width
and area.
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For example, here’s how you calculate the average value of the shaded area
in Figure 9-9:

f c x dx4 2
1 3

2

4

=
- $ #^ h

x2
1

4
1

x

x
4

2

4

=
=

=

f p

2
1

4
1 4 4

1 24 4= -c m

2
1 64 4 30= - =^ h

Not surprisingly, the average value of this integral is 30, a value between the
function’s minimum of 8 and its maximum of 64.

Calculating Arc Length
The arc length of a function on a given interval is the length from the starting
point to the ending point as measured along the graph of that function.

In a sense, arc length is similar to the practical measurement of driving dis-
tance. For example, you may live only 5 miles from work “as the crow flies,”
but when you check your odometer, you may find that the actual drive is

y

y = x 3

8

x

64
y = x 3

y

4
x

242

30

Figure 9-9:
The definite

integral 

x dx3

2

4

#
and its

mean-value
rectangle.
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closer to 7 miles. Similarly, the straight-line distance between two points is
always less than the arc length along a curved function that connects them.

Using the formula, however, often involves trig substitution (see Chapter 7
for a refresher on this method of integration). 

The formula for the arc length along a function y = f(x) from a to b is as follows:

dx
dy

dx1
a

b 2

+# d n

For example, suppose that you want to calculate the arc length along the func-
tion y = x2 from the point where x = 0 to the point where x = 2 (see Figure 9-10).

Before you begin, notice that if you draw a straight line between these two
points, (0, 0) and (2, 4), its length is .20 4 4721. . So the arc length should be
slightly greater.

To calculate the arc length, first find the derivative of the function x2:

dx
dy

x2=

Now, plug this derivative and the limits of integration into the formula as 
follows:

x dx1 2
2

0

2

+# ^ h

x dx1 4 2

0

2

= +#

y

2(0, 0)

(2, 4)

y = x 2

x

4

Figure 9-10:
Measuring

the arc
length along

y = x2 from
(0, 0) to 

(2, 4).
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Calculating arc length usually gives you an opportunity to practice trig 
substitution — in particular, the tangent case. When you draw your trig sub-
stitution triangle, place x1 4 2+ on the hypotenuse, 2x on the opposite side,
and 1 on the adjacent side. This gives you the following substitutions:

secx θ1 4 2+ =

2x = tan θ

x = 2
1 tan θ

dx = 2
1 sec2 θ dθ

The result is this integral:

sec dθ θ2
1 3#

Notice that I remove the limits of integration because I plan to change the vari-
able back to x before computing the definite integral. I spare you the details of
calculating this indefinite integral, but you can see them in Chapter 7. Here’s
the result:

= 4
1 (ln |sec θ + tan θ| + tan θ sec θ) + C

Now, write the each sec θ and tan θ in terms of x:

ln x x x x x C4
1 1 4 2 2 1 42 2 2+ + + + + +b l

At this point, I’m ready to evaluate the definite integral that I leave off earlier:

x dx1 4 2

0

2

+#

x 2=ln x x x x4
1 1 4 2 2 1 42 2= + + + +

x 0=
b l

ln4
1 1 4 2 2 2 2 2 1 4 2 0

2 2
= + + + + -^ ^ ^ ^d h h h h n

You can either take my word that the second part of this substitution works
out to 0 or calculate it yourself. To finish up:

ln4
1 17 4 17= + +

≈ 0.5236 + 4.1231 = 4.6467
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Chapter 10

Pump up the Volume: Using
Calculus to Solve 3-D Problems

In This Chapter
� Understanding the meat-slicer method for finding volume

� Using inverses to make a problem easier to solve

� Solving problems with solids of revolution and surfaces of revolution

� Finding the space between two surfaces

� Understanding the shell method for finding volume

In Chapter 9, I show you a bunch of different ways to use integrals to find
area. In this chapter, you add a dimension by discovering how to use inte-

grals to find volumes and surface areas of solids.

First, I show you how to find the volume of a solid by using the meat-slicer
method, which is really a 3-D extension of the basic integration tactic you
already know from Chapter 1: slicing an area into an infinite number of pieces
and adding them up.

As with a real meat slicer, this method works best when the blade is slicing
vertically — that is, perpendicular to the x-axis. So, I also show you how to
use inverses to rotate some solids into the proper position.

After that, I show you how to solve two common types of problems that calcu-
lus teachers just love: finding the volume of a solid of revolution and finding
the area of a surface of revolution.

With these techniques in your back pocket, you move on to more complex
problems, where a solid is described as the space between two surfaces.
These problems are the 3-D equivalent of finding an area between two curves,
which I discuss in Chapter 9.
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To finish up, I give you an additional way to find the volume of a solid: the
shell method. Then, I provide some practical perspective on all the methods
in the chapter so you know when to use them.

Slicing Your Way to Success
Did you ever marvel at the way in which a meat slicer turns an entire salami
into dozens of tasty little paper-thin circles? Even if you’re a vegetarian, calcu-
lus provides you with an animal-friendly alternative: the meat-slicer method
for measuring the volume of solids.

The meat-slicer method works best with solids that have similar cross 
sections. (I discuss this further in the following section.) Here’s the plan:

1. Find an expression that represents the area of a random cross section
of the solid in terms of x.

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the solid.

3. Evaluate this integral.

Don’t worry if these steps don’t make a whole lot of sense yet. In this section,
I show you when and how to use the meat-slicer method to find volumes that
would be difficult or impossible without calculus.

Finding the volume of a solid 
with congruent cross sections
Before I get into calculus, I want to provide a little bit of background on find-
ing the volume of solids. Spending a few minutes thinking about how volume
is measured without calculus pays off big-time when you step into the calcu-
lus arena. This is strictly no-brainer stuff — some basic, solid geometry that
you probably know already. So just lie back and coast through this section.

One of the simplest solids to find the volume of is a prism. A prism is a solid
that has all congruent cross sections in the shape of a polygon. That is, no
matter how you slice a prism parallel to its base, its cross section is the same
shape and area as the base itself.

The formula for the volume of a prism is simply the area of the base times the
height:

V = Ab · h
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So, if you have a triangular prism with a height of 3 inches and a base area of
2 square inches, its volume is 6 cubic inches.

This formula also works for cylinders — which are sort of prisms with a cir-
cular base — and generally any solid that has congruent cross sections. For
example, the odd-looking solid in Figure 10-1 fits the bill nicely. In this case,
you’re given the information that the area of the base is 7 cm2 and the height
is 4 cm, so the volume of this solid is 28 cm3.

Finding the volume of a solid with congruent cross sections is always simple
as long as you know two things:

� The area of the base — that is, the area of any cross section

� The height of the solid

Finding the volume of a solid 
with similar cross sections
In the previous section, you didn’t have to use any calculus brain cells. But
now, suppose that you want to find the volume of the scary-looking hyper-
bolic cooling tower on the left side of Figure 10-2.

What makes this problem out of the reach of the formula for prisms and
cylinders? In this case, slicing parallel to the base always results in the same
shape — a circle — but the area may differ. That is, the solid has similar cross
sections rather than congruent ones.

h = 4 cm

Ab = 7 cm2

Figure 10-1:
Finding the

volume of
an odd-

looking solid
with a

constant
height.
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You can estimate this volume by slicing the solid into numerous cylinders,
finding the volume of each cylinder by using the formula for constant-height
solids, and adding these separate volumes. Of course, making more slices
improves your estimate. And, as you may already suspect, adding the limit of
an infinite number of slices gives you the exact volume of the solid.

Hmmm . . . this is beginning to sound like a job for calculus. In fact, what I hint
at in this section is the meat-slicer method, which works well for measuring
solids that have similar cross sections.

When a problem asks you to find the volume of a solid, look at the picture of
this solid and figure out how to slice it up so that all the cross sections are
similar. This is a good first step in understanding the problem so that you can
solve it.

To measure weird-shaped solids that don’t have similar cross sections, you
need multivariable calculus, which is the subject of Calculus III. See Chapter 14
for an overview of this topic.

Measuring the volume of a pyramid
Suppose that you want to find the volume of a pyramid with a 6-x-6-unit
square base and a height of 3 units. Geometry tells you that you can use the
following formula:

V = 3
1 bh = 3

1 (36)(3) = 36

Figure 10-2:
Estimating

the volume
of a

hyperbolic
cooling

tower by
slicing it into

cylindrical
sections.
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This formula works just fine, but it doesn’t give you insight into how to solve
similar problems; it works only for pyramids. The meat-slicer method, how-
ever, provides an approach to the problem that you can generalize to use for
many other types of solids.

To start out, I skewer this pyramid on the x-axis of a graph, as shown in
Figure 10-3. Notice that the vertex of the pyramid is at the origin, and the
center of the base is at the point (6, 0).

To find the exact volume of the pyramid, here’s what you do:

1. Find an expression that represents the area of a random cross section
of the pyramid in terms of x.

At x = 1, the cross section is 22 = 4. At x = 2, it’s 42 = 16. And at x = 3, it’s
62 = 36. So generally speaking, the area of the cross section is:

A = (2x)2 = 4x2

2. Use this expression to build a definite integral that represents the
volume of the pyramid.

In this case, the limits of integration are 0 and 3, so:

x dx4V 2

0

3

= #

3. Evaluate this integral:

x 3=x3
4 3

x 0=

= 3
4 33 – 0 = 36

x

y

Figure 10-3:
A pyramid
skewered

on a graph
and sliced
into three

pieces.
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This is the same answer provided by the formula for the pyramid. But this
method can be applied to a far wider variety of solids.

Measuring the volume of a weird solid
After you know the basic meat-slicer technique, you can apply it to any solid
with a cross section that’s a function of x. In some cases, these solids are
harder to describe than they are to measure. For example, have a look at
Figure 10-4.

The solid in Figure 10-4 consists of two exponential curves — one described
by the equation y = ex, and the other described by placing the same curve
directly in front of the x-axis — joined by straight lines. The other sides of the
solid are bounded planes slicing perpendicularly in a variety of directions.

Notice that when you slice this solid perpendicular with the x-axis, its cross
section is always an isosceles right triangle. This is an easy shape to mea-
sure, so the slicing method works nicely to measure the volume of this solid.
Here are the steps:

1. Find an expression that represents the area of a random cross section
of the solid.

The triangle on the y-axis has a height and base of 1 — that is, e0. And
the triangle on the line x = 1 has a height and base of e1, which is e. In
general, the height and base of any cross section triangle is ex.

So, here’s how to use the formula for the area of a triangle to find the
area of a cross section in terms of x:

A = 2
1 b · h = 2

1 ex · ex = 2
1 e2x

x

y = ex
y

1 1 x

y

Figure 10-4:
A solid

based on
two

exponential
curves in

space.
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2. Use this expression to build a definite integral that represents the
volume of the solid.

Now that you know how to measure the area of a cross section, integrate
to add all the cross sections from x = 0 to x = 1:

dx2
1V e x2

0

1

= #

3. Evaluate this integral to find the volume.

dx2
1 e x2

0

1

= #

x 1=

4
1 e x2=

x 0=

4
1

4
1e e2 0= -

≈ 1.597

Turning a Problem on Its Side
When using a real meat slicer, you need to find a way to turn whatever you’re
slicing on its side so that it fits. The same is true for calculus problems.

For example, suppose that you want to measure the volume of the solid
shown in Figure 10-5.

The good news is that this solid has cross sections that are all similar trian-
gles, so the meat-slicer method will work. Unfortunately, as the problem cur-
rently stands, you’d have to make your slices perpendicular to the y-axis. But
to use the meat-slicer method, you must make your slices perpendicular to
the x-axis.

x

y

y = x 4

2

y = ± x 4
1

x

yFigure 10-5:
Using

inverses to
get a

problem
ready for

the meat-
slicer

method.
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To solve the problem, you first need to flip the solid over to the x-axis, as
shown on the right side of Figure 10-5. The easiest way to do this is to use the
inverse of the function y = x4. To find the inverse, switch x and y in the equation
and solve for y:

x = y4

x y4
1

! =a k

Note that the resulting equation x y4
1

! =a k in this case isn’t a function of x
because a single x-value can produce more than one y-value. However, you
can use this equation in conjunction with the meat-slicer method to find the
volume that you’re looking for.

1. Find an expression that represents the area of a random cross section
of the solid.

The cross section is an isosceles triangle with a height of 3 and a base of 
x2 4

1
, so use the formula for the area of a triangle:

bh x x2
1

2
1 2 3 3A 4

1
4
1

= = =a ^k h

2. Use this expression to build a definite integral that represents the
volume of the solid.

x dx3V 4
1

0

2

= #

3. Solve the integral.

x 2=x3 5
4

4
5

x 0=
c m

x 2=x5
12

4
5

x 0=

Now, evaluate this expression:

5
12 2 04

5
= -

5
12 32 4

1
=

≈ 5.7082

Two Revolutionary Problems
Calculus professors are always on the lookout for new ways to torture their
students. Okay, that’s a slight exaggeration. Still, sometimes it’s hard to
fathom exactly why a problem without much practical use makes the
Calculus Hall of Fame.
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In this section, I show you how to tackle two problems of dubious practical
value (unless you consider the practicality passing Calculus II!). First, I show
you how to find the volume of a solid of revolution: a solid created by spin-
ning a function around an axis. The meat-slicer method, which I discuss in
the previous section, also applies to problems of this kind.

Next, I show you how to find the area of a surface of revolution: a surface cre-
ated by spinning a function around an axis. Fortunately, a formula exists for
finding or solving this type of problem.

Solidifying your understanding 
of solids of revolution
A solid of revolution is created by taking a function, or part of a function, and
spinning it around an axis — in most cases, either the x-axis or the y-axis.

For example, the left side of Figure 10-6 shows the function y = 2 sin x
between x = 0 and x = π

2 . 

Every solid of revolution has circular cross sections perpendicular to the axis
of revolution. When the axis of revolution is the x-axis (or any other line
that’s parallel with the x-axis), you can use the meat-slicer method directly,
as I show you earlier in this chapter.

x

y

π
2

y = 2 sin x

Figure 10-6:
A solid of

revolution of
y = sin x

around the
x-axis.
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However, when the axis of revolution is the y-axis (or any other line that’s
parallel with the y-axis), you need to modify the problem as I show you in the
earlier section “Turning a Problem on Its Side.”

To find the volume of this solid of revolution, use the meat-slicer method:

1. Find an expression that represents the area of a random cross section
of the solid (in terms of x).

This cross section is a circle with a radius of 2 sin x:

sin sinr x xπ π π2 4A 2 2 2= = =^ h

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the solid.

This time, the limits of integration are from 0 to π
2 :

sin x dxπ4V

π

2

0

2

= #

sin x dxπ4

π

2

0

2

= #

3. Evaluate this integral by using the half-angle formula for sines, as I
show you in Chapter 7:

cos x
dxπ4 2

1 2
π

0

2

=
-

#
^ h

cosdx x dxπ2 1 2

π π

0

2

0

2

= -# #
J

L

K
K
K

N

P

O
O
O

x x= =

sinx xπ2 2
1 2

π π
2 2= -

x x0 0= =
d n

Now, evaluate:

= sinπ π π2 2 0 2
1 0- - -c cm m= G

= π π2 2c m

= π2

≈ 9.8696

So the volume of this solid of revolution is approximately 9.8696 cubic units.

Later in this chapter, I give you more practice measuring the volume of solids
of revolution.
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Skimming the surface of revolution
The nice thing about finding the area of a surface of revolution is that there’s
a formula you can use. Memorize it and you’re halfway done.

To find the area of a surface of revolution between a and b, use the following
formula:

r dx
dy

dxπ2 1A
a

b 2

= +# d n

This formula looks long and complicated, but it makes more sense when you
spend a minute thinking about it. The integral is made from two pieces:

� The arc-length formula, which measures the length along the surface
(see Chapter 9)

� The formula for the circumference of a circle, which measures the length
around the surface

So multiplying these two pieces together is similar to multiplying length and
width to find the area of a rectangle. In effect, the formula allows you to mea-
sure surface area as an infinite number of little rectangles.

When you’re measuring the surface of revolution of a function f(x) around the
x-axis, substitute r = f(x) into the formula I gave you:

f x f x dxπ2 1A
a

b
2

= +# l^ ^h h8 B

For example, suppose that you want to find the surface of revolution that’s
shown in Figure 10-7.

x1

y

y = x3

Figure 10-7:
Measuring
the surface

of revolution
of y = x3

between 
x = 0 and 

x = 1.
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To solve this problem, first note that for f(x) = x3, f'(x) = 3x2. So set up the
problem as follows:

x x dxπ2 1 3A 3 2 2

0

1

= +# _ i

To start off, simplify the problem a bit:

x x dxπ2 1 93 4

0

1

= +#

You can solve this problem by using variable substitution:

Let u = 1 + 9x4

du = 36x3 dx

u duπ36
1 2

1

10

= $ #

Notice that I change the limits of integration: When x = 0, u = 1. And when x = 1,
u = 10.

u duπ18
1

1

10

= #

Now, you can perform the integration:

u 10=uπ18
1

3
2

2
3

= $ u 1=

u 10=uπ27
1

2
3

=
u 1=

Finally, evaluate the definite integral:

π π27
1 10 27

1 12
3

2
3

= -

π π27
1 10 10 27

1= -

≈ 3.5631

Finding the Space Between
In Chapter 9, I show you how to find the area between two curves by subtract-
ing one integral from another. This same principle applies in three dimensions
to find the volume of a solid that falls between two different surfaces.
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The meat-slicer method, which I describe earlier in this chapter, is useful for
many problems of this kind. The trick is to find a way to describe the donut-
shaped area of a cross section as the difference between two integrals: one
integral that describes the whole shape minus another that describes the hole.

For example, suppose that you want to find the volume of the solid shown in
Figure 10-8.

This solid looks something like a bowl turned on its side. The outer edge is
the solid of revolution around the x-axis for the function x . The inner edge
is the solid of revolution around the x-axis for the function x 3

1
. 

1. Find an expression that represents the area of a random cross section
of the solid.

That is, find the area of a circle with a radius of x and subtract the area
of a circle with a radius of x 3

1
:

x x x xπ π πA
2

3
1 2

3
2

= - = -` a aj k k

2. Use this expression to build a definite integral that represents the
volume of the solid.

The limits of integration this time are 0 and 4:

x x dxπV 3
2

0

4

= -# a k

x

x = 4

y

y = x 3

y = √x
1

Figure 10-8:
A vase-

shaped solid
between

two
surfaces of
revolution.
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3. Solve the integral:

x x dxπ 3
2

0

4

= -# a k

x dx x dxπ 3
2

0

4

0

4

= - ##
J

L

K
K

N

P

O
O

x x4 4= =x xπ 2
1

5
32

3
5

= -x x0 0= =
c m

Now, evaluate this expression:

= π 2
1 4 0 5

3 4 02
3
5

- - -c cm m= G

= ,π 8 5
3 1 024 3

1
-c m

≈ 6.1336

Here’s a problem that brings together everything you’ve worked with from
the meat-slicer method: Find the volume of the solid shown in Figure 10-9.
This solid falls between the surface of revolution y = ln x and the surface of
revolution y = x 4

3
, bounded below by y = 0 and above by y = 1.

The cross section of this solid is shown in the right side of Figure 10-9:
a circle with a hole in the middle.

x

Cross section:
y = ln x

y

y = x 4
3

Figure 10-9:
Another

solid formed
between

two
surfaces of
revolution.
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Notice, however, that this cross section is perpendicular to the y-axis. To use
the meat-slicer method, the cross section must be perpendicular to the x-axis.
Modify the problem using inverses, as I show you in “Turning a Problem on
Its Side”:

x = ln y x = y 4
3

ex = y x 3
4
= y

The resulting problem is shown in Figure 10-10.

Now, you can use the meat-slicer method to solve the problem:

1. Find an expression that represents the area of a random cross section
of the solid.

That is, find the area of a circle with a radius of ex and subtract the area
of a circle with a radius of x 3

4
. This is just geometry, but I take it slowly so

that you can see all the steps. Remember that the area of a circle is πr2:

A = Area of outer circle – Area of inner circle

= π (ex)2 – xπ 3
4 2

a k

= π e2x – πx 3
8

x

Cross section:

y = ex
y

y = x 3
4

Radius of outer circle = ex

Radius of inner circle = x 3
4

Figure 10-10:
Use

inverses to
rotate the

problem
from

Figure 10-9
so that you

can use the
meat-slicer

method.
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2. Use this expression to build a definite integral that represents the
volume of the solid.

The limits of integration are 0 and 1:

x dxπ πV e x2
3
8

0

1

= -# a k

3. Evaluate the integral:

dx x dxπ πe x2
3
8

0

1

0

1

= - ##

xπ π
2 11

3e x
x

x

x

x2
0

1
3
11

0

1= -
=

=

=

=

π π π π
2 2 11

3 1 11
3 0e e2 0 3

11
3
11

= - - -c ^ ^cm h h m

π π π
2 2 11

3e2= - -

≈ 2.9218

So the volume of this solid is approximately 2.9218 cubic units.

Playing the Shell Game
The shell method is an alternative to the meat-slicer method, which I discuss
earlier in this chapter. It allows you to measure the volume of a solid by mea-
suring the volume of many concentric surfaces of the volume, called “shells.”

Although the shell method works only for solids with circular cross sections,
it’s ideal for solids of revolution around the y-axis, because you don’t have to
use inverses of functions, as I show you in “Turning a Problem on Its Side.”
Here’s how it works:

1. Find an expression that represents the area of a random shell of the
solid in terms of x.

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the solid.

3. Evaluate this integral.

As you can see, this method resembles the meat-slicer method. The main dif-
ference is that you’re measuring the area of shells instead of cross sections.
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Peeling and measuring a can of soup
You can use a can of soup — or any other can that has a paper label on it —
as a handy visual aid to give you insight into how the shell method works. To
start out, go to the pantry and get a can of soup.

Suppose that your can of soup is industrial size, with a radius of 3 inches and
a height of 8 inches. You can use the formula for a cylinder to figure out its
volume as follows:

V = Ab · h = 32π · 8 = 72π

Another option is the meat-slicer method, as I show you earlier in this chap-
ter. A third option, which I focus on here, is the shell method.

To understand the shell method, slice the can’s paper label vertically, and
carefully remove it from the can, as shown in Figure 10-11. (While you’re at it,
take a moment to read the label so that you’re not left with “mystery soup.”)

SOUP

SOUP

x = 3 in

h = 8

8 in

6π in

Figure 10-11:
Removing

the label
from a can

of soup can
help you

understand
the shell
method.
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Notice that the label is simply a rectangle. Its shorter side is equal in length
to the height of the can (8 inches) and its longer side is equal to the circum-
ference (2π · 3 inches = 6π inches). So the area of this rectangle is 48 square
inches.

Now here’s the crucial step: Imagine that the entire can is made up of infi-
nitely many labels wrapped concentrically around each other, all the way to
its core. The area of each of these rectangles is:

A = 2π x · 8 = 16π x

The variable x in this case is any possible radius, from 0 (the radius of the
circle at the very center of the can) to 3 (the radius of the circle at the outer
edge). Here’s how you use the shell method, step by step, to find the volume
of the can:

1. Find an expression that represents the area of a random shell of the
can (in terms of x):

A = 2π x · 8 = 16π x

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the can.

Remember that with the shell method, you’re adding up all the shells
from the center (where the radius is 0) to the outer edge (where the
radius is 3). So use these numbers as the limits of integration:

x dxπ16V
0

3

= #

3. Evaluate this integral:

x 3=xπ16 2
1 2= $ x 0=

x 3=xπ8 2= x 0=

Now, evaluate this expression:

= 8π (3)2 – 0 = 72π

The shell method verifies that the volume of the can is 72π cubic inches.

Using the shell method
One advantage of the shell method over the meat-slicer method comes into
play when you’re measuring a volume of revolution around the y-axis.
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Earlier in this chapter I tell you that the meat-slicer method works best when a
solid is on its side — that is, when you can slice it perpendicular to the x-axis.
But when the similar cross sections of a solid are perpendicular to the y-axis,
you need to use inverses to realign the problem before you can start slicing.
(See the earlier section “Turning a Problem on Its Side” for more details.)

This realignment step isn’t necessary for the shell method. This makes the
shell method ideal for measuring solids of revolution around the y-axis.
For example, suppose that you want to measure the volume of the solid
shown in Figure 10-12.

Here’s how the shell method can give you a solution without using inverses:

1. Find an expression that represents the area of a random shell of the
solid (in terms of x).

Remember that each shell is a rectangle with two different sides: One
side is the height of the function at x — that is, cos x. The other is the
circumference of the solid at x — that is, 2πx. So, to find the area of a
shell, multiply these two numbers together:

A = 2πx cos x

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the solid.

In this case, remember that you’re adding up all the shells from the 

center (at x = 0) to the outer edge (at x = π
2 ).

cosx x dxπ2V

π

0

2

= #

cosx x dxπ2

π

0

2

= #

y = cos x

x

y

2
π

Figure 10-12:
Using the

shell
method to

find the
volume of a

solid of
revolution.
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3. Evaluate the integral.

This integral is pretty easy to solve using integration by parts:

x =sin cosx x x
π
2+

x 0=

Now, evaluate this expression:

= sin cos sin cosπ π π
2 2 2 0 0 0+ - +c ^m h

= π
2 0 0 1+ - +c ^m h

= π
2 1-

≈ 0.5708

So the volume of the solid is approximately 0.5708 cubic units.

Knowing When and How 
to Solve 3-D Problems

Because students are so often confused when it comes to solving 3-D calculus
problems, here’s a final perspective on all the methods in this chapter, and
how to choose among them.

First, remember that every problem in this chapter falls into one of these two
categories:

� Finding the area of a surface of revolution

� Finding a volume of a solid

In the first case, use the formula I provide earlier in this chapter, in
“Skimming the surface of revolution.”

In the second case, remember that the key to measuring the volume of any
solid is to slice it up in the direction where it has similar cross sections whose
area can be measured easily — for example, a circle, a square, or a triangle.
So, your first question is whether these similar cross sections are arranged
horizontally or vertically.

� Horizontally means that the solid is already in position for the meat-
slicer method. (If it’s helpful, imagine slicing a salami in a meat-slicer.
The salami must be aligned lying on its side — that is, horizontally —
before you can begin slicing.)

� Vertically means that the solid is standing upright so that the slices are
stacked on top of each other.
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When the cross sections are arranged horizontally, the meat-slicer method is
the easiest way to handle the problem (see “Slicing Your Way to Success” ear-
lier in this chapter).

When the cross sections are arranged vertically, however, your next question
is whether these cross sections are circles:

� If the cross sections are not circles, you must use inverses to flip the
solid in the horizontal direction (as I discuss in “Turning a Problem on
Its Side”).

� If they are circles, you can either use inverses to flip the solid in the hor-
izontal direction (as I discuss in “Turning a Problem on Its Side”) or use
the shell method (as I discuss in “Playing the Shell Game”).
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In this part . . .

I introduce the infinite series — that is, the sum of an
infinite number of terms. I show you the basics of work-

ing with sequences and series, and show you a bunch
of ways to determine whether a series is convergent or
divergent. You also discover how to use the Taylor series
for expressing and evaluating a wide variety of functions.
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Chapter 11

Following a Sequence,
Winning the Series

In This Chapter
� Knowing a variety of notations for sequences

� Telling whether a sequence is convergent or divergent

� Expressing series in both sigma notation and expanded notation

� Testing a series for convergence or divergence

J ust when you think the semester is winding down, your Calculus II profes-
sor introduces a new topic: infinite series.

When you get right down to it, series aren’t really all that difficult. After all,
a series is just a bunch of numbers added together. Sure, it happens that this
bunch is infinite, but addition is just about the easiest math on the planet.

But then again, the last month of the semester is crunch time. You’re already
anticipating final exams and looking forward to a break from studying. By the
time you discover that the prof isn’t fooling and really does expect you to
know this material, infinite series can lead you down an infinite spiral of
despair: Why this? Why now? Why me?

In this chapter, I show you the basics of series. First, you wade into these
new waters slowly by examining infinite sequences. When you understand
sequences, series make a whole lot more sense. Next, I introduce you to infi-
nite series. I discuss how to express a series in both expanded notation and
sigma notation, and then I make sure that you’re comfortable with sigma
notation. I also show you how every series is related to two sequences.

Next, I introduce you to the all-important topic of convergence and diver-
gence. This concept looms large, so I give you the basics in this chapter and
save the more complex information for Chapter 12. Finally, I introduce you to
a few important types of series.
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Introducing Infinite Sequences
A sequence of numbers is simply a bunch of numbers in a particular order.
For example:

1, 4, 9, 16, 25, ...

π, 2π, 3π, 4π, ...

, , , ,2
1

3
1

4
1

5
1 ...

2, 3, 5, 7, 11, 13, ...

2, –2, 2, –2, ...

0, 1, –1, 2 –2, 3, ...

When a sequence goes on forever, it’s an infinite sequence. Calculus — which
focuses on all things infinite — concerns itself predominantly with infinite
sequences.

Each number in a sequence is called a term of that sequence. So, in the
sequence 1, 4, 9, 16, ... , the first term is 1, the second term is 4, and so forth.

Understanding sequences is an important first step toward understanding
series.

Understanding notations for sequences
The simplest notation for defining a sequence is a variable with the subscript
n surrounded by braces. For example:

{an} = {1, 4, 9, 16, ...}

{bn} = {1, , , ,2
1

3
1

4
1 ...}

{cn} = {4π, 6π, 8π, 10π, ...}

You can reference a specific term in the sequence by using the subscript:

a1 = 1 b3 = 3
1 c6 = 14π

Make sure that you understand the difference between notation with and
without braces:

� The notation {an} with braces refers to the entire sequence.

� The notation an without braces refers to the nth term of the sequence.
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When defining a sequence, instead of listing the first few terms, you can state
a rule based on n. (This is similar to how a function is typically defined.) For
example:

{an}, where an = n2

{bn}, where bn = n
1

{cn}, where cn = 2(n + 1)π

Sometimes, for increased clarity, the notation includes the first few terms
plus a rule for finding the nth term of the sequence. For example:

{an} = {1, 4, 9, ... , n2, ...}

{bn} = {1, 2
1 , 3

1 , ... , n
1 , ...}

{cn} = {4π, 6π, 8π, ... , 2(n + 1)π, ...}

This notation can be made more concise by appending starting and ending
values for n:

a nn n

2

1
=

3

=
# #- -

b n
1

n
n 1

=
3

=

# '- 1

c nπ2n n 2
=

3

=
# "- ,

This last example points out the fact that the initial value of n doesn’t have
to be 1, which gives you greater flexibility to define a number series by using
a rule.

Don’t let the fancy notation for number sequences get to you. When you’re
faced with a new sequence that’s defined by a rule, jot down the first four or
five numbers in that sequence. Usually, after you see the pattern, you’ll find
that a problem is much easier.

Looking at converging and
diverging sequences
Every infinite sequence is either convergent or divergent:

� A convergent sequence has a limit — that is, it approaches a real
number.

� A divergent sequence doesn’t have a limit.
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For example, here’s a convergent sequence:

{an} = {1, 2
1 , 3

1 , 4
1 , 5

1 , ...}

This sequence approaches 0, so:

lim a 0n =# -

Thus, this sequence converges to 0.

Here’s another convergent sequence:

{bn} = {7, 9, 7 2
1 , 8 2

1 , 7 4
3 , 8 4

1 , ...}

This time, the sequence approaches 8 from above and below, so:

lim b 8n =# -

In many cases, however, a sequence diverges — that is, it fails to approach any
real number. Divergence can happen in two ways. The most obvious type of
divergence occurs when a sequence explodes to infinity or negative infinity —
that is, it gets farther and farther away from 0 with every term. Here are a few
examples:

–1, –2, –3, –4, –5, –6, –7, ...

ln 1, ln 2, ln 3, ln 4, ln 5, ...

2, 3, 5, 7, 11, 13, 17, ...

In each of these cases, the sequence approaches either ∞ or –∞, so the limit
of the sequence does not exist (DNE). Therefore, the sequence is divergent.

A second type of divergence occurs when a sequence oscillates between two
or more values. For example:

0, 7, 0, 7, 0, 7, 0, 7, ...

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, ...

In these cases, the sequence bounces around indefinitely, never settling in
on a value. Again, the limit of the sequence does not exist, so the sequence is
divergent.
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Introducing Infinite Series
In contrast to an infinite sequence (which is an endless list of numbers), an
infinite series is an endless sum of numbers. You can change any infinite
sequence to an infinite series simply by changing the commas to plus signs.
For example:

1, 2, 3, 4, ... 1 + 2 + 3 + 4 + ...

1, 2
1 , 3

1 , 4
1 , ... 1 + 2

1 + 3
1 + 4

1 + ...

1, –1, 2
1 , 2

1- , 4
1 , 4

1- , ... 1 + –1 + 2
1 + 2

1- + 4
1 + 4

1- + ...

The two principal notations for series are sigma notation and expanded nota-
tion. Sigma notation provides an explicit rule for generating the series (see
Chapter 2 for the basics of sigma notation). Expanded notation gives enough
of the first few terms of a series so that the pattern generating the series
becomes clear.

For example, here are three series defined using both forms of notation:

. . .n2 2 4 6 8
n 1

= + + + +
3

=

!

. . .4
1 1 4

1
16
1

64
1

n
n 0

= + + + +
3

=

!

. . .n 3 4 5
e e e en

n
3 4 5

3
= + + +

3

=

!

As you can see, a series can start at any integer.

As with sequences (see “Introducing Infinite Sequences” earlier in this 
chapter), every series is either convergent or divergent:

� A convergent series evaluates to a real number.

� A divergent series doesn’t evaluate to a real number.

To get clear on how evaluation of a series connects with convergence and
divergence, I give you a few examples. To start out, consider this convergent
series:

. . .2
1 1 2

1
4
1

8
1

n

n 0
= + + + +

3

=

! c m
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Notice that as you add this series from left to right, term by term, the running
total is a sequence that approaches 2:

1, 2
3 , 4

7 , 8
15 , ...

This sequence is called the sequence of partial sums for this series. I discuss
sequences of partial sums in greater detail later in “Connecting a Series with
Its Two Related Sequences.”

For now, please remember that the value of a series equals the limit of its
sequence of partial sums. In this case, because the limit of the sequence is 2,
you can evaluate the series as follows:

2
1 2

n

n 0
=

3

=

! c m

Thus, this series converges to 2.

Often, however, a series diverges — that is, it doesn’t equal any real number. As
with sequences, divergence can happen in two ways. The most obvious type of
divergence occurs when a series explodes to infinity or negative infinity. For
example:

. . .n 1 2 3 4
n 1

- = - + - + - + - +
3

=

!

This time, watch what happens as you add the series term by term:

–1, –3, –6, –10, ...

Clearly, this sequence of partial sums diverges to negative infinity, so the
series is divergent as well.

A second type of divergence occurs when a series alternates between posi-
tive and negative values in such a way that the series never approaches a
value. For example:

. . .1 1 1 1 1
n

n 0
- = + - + + - +

3

=

!^ h

So, here’s the related sequence of partial sums:

1, 0, 1, 0, ...

In this case, the sequence of partial sums alternates forever between 1 and 0,
so it’s divergent; therefore, the series is also divergent. This type of series is
called, not surprisingly, an alternating series. I discuss alternating series in
greater depth in Chapter 12.
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Convergence and divergence are arguably the most important topics in your
final weeks of Calculus II. Many of your exam questions will ask you to deter-
mine whether a given series is convergent or divergent.

Later in this chapter, I show you how to decide whether certain important
types of series are convergent or divergent. Chapter 12 gives you a ton of
handy tools for answering this question more generally. For now, just keep
this important idea of convergence and divergence in mind.

Getting Comfy with Sigma Notation
Sigma notation is a compact and handy way to represent series.

Okay — that’s the official version of the story. What’s also true is that sigma
notation can be unclear and intimidating — especially when the professor
starts scrawling it all over the blackboard at warp speed while explaining
some complex proof. Lots of students get left in the chalk dust (or dry-erase
marker fumes).

At the same time, sigma notation is useful and important because it provides
a concise way to express series and mathematically manipulate them.

In this section, I give you a bunch of handy tips for working with sigma nota-
tion. Some of the uses for these tips become clearer as you continue to study
series later in this chapter and in Chapters 12 and 13. For now, just add these
tools to your toolbox and use them as needed.

Writing sigma notation in expanded form
When you’re working with an unfamiliar series, begin by writing it out using
both sigma and expanded notation. This practice is virtually guaranteed to
increase your understanding of the series. For example:

n3
2n

n 1

3

=

!

As it stands, you may not have much insight into what this series looks like,
so expand it out:

. . .n3
2

3
2

6
4

9
8

12
16

16
32n

n 1
= + + + + +

3

=

!

249Chapter 11: Following a Sequence, Winning the Series

18_225226-ch11.qxd  5/1/08  11:54 PM  Page 249



As you spend a bit of time generating this series, it begins to grow less fright-
ening. For one thing, you may notice that in a race between the numerator
and denominator, eventually the numerator catches up and pulls ahead.
Because the terms eventually grow greater than 1, the series explodes to
infinity, so it diverges.

Seeing more than one way 
to use sigma notation
Virtually any series expressed in sigma notation can be rewritten in a slightly
altered form. For example:

8
1

16
1

32
1

64
1 f+ + + +

You can express this series in sigma notation as follows:

. . .2
1

8
1

16
1

32
1

64
1

n

n 3
= + + + +

3

=

! c m

Alternatively, you can express the same series in any of the following ways:

= 2
1

n

n

1

2

3 +

=

! c m

= 2
1

n

n

2

1

3 +

=

!c m

= 2
1

n

n

3

0

3 +

=

! c m

Depending on the problem that you’re trying to solve, you may find one of
these expressions more advantageous than the others — for example, when
using the comparison tests that I introduce in Chapter 12. For now, just be
sure to keep in mind the flexibility at your disposal when expressing a series
in sigma notation.

Discovering the Constant Multiple
Rule for series
In Chapter 4, you discover that the Constant Multiple Rule for Integration
allows you to simplify an integral by factoring out a constant. This option is
also available when you’re working with series. Here’s the rule:

Σ can = c Σ an
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For example:

n n
7 7 1

nn
2 2

11
=

33

==

!!

To see why this rule works, first expand the series so that you can see what
you’re working with:

. . .
n
7 7 4

7
9
7

16
7

n
2

1
= + + + +

3

=

!

Working with the expanded form, you can factor out a 7 from each term:

= 7 1 4
1

9
1

16
1 f+ + + +c m

Now, express the contents of the parentheses in sigma notation:

n
7 1

n
2

1
=

3

=

!

As if by magic, this procedure demonstrates that the two sigma expressions
are equal. But, this magic is really nothing more exotic than your old friend
from grade school, the distributive property.

Examining the Sum Rule for series
Here’s another handy tool for your growing toolbox of sigma tricks. This rule
mirrors the Sum Rule for Integration (see Chapter 4), which allows you to
split a sum inside an integral into the sum of two separate integrals. Similarly,
you can break a sum inside a series into the sum of two separate series:

Σ (an + bn) = Σ an + Σ bn

For example:

n
2

1
n

n 1
= +

3

=

!

A little algebra allows you to split this fraction into two terms:

n
2 2

1
n n

n 1
= +

3

=

!c m

Now, the rule allows you to split this result into two series:

n
2 2

1
n

n
n

n1 1
= +

3 3

= =

! !
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This sum of two series is equivalent to the series that you started with. As
with the Sum Rule for Integration, expressing a series as a sum of two simpler
series tends to make problem-solving easier. Generally speaking, as you pro-
ceed onward with series, any trick you can find to simplify a difficult series is
a good thing.

Connecting a Series with Its
Two Related Sequences

Every series has two related sequences. The distinction between a sequence
and a series is as follows:

� A sequence is a list of numbers separated by commas (for example: 
1, 2, 3, ...).

� A series is a sum of numbers separated by plus signs (for example: 
1 + 2 + 3 + ...).

When you see how a series and its two related sequences are distinct but
also related, you gain a clearer understanding of how series work.

A series and its defining sequence
The first sequence related to a series is simply the sequence that defines the
series in the first place. For example, here are three series written in both
sigma notation and expanded notation, each paired with its defining sequence:

. . .2
1 1 2

1
4
1

8
1

n

n 1
= + + + +

3

=

!c m , , , , . . .1 2
1

4
1

8
1

.. .n
n

1 2
1

3
2

4
3

5
4

n 1 +
= + + + +

3

=

! , , , , . . .2
1

3
2

4
3

5
4

.. .n
1 1 2

1
3
1

4
1

n 1
= + + + +

3

=

! , , , , . . .1 2
1

3
1

4
1

When a sequence {an} is already defined, you can use the notation Σ an to refer 

to the related series starting at n = 1. For example, when {an} = 
n
1

2 , Σ an = 1 + 4
1 + 

9
1 + 16

1 + ....
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Understanding the distinction between a series and the sequence that defines
it is important for two reasons. First, and most basic, you don’t want to get the
concepts of sequences and series confused. But second, the sequence that
defines a series can provide important information about the series. See
Chapter 12 to find out about the nth term test, which provides a connection
between a series and its defining sequence.

A series and its sequences of partial sums
You can learn a lot about a series by finding the partial sums of its first few
terms. For example, here’s a series that you’ve seen before:

. . .2
1

2
1

4
1

8
1

16
1

n

n 1
= + + + +

3

=

!c m

And here are the first four partial sums of this series:

2
1

2
1

n

n 1

1

=
=

!c m

2
1

2
1

4
1

4
3

n

n 1

2

= + =
=

!c m

2
1

2
1

4
1

8
1

8
7

n

n 1

3

= + + =
=

!c m

2
1

2
1

4
1

8
1

16
1

16
15

n

n 1

4

= + + + =
=

!c m

You can turn the partial sums for this series into a sequence as follows:

{Sn} = , , , , , ,2
1

4
3

8
7

16
15

2 1
2
n

n

f f
-

' 1

In general, every series Σ an has a related sequence of partial sums {Sn}. For
example, here are a few such pairings:

. . .2
1

2
1

4
1

8
1

16
1

n

n 1
= + + + +

3

=

!c m , , , , . . .2
1

4
3

8
7

16
15

.. .n
n

1 2
1

3
2

4
3

5
4

n 1 +
= + + + +

3

=

! , , , , . . .2
1

6
7

12
23

60
163

,. . .n
1 1 2

1
3
1

4
1

n 1
= + + +

3

=

! , , , , . . .1 2
3

6
11

12
25
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Every series and its related sequence of partial sums are either both conver-
gent or both divergent. Moreover, if they’re both convergent, both converge to
the same number.

This rule should come as no big surprise. After all, a sequence of partial sums
simply gives you a running total of where a series is going. Still, this rule can
be helpful. For example, suppose that you want to know whether the follow-
ing sequence is convergent or divergent:

1, , , , ,2
3

6
11

12
25

60
137 f

What the heck is this sequence, anyway? Upon deeper examination, however,
you discover that it’s the sequence of partial sums for every simple series:

1

1 2
1

2
3+ =

1 2
1

3
1

6
11+ + =

1 2
1

3
1

4
1

12
25+ + + =

1 2
1

3
1

4
1

5
1

60
137+ + + + =

This series, called the harmonic series, is divergent, so you can conclude that
its sequence of partial sums also diverges.

Recognizing Geometric 
Series and P-Series

At first glance, many series look strange and unfamiliar. But a few big cate-
gories of series belong in the Hall of Fame. When you know how to identify
these types of series, you have a big head start on discovering whether they’re
convergent or divergent. In some cases, you can also find out the exact value of
a convergent series without spending all eternity adding numbers.

In this section, I show you how to recognize and work with two common
types of series: geometric series and p-series.
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Getting geometric series
A geometric series is any series of the following form:

. . .ar a ar ar arn

n 0

2 3= + + + +
3

=

!

Here are a few examples of geometric series:

. . .2 1 2 4 8 16n

n 0
= + + + + +

3

=

!

, . . .10
1 1 10

1
100

1
1 000

1
n

n 0
= + + + +

3

=

!

, , , . . .100
3 3 100

3
10 000

3
1 000 000

3
n

n 0
= + + + +

3

=

!

In the first series, a = 1 and r = 2. In the second, a = 1 and r = 10
1 . And in the 

third, a = 3 and r = 100
1 .

If you’re unsure whether a series is geometric, you can test it as follows:

1. Let a equal the first term of the series.

2. Let r equal the second term divided by the first term.

3. Check to see whether the series fits the form a + ar2 + ar3 + ar4 + ....

For example, suppose that you want to find out whether the following series
is geometric:

5
8

5
6

10
9

40
27

160
81

640
243 f+ + + + + +

Use the procedure I outline as follows:

1. Let a equal the first term of the series:

a = 5
8

2. Let r equal the second term divided by the first term:

r = 5
6 ÷ 5

8 = 4
3
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3. Check to see whether the series fits the form a + ar2 + ar3 + ar4 + ... :

a 5
8=

ar 5
8

4
3

5
6= =c m

ar 5
6

4
3

10
92

2

= =c m

ar 10
9

4
3

40
273

3

= =c m

As you can see, this series is geometric. To find the limit of a geometric series
a + ar + ar2 + ar3 + ..., use the following formula:

ar r
a

1
n

n 0
=

-

3

=

!

So, the limit of the series in the previous example is:

5
8

4
3

1 4
3

5
8

5
8

4
1

5
32

n

n 0
=

-
= =

3

=
$! c m

When the limit of a series exists, as in this example, the series is called 
convergent. So, you say that this series converges to 5

32 .

In some cases, however, the limit of a geometric series does not exist (DNE).
In that case, the series is divergent. Here’s the complete rule that tells you
whether a series is convergent or divergent:

For any geometric series a + ar + ar2 + ar3 + ..., if r falls in the open set (–1, 1), 
the series converges to r

a
1 -

; otherwise, the series diverges.

An example makes clear why this is so. Look at the following geometric series:

1 4
5

16
25

64
125

256
625 f+ + + + +

In this case, a = 1 and r = 4
5 . Because r > 1, each term in the series is greater 

than the term that precedes it, so the series grows at an ever-accelerating rate.

This series illustrates a simple but important rule of thumb for deciding
whether a series is convergent or divergent: A series can be convergent only
when its related sequence converges to zero. I discuss this important idea
(called the nth-term test) further in Chapter 12.

Similarly, look at this example:

1 4
5

16
25

64
125

256
625 f+ - + + - + +

256 Part IV: Infinite Series 

18_225226-ch11.qxd  5/2/08  12:19 AM  Page 256



This time, a = 1 and r = 4
5- . Because r < –1, the odd terms grow increasingly 

positive and the even terms grow increasingly negative. So the related
sequence of partial sums alternates wildly from the positive to the negative,
with each term further from zero than the preceding term.

A series in which alternating terms are positive and negative is called an alter-
nating series. I discuss alternating series in greater detail in Chapter 12.

Generally speaking, the geometric series is the only type of series that has a
simple formula to calculate its value. So, when a problem asks for the value of
a series, try to put it in the form of a geometric series.

For example, suppose that you’re asked to calculate the value of this series:

7
5

21
10

63
20

189
40 f+ + + +

The fact that you’re being asked to calculate the value of the series should tip
you off that it’s geometric. Use the procedure I outline earlier to find a and r :

a = 7
5

r = 21
10

7
5

3
2

' =

So here’s how to express the series in sigma notation as a geometric series in
terms of a and r :

. . .7
5

3
2

7
5

21
10

63
20

189
40

n

n 1
= + + + +

3

=

! c m

At this point, you can use the formula for calculating the value of this series:

r
a

1 1 3
2

7
5

7
5

3
1

7
15=

-
=

-
= =$

c m

Pinpointing p-series
Another important type of series is called the p-series. A p-series is any series
in the following form:

. . .n
1 1 2

1
3
1

4
1

p
n

p p p
1

= + + + +
3

=

!

Here’s a common example of a p-series, when p = 2:

. . .
n
1 1 4

1
9
1

16
1

n
2

1
= + + + +

3

=

!
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Here are a few other examples of p-series:

, . . .
n
1 1 32

1
243
1

1 024
1

n
5

1
= + + + +

3

=

!

. . .
n
1 1

2
1

3
1

2
1

5
1

n 2
1

1
= + + + + +

3

=

!

. . .
n
1 1 2 3 4

n
1

1
= + + + +

3

-
=

!

Don’t confuse p-series with geometric series (which I introduce in the previ-
ous section). Here’s the difference:

� A geometric series has the variable n in the exponent — for example, 

Σ 2
1

n

c m .

� A p-series has the variable in the base — for example Σ
n
1

2 .

As with geometric series, a simple rule exists for determining whether a 
p-series is convergent or divergent.

A p-series converges when p > 1 and diverges when p ≤ 1.

I give you a proof of this theorem in Chapter 12. In this section, I show you
why a few important examples of p-series are either convergent or divergent.

Harmonizing with the harmonic series
When p = 1, the p-series takes the following form:

. . .n
1 1 2

1
3
1

4
1

n 1
= + + + +

3

=

!

This p-series is important enough to have its own name: the harmonic series.
The harmonic series is divergent.

Testing p-series when p = 2, p = 3, and p = 4
Here are the p-series when p equals the first few counting numbers greater
than 1:

. . .
n
1 1 4

1
9
1

16
1

n
2

1
= + + + +

3

=

!

. . .
n
1 1 8

1
27
1

64
1

n
3

1
= + + + +

3

=

!

. . .
n
1 1 16

1
81
1

256
1

n
4

1
= + + + +

3

=

!

Because p > 1, these series are all convergent.
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Testing p-series when p = 2
1

When p = 2
1 , the p-series looks like this:

. . .
n
1 1

2
1

3
1

2
1

5
1

n 2
1

1
= + + + + +

3

=

!

Because p ≤ 1, this series diverges. To see why it diverges, notice that when 
n is a square number, the nth term equals n

1 . So this p-series includes every 
term in the harmonic series plus many more terms. Because the harmonic
series is divergent, this series is also divergent.
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Chapter 12

Where Is This Going? Testing for
Convergence and Divergence

In This Chapter
� Understanding convergence and divergence

� Using the nth-term test to prove that a series diverges

� Applying the versatile integral test, ratio test, and root test

� Distinguishing absolute convergence and conditional convergence

Testing for convergence and divergence is The Main Event in your
Calculus II study of series. Recall from Chapter 11 that when a series 

converges, it can be evaluated as a real number. However, when a series
diverges, it can’t be evaluated as a real number, because it either explodes
to positive or negative infinity or fails to settle in on a single value.

In Chapter 11, I give you two tests for determining whether specific types of
series (geometric series and p-series) are convergent or divergent. In this chap-
ter, I give you seven more tests that apply to a much wider range of series.

The first of these is the nth-term test, which is sort of a no-brainer. With this
under your belt, I move on to two comparison tests: the direct comparison
test and the limit comparison test. These tests are what I call one-way tests;
they provide an answer only if the series passes the test but not if the series
fails it. Next, I introduce three two-way tests, which provide one answer if the
series passes the test and the opposite answer if the series fails it. These
tests are the integral test, the ratio test, and the root test.

Finally, I introduce you to alternating series, in which terms are alternately
positive and negative. I contrast alternating series with positive series, which
are the series that you’re already familiar with, and I show you how to turn a
positive series into an alternating series and vice versa. Then I show you how
to prove whether an alternating series is convergent or divergent by using
the alternating series test. To finish up, I introduce you to the important con-
cepts of absolute convergence and conditional convergence.
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Starting at the Beginning
When testing for convergence or divergence, don’t get too hung up on where
the series starts. For example:

n
1

,n 1 001

3

=

!

This is just a harmonic series with the first 1,000 terms lopped off:

, , ,1 001
1

1 002
1

1 003
1 f= + + +

These fractions may look tiny, but the harmonic series diverges (see Chapter
11), and removing a finite number of terms from the beginning of this series
doesn’t change this fact.

The lesson here is that, when you’re testing for convergence or divergence,
what’s going on at the beginning of the series is irrelevant. Feel free to lop off
the first few billion or so terms of a series if it helps you to prove that the
series is convergent or divergent.

Similarly, in most cases you can add on a few terms to a series without chang-
ing whether it converges or diverges. For example:

n 1
1

,n 1 000 -

3

=

!

You can start this series anywhere from n = 2 to n = 999 without changing the
fact that it diverges (because it’s a harmonic series). Just be careful, because 
if you try to start the series from n = 1, you’re adding the term 0

1 , which is a 
big no-no. However, in most cases you can extend an infinite series without
causing problems or changing the convergence or divergence of the series.

Although eliminating terms from the beginning of a series doesn’t affect
whether the series is convergent or divergent, it does affect the sum of a 
convergent series. For example:

2
1 1 2

1
4
1

8
1

n

f= + + + +c m

Lopping off the first few terms of this series — say, 1, 2
1 , and 4

1 — doesn’t 

change the fact that it’s convergent. But it does change the value that the
series converges to. For example:

. . .2
1

2
1

4
1

8
1 1

n

n 1
= + + + =

3

=

!c m
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Using the nth-Term Test for Divergence
The nth-term test for divergence is the first test that you need to know. It’s
easy and it enables you to identify lots of series as divergent.

If the limit of sequence {an} doesn’t equal 0, then the series Σ an is divergent.

To show you why this test works, I define a sequence that meets the neces-
sary condition — that is, a sequence that doesn’t approach 0:

{an} = , , , , n
n

2
1

3
2

4
3

1f f
+

Notice that the limit of the sequence is 1 rather than 0. So, here’s the related
series:

n
n

1 2
1

3
2

4
3

n 1
f

+
= + + +

3

=

!

Because this series is the sum of an infinite number of terms that are very
close to 1, it naturally produces an infinite sum, so it’s divergent.

The fact that the limit of a sequence {an} equals 0 doesn’t necessarily imply
that the series Σ an is convergent.

For example, the harmonic sequence 1, , ,2
1

3
1 ... approaches 0, but (as I 

demonstrate in Chapter 11) the harmonic series 1 + 2
1 + 3

1 + ... is divergent.

When testing for convergence or divergence, always perform the nth-term
test first. It’s a simple test, and plenty of teachers test for it on exams
because it’s easy to grade but still catches the unwary student. Remember: If
the defining sequence of a series doesn’t approach 0, the series diverges; oth-
erwise, you need to move on to other tests.

Let Me Count the Ways
Tests for convergence or divergence tend to fall into two categories: one-way
tests and two-way tests.

One-way tests
A one-way test allows you to draw a conclusion only when a series passes the
test, but not when it fails. Typically, passing the test means that a given condi-
tion has been met.
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The nth-term test is a perfect example of a one-way test: If a series passes the
test — that is, if the limit of its defining sequence doesn’t equal 0 — the series
is divergent. But if the series fails the test, you can draw no conclusion.

Later in this chapter, you discover two more one-way tests: the direct com-
parison test and the limit comparison test.

Two-way tests
A two-way test allows you to draw one conclusion when a series passes the
test and the opposite conclusion when a series fails the test. As with a one-
way test, passing the test means that a given condition has been met. Failing
the test means that the negation of that condition has been met.

For example, the test for geometric series is a two-way test (see Chapter 11 to
find out more about testing geometric series for convergence and diver-
gence). If a series passes the test — that is, if r falls in the open set (–1, 1) —
then the series is convergent. And if the series fails the test — that is, if r ≤ –1
or r ≥ 1 — then the series is divergent.

Similarly, the test for p-series is also a two-way test (see Chapter 11 for more
on this test).

Keep in mind that no test — even a two-way test — is guaranteed to give you
an answer. Think of each test as a tool. If you run into trouble trying to cut a
piece of wood with a hammer, it’s not the hammer’s fault: You just chose the
wrong tool for the job.

Similarly, if you can’t find a clever way to demonstrate either the condition or
its negation required by a specific test, you’re out of luck. In that case, you
may need to use a different test that’s better suited to the problem.

Later in this chapter, I show you three more two-way tests: the integral test,
the ratio test, and the root test.

Using Comparison Tests
Comparison tests allow you to use stuff that you know to find out stuff that
you want to know. The stuff that you know is more eloquently called a bench-
mark series — a series whose convergence or divergence you’ve already
proven. The stuff that you want to know is, of course, whether an unfamiliar
series converges or diverges.

264 Part IV: Infinite Series 

19_225226-ch12.qxd  5/2/08  12:34 AM  Page 264



As with the nth-term test, comparison tests are one-way tests: When a series
passes the test, you prove what you’ve set out to prove (that is, either con-
vergence or divergence). But when a series fails the test, the result of a com-
parison test in inconclusive.

In this section, I show you two basic comparison tests: the direct comparison
test and the limit comparison test.

Getting direct answers with 
the direct comparison test
You can use the direct comparison test to prove either convergence or diver-
gence, depending on how you set up the test.

To prove that a series converges:

1. Find a benchmark series that you know converges.

2. Show that each term of the series that you’re testing is less than or
equal to the corresponding term of the benchmark series.

To prove that a series diverges:

1. Find a benchmark series that you know diverges.

2. Show that each term of the series you’re testing is greater than or
equal to the corresponding term of the benchmark series.

For example, suppose that you’re asked to determine whether the following
series converges or diverges:

:
n 1

1
2
1

5
1

10
1

17
1Benchmark series

n
2

1
f

+
= + + + +

3

=

!

It’s hard to tell just by looking at it whether this particular series is conver-
gent or divergent. However, it looks a bit like a p-series with p = 2:

. . .
n
1 1 4

1
9
1

16
1

n
2

1
= + + + +

3

=

!

You know that this p-series converges (see Chapter 11 if you’re not sure
why), so use it as your benchmark series. Now, your task is to show that
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every term in the series that you’re testing is less than the corresponding
term of the benchmark series:

First term: 2
1 < 1

Second term: 5
1 < 4

1

Third term: 10
1 < 9

1

This looks good, but to complete the proof formally, here’s what you want to
show:

nth term: 
n 1

1
2 +

≤
n
1

2

To see that this statement is true, notice that the numerators are the same, 
but the denominator (n2 + 1) is greater than n2. So, the function 

n 1
1

2 +
is less 

than 
n
1

2 , which means that every term in the test series is less than the corre-

sponding term in the convergent benchmark series. Therefore, both series
are convergent.

As another example, suppose that you want to test the following series for
convergence or divergence:

. . .n
3 3 2

3 1 4
3

5
3

n 1
= + + + + +

3

=

!

This time, the series reminds you of the trusty harmonic series, which you
know is divergent:

. . .n
1 1 2

1
3
1

4
1

5
1Benchmark series:

n 1
= + + + + +

3

=

!

Using the harmonic series as your benchmark, compare the two series term
by term:

First term: 3 > 1

Second term: 2
3 > 2

1

Third term: 1 > 3
1

Again, you have reason to be hopeful, but to complete the proof formally, you
want to show the following:

nth term: n
3 ≥ n

1

This time, notice that the denominators are the same, but the numerator 3 is 
greater than the numerator 1. So the function n

3 is greater than n
1 .
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Again, you’ve shown that every term in the test series is greater than the corre-
sponding term in the divergent benchmark series, so both series are divergent.

As a third example, suppose that you’re asked to show whether this series is
convergent or divergent:

. . .
n n1 2

1
6
1

12
1

20
1

30
1

n 1 + +
= + + + +

3

=

!
^ ^h h

In this case, multiplying out the denominators is a helpful first step:

n n3 2
1

n
2

1
=

+ +

3

=

!

Now, the series looks a little like a p-series with p = 2, so make this your
benchmark series:

. . .
n
1 1 4

1
9
1

16
1

n
2

1
= + + + +

3

=

!

The benchmark series converges, so you want to show that every term of the
test series is less than the corresponding term of the benchmark. This looks
likely because:

First term: 6
1 < 1

Second term: 12
1 < 4

1

Third term: 20
1 < 9

1

However, to convince the professor, you want to show that every term of the
test series is less than the corresponding term:

nth term: 
n n3 2

1
2 + +

≤
n
1

2

As with the first example in this section, the numerators are the same, but
the denominator of the test series is greater than that of the benchmark
series. So the test series is, indeed, less than the benchmark series, which
means that the test series is also convergent.

Testing your limits with the 
limit comparison test
As with the direct comparison test, the limit comparison test works by
choosing a benchmark series whose behavior you know and using it to 
provide information about a test series whose behavior you don’t know.
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Here’s the limit comparison test: Given a test series Σ an and a benchmark
series Σ bn, find the following limit:

lim b
a

n n

n

"3

If this limit evaluates as a positive number, then either both series converge
or both diverge.

As with the direct comparison test, when the test succeeds, what you learn
depends upon what you already know about the benchmark series. If the
benchmark series converges, so does the test series. However, if the bench-
mark series diverges, so does the test series.

Remember, however, that this is a one-way test: If the test fails, you can draw
no conclusion about the test series.

The limit comparison test is especially good for testing infinite series based
on rational expressions. For example, suppose that you want to see whether
the following series converges or diverges:

n
n

1
5

n
2

1 +
-

3

=

!

When testing an infinite series based on a rational expression, choose a
benchmark series that’s proportionally similar — that is, whose numerator
and denominator differ by the same number of degrees.

In this example, the numerator is a first-degree polynomial and the denomina-
tor is a second-degree polynomial (for more on polynomials, see Chapter 2).
So the denominator is one degree greater than the numerator. Therefore, I
choose a benchmark series that’s proportionally similar — the trusty har-
monic series:

n
1Benchmark series:

n 1

3

=

!

Before you begin, take a moment to get clear on what you’re testing, and jot it
down. In this case, you know that the benchmark series diverges. So, if the
test succeeds, you prove that the test series also diverges. (If it fails, however,
you’re back to square one because this is a one-way test.)

Now, set up the limit (by the way, it doesn’t matter which series you put in
the numerator and which in the denominator):

lim
n

n
n

1
1
5

n

2 +
-

"3
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At this point, you just crunch the numbers:

lim
n
n n

1
5

n
2 +

-

"3

^ h

lim
n

n n
1

5
n

2

2

=
+

-
"3

Notice at this point that the numerator and denominator are both second-
degree polynomials. Now, as you apply L’Hospital’s Rule (taking the deriva-
tive of both the numerator and denominator), watch what happens:

lim n
n
2

2 5
n

= -
"3

lim 2
2 1

n
= =

"3

As if by magic, the limit evaluates to a positive number, so the test succeeds.
Therefore, the test series diverges. Remember, however, that you made this
magic happen by choosing a benchmark series in proportion to the test series.

Another example should make this crystal clear. Discover whether this series
is convergent or divergent:

lim
n n

n
4 2

2
n 5 3

3

- -
-

"3

When you see that this series is based on a rational expression, you immedi-
ately think of the limit comparison test. Because the denominator is two
degrees higher than the numerator, choose a benchmark series with the
same property:

n
1Benchmark series:

n
2

1

3

=

!

Before you begin, jot down the following: The benchmark converges, so if the
test succeeds, the test series also converges. Next, set up your limit:

lim

n

n n
n

1
4 2

2

n
2

5 3

3

- -
-

"3

Now, just solve the limit:

lim
n n
n n

4 2
2

n 5 3

3 2

=
- -

-

"3

_ i

lim
n n
n n

4 2
2

n 5 3

5 2

=
- -
-

"3
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Again, the numerator and denominator have the same degree, so you’re on
the right track. Now, solving the limit is just a matter of grinding through a
few iterations of L’Hospital’s Rule:

lim
n n
n n

20 3
5 4

n
4 2

4

-
-

"3

lim
n n
n

80 6
20 4

n
3

3

=
-
-

"3

lim
n
n

240 6
60

n
2

2

=
-3=

lim n
n

480
120

n
=

"3

lim 480
120

4
1

n
= =

"3

The test succeeds, so the test series converges. And again, the success of the
test was prearranged because you chose a benchmark series in proportion to
the test series.

Two-Way Tests for Convergence
and Divergence

Earlier in this chapter, I give you a variety of tests for convergence or diver-
gence that work in one direction at a time. That is, passing the test gives you
an answer, but failing it provides no information.

The tests in this section all have one important feature in common: Regardless
of whether the series passes or fails, whenever the test gives you an answer,
that answer always tells you whether the series is convergent or divergent.

Integrating a solution with 
the integral test
Just when you thought that you wouldn’t have to think about integration
again until two days before your final exam, here it is again. The good news is
that the integral test gives you a two-way test for convergence or divergence.
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Here’s the integral test:

For any series of the form

f x
x a

3

=

! ^ h

consider its associated integral

f x dx
a

3

# ^ h

If this integral converges, the series also converges; however, if this integral
diverges, the series also diverges.

In most cases, you use this test to find out whether a series converges or
diverges by testing its associated integral. Of course, changing the series to
an integral makes all the integration tricks that you already know and love
available to you.

For example, here’s how to use the integral test to show that the harmonic
series is divergent. First, the series:

. . .x
1 1 2

1
3
1

4
1

x 1
= + + + +

3

=

!

The integral test tells you that this series converges or diverges depending
upon whether the following definite integral converges or diverges:

x dx1

1

3

#

To evaluate this improper integral, express it as a limit, as I show you in
Chapter 9:

lim x dx1
c

c

1

=
"3

#

This is simple to integrate and evaluate:

lim lnx
c x

x c

1
=

"3 =

=

a k

lim ln lnc 1
c

= -
"3

lim lnc 0
c

3- =
"3
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Because the limit explodes to infinity, the integral doesn’t exist. Therefore,
the integral test tells you that the harmonic series is divergent.

As another example, suppose that you want to discover whether the follow-
ing series is convergent or divergent:

lnn n
1

n 2

3

=

!

Notice that this series starts at n = 2, because n = 1 would produce the term 0
1 .

To use the integral test, transform the sum into this definite integral, using 2
as the lower limit of integration:

lnx x dx1

2

3

#

Again, rewrite this improper integral as the limit of an integral (see Chapter 9):

lim lnx x dx1
c

c

2
"3

#

To solve the integral, use the following variable substitution:

u = ln x

du = x
1 dx

So you can rewrite the integral as follows:

lim u du1

ln

ln

c

c

2
"3

#

Note that as the variable changes from x to u, the limits of integration change
from 2 and c to ln 2 and ln c. This change arises when I plug the value x = 2
into the equation u = ln x, so u = ln 2. (For more on using variable substitution
to evaluate definite integrals, see Chapter 5.)

At this point, you can evaluate the integral:

lim lnu
ln

ln

c u

u c

2"3 =

=

a k

lim ln ln ln lnc 2
c

3- =
"3

^ ^h h

You can see without much effort that as c approaches infinity, so does ln c,
and the rest of the expression doesn’t affect this. Therefore, the series that
you’re testing is divergent.
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Rationally solving problems 
with the ratio test
The ratio test is especially good for handling series that include factorials.
Recall that the factorial of a counting number, represented by the symbol !, is
that number multiplied by every counting number less than itself. For example:

5! = 5 · 4 · 3 · 2 · 1 = 120

Flip to Chapter 2 for some handy tips on factorials that may help you in this
section.

To use the ratio test, take the limit (as n approaches ∞) of the (n + 1)th term
divided by the nth term of the series:

lim a
a

1n n

n 1

+"3

+

At the risk of destroying all the trust that you and I have built between us
over these pages, I must confess that there are not two, but three possible
outcomes to the ratio test:

� If this limit is less than 1, the series converges.

� If this limit is greater than 1, the series diverges.

� If this limit equals 1, the test is inconclusive.

But I’m sticking to my guns and calling this a two-way test, because —
depending on the outcome — it can potentially prove either convergence
or divergence.

For example, suppose that you want to find out whether the following series
is convergent or divergent:

!n
2n

n 1

3

=

!

Before you begin, expand the series so that you can get an idea of what
you’re working with. I do this in two steps to make sure that the arithmetic
is correct:

1
2

2 1
2 2

3 2 1
2 2 2

4 3 2 1
2 2 2 2 f= + + + +

$
$

$ $
$ $

$ $ $
$ $ $

2 2 3
4

3
2

15
4 f= + + + + +

273Chapter 12: Where Is This Going? Testing for Convergence and Divergence

19_225226-ch12.qxd  5/2/08  12:58 AM  Page 273



To find out whether this series converges or diverges, set up the following
limit:

!

!
lim

n

n
2

1
2

n
n

n 1

+

"3

+

^ h

As you can see, I place the function that defines the series in the denomina-
tor. Then I rewrite this function, substituting n + 1 for n, and I place the result
in the numerator. Now, evaluate the limit:

!
!

lim
n

n
1 2

2
n n

n 1

=
+"3

+

^ _

_ ^

h i

i h

At this point, to see why the ratio test works so well for exponents and facto-
rials, factor out a 2 from 2n+1 and an n + 1 from (n + 1)! :

!
!

lim
n n

n
1 2

2 2
n n

n

=
+"3 ^ ^ _

_ ^

h h i

i h

This trick allows you to simplify the limit greatly:

<lim n 1
2 0 1

n
=

+
=

"3

Because the limit is less than 1, the series converges.

Rooting out answers with the root test
The root test works best with series that have powers of n in both the numer-
ator and denominator.

To use the root test, take the limit (as n approaches ∞) of the nth root of the
nth term of the series:

lim a
n

n
n

"3

As with the ratio test, even though I call this a two-way test, there are really
three possible outcomes:

� If the limit is less than 1, the series converges.

� If the limit is greater than 1, the series diverges.

� If the limit equals 1, the test is inconclusive.
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For example, suppose that you want to decide whether the following series is
convergent or divergent:

ln
n
n
n

n

n 1

3

=

! ^ h

This would be a very hairy problem to try to solve using the ratio test. To use
the root test, take the limit of the nth root of the nth term:

lim
ln
n
n

n
n

n

n
"3

^ h

At first glance, this expression looks worse than what you started with. But it
begins to look better when you separate the numerator and denominator into
two roots:

lim
ln

n

n
n nn

n
n

=
"3

^ h

Now, a lot of cancellation is possible:

lim
ln
n

n
n

n

=
"3

Suddenly, the problem doesn’t look so bad. The numerator and denominator
both approach ∞, so apply L’Hospital’s Rule:

<lim n
1 0 1

n
= =

"3

Because the limit is less than 1, the series is convergent.

Alternating Series
Each of the series that I discuss earlier in this chapter (and most of those in
Chapter 11) have one thing in common: Every term in the series is positive. So,
each of these series is a positive series. In contrast, a series that has infinitely
many positive and infinitely many negative terms is called an alternating series.

Most alternating series flip back and forth between positive and negative
terms so that every odd-numbered term is positive and every even-numbered
term is negative, or vice versa. This feature adds another spin onto the whole
question of convergence and divergence. In this section, I show you what you
need to know about alternating series.
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Eyeballing two forms of the 
basic alternating series
The most basic alternating series comes in two forms. In the first form, the
odd-numbered terms are negated; in the second, the even-numbered terms
are negated.

Without further ado, here’s the first form of the basic alternating series:

. . .1 1 1 1 1
n

n 1
- = - + - + -

3

=

!^ h

As you can see, in this series the odd terms are all negated. And here’s the
second form, whose even terms are negated:

. . .1 1 1 1 1
n

n

1

1
- = - + - +

3
-

=

!^ h

Obviously, in whichever form it takes, the basic alternating series is divergent
because it never converges on a single sum but instead jumps back and forth
between two sums for all eternity. Although the functions that produce these
basic alternating series aren’t of much interest by themselves, they get inter-
esting when they’re multiplied by an infinite series.

Making new series from old ones
You can turn any positive series into an alternating series by multiplying the
series by (–1)n or (–1)n – 1. For example, here’s an old friend, the harmonic series:

. . .n
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3
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!

To negate the odd terms, multiply by (–1) n:
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4
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To negate the even terms, multiply by (–1)n – 1:
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4
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Alternating series based on convergent
positive series
If you know that a positive series converges, any alternating series based on
this series also converges. This simple rule allows you to list a ton of conver-
gent alternating series. For example:

. . .1 2
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n 0
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3

=

!^ ch m

. . .
n

1 1 1 4
1

9
1

16
1n

n

1

1
2- = - + - +

3
-

=

!^ h

! . . .n1 2 2 2 3
4

3
2

15
4n n

n

1

1
- = - + - + -

3
-

=

!^ h

The first series is an alternating version of a geometric series with r = 2
1 . The 

second is an alternating variation on the familiar p-series with p = 2. The third
is an alternating series based on a series that I introduce in the earlier sec-
tion “Rationally solving problems with the ratio test.” In each case, the non-
alternating version of the series is convergent, so the alternating series is
also convergent.

I can show you an easy way to see why this rule works. As an example, I use
the first series of the three I just gave you. The value of the positive version
of this series is simple to compute by using the formula from Chapter 11:

. . .2
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8
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Similarly, if you negate all the terms, the value is just as simple to compute:

. . .2
1 1 2

1
4
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8
1 2

n

n 0
- = - - - - - = -

3

=

! c m

So, if some terms are positive and others are negative, the value of the resulting
series must fall someplace between –2 and 2; therefore the series converges.

Using the alternating series test
As I discuss in the previous section, when you know that a positive series is
convergent, you can assume that any alternating series based on that series
is also convergent. In contrast, some divergent positive series become con-
vergent when transformed into alternating series.
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Fortunately, I can give you a simple test to decide whether an alternating
series is convergent or divergent.

An alternating series converges if these two conditions are met:

1. Its defining sequence converges to zero — that is, it passes the nth-
term test.

2. Its terms are non-increasing (ignoring minus signs) — that is, each
term is less than or equal to the term before it.

These conditions are fairly easy to test for, making the alternating series test
one of the easiest tests in this chapter. For example, here are three alternat-
ing series:
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Just by eyeballing them, you can see that each of them meets both criteria of
the alternating series test, so they’re all convergent. Notice, too, that in each
case, the positive version of the same series is divergent. This underscores an
important point: When a positive series is convergent, an alternating series
based on it is also necessarily convergent; but when a positive series is diver-
gent, an alternating series based on it may be either convergent or divergent.

Technically speaking, the alternating series test is a one-way test: If the series
passes the test — that is, if both conditions hold — the series is convergent.
However, if the series fails the test — that is, if either condition isn’t met —
you can draw no conclusion.

In practice, however — and I’m going out on a thin mathematical limb here —
I’d say that when a series fails the alternating series test, you have strong 
circumstantial evidence that the series is divergent.

Why do I say this? First of all, notice that the first condition is the good old-
fashioned nth-term test. If any series fails this test, you can just chuck it on
the divergent pile and get on with the rest of your day.

Second, it’s rare when a series — any series — meets the first condition but
fails to meet the second condition. Sure, it happens, but you really have to
hunt around to find a series like that. And even when you find one, the series
usually settles down into an ever-decreasing pattern fairly quickly.
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For example, take a look at the following alternating series:

. . .n1 2 2
1 1 8

9 1 32
25

16
9

128
49n

n
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1 2

2
- = - + - + - + -

3
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=

!^ h

Clearly, this series passes the first condition of the alternating series test —
the nth-term test — because the denominator explodes to infinity at a much
faster rate than the numerator.

What about the second condition? Well, the first three terms are increasing
(disregarding sign), but beyond these terms the series settles into an ever-
decreasing pattern. So, you can chop off the first few terms and express the
same series in a slightly different way:

n
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9 1 1 2
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3
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This version of the series passes the alternating series test with flying colors,
so it’s convergent. Obviously, adding a few constants to this series doesn’t
make it divergent, so the original series is also convergent.

So, when you’re testing an alternating series, here’s what you do:

1. Test for the first condition — that is, apply the nth-term test.

If the series fails, it’s divergent, so you’re done.

2. If the series passes the nth-term test, test for the second condition —
that is, see whether its terms eventually settle into a constantly-
decreasing pattern (ignoring their sign, of course).

In most cases, you’ll find that a series that meets the first condition also
meets the second, which means that the series is convergent.

In the rare cases when an alternating series meets the first condition of the
alternating series test but doesn’t meet the second condition, you can draw
no conclusion about whether that series converges or diverges.

These cases really are rare, but I show you one so that you know what to do
in case your professor decides to get cute on an exam:

,10
1

9
1

100
1

99
1

1 000
1

999
1 f- + - + - + -

,10
1

2
1

100
1

3
1

1 000
1

4
1 f- + - + - + -

Both of these series meet the first criteria of the alternating series test but
fail to meet the second, so you can draw no conclusion based upon this test.
In fact, the first series is convergent and the second is divergent. Spend a
little time studying them and I believe that you’ll see why. (Hint: Try to break
each series apart into two separate series.)

279Chapter 12: Where Is This Going? Testing for Convergence and Divergence

19_225226-ch12.qxd  5/2/08  1:16 AM  Page 279



Understanding absolute and
conditional convergence
In the previous two sections, I demonstrate this important fact: When a posi-
tive series is convergent, an alternating series based on it is also necessarily
convergent; but when a positive series is divergent, an alternating series
based on it may be either convergent or divergent.

So, for any alternating series, you have three possibilities:

� An alternating series is convergent, and the positive version of that
series is also convergent.

� An alternating series is convergent, but the positive version of that
series is divergent.

� An alternating series is divergent, so the positive version of that series
must also be divergent.

The existence of three possibilities for alternating series makes a new con-
cept necessary: the distinction between absolute convergence and conditional
convergence.

Table 12-1 tells you when an alternating series is absolutely convergent, con-
ditionally convergent, or divergent.

Table 12-1 Understanding Absolute and Conditional 
Convergence of Alternating Series

An Alternating When That And Its Related 
Series Is: Series Is: Positive Series Is:

Absolutely Convergent Convergent Convergent

Conditionally Convergent Convergent Divergent

Divergent Divergent Divergent

Here are a few examples of alternating series that are absolutely convergent:
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I pulled these three examples from “Alternating series based on convergent
positive series” earlier in this chapter. In each case, the positive version of
the series is convergent, so the related alternating series must be convergent
as well. Taken together, these two facts mean that each series converges
absolutely.

And here are a few examples of alternating series that are conditionally 
convergent:
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I pulled these examples from “Using the alternating series test” earlier in
this chapter. In each case, the positive version of the series diverges, but the
alternating series converges (by the alternating series test). So each of these
series converges conditionally.

Finally, here are a couple of examples of alternating series that are divergent:
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As you can see, the first two series fail the nth-term test, which is also the
first condition of the alternating series test, so these two series diverge. As
for the third series, it’s basically a divergent harmonic series minus a conver-
gent geometric series — that is, a divergent series with a finite number sub-
tracted from it — so the entire series diverges.

Testing alternating series
Suppose that somebody (like your professor) hands you an alternating series
that you’ve never seen before and asks you to find out whether it’s absolutely
convergent, conditionally convergent, or divergent. Here’s what you do:
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1. Apply the alternating series test.

In most cases, this test tells you whether the alternating series is con-
vergent or divergent:

a. If it’s divergent, you’re done! (The alternating series is divergent.)

b. If it’s convergent, the series is either absolutely convergent or con-
ditionally convergent. Proceed to Step 2.

c. If the alternating series test is inconclusive, you can’t rule any
option out. Proceed to Step 2.

2. Rewrite the alternating series as a positive series by:

a. Removing (–1)n or (–1)n–1 when you’re working with sigma notation.

b. Changing the minus signs to plus signs when you’re working with
expanded notation.

3. Test this positive series for convergence or divergence by using any of
the tests in this chapter or Chapter 11:

a. If the positive series is convergent, the alternating series is
absolutely convergent.

b. If the positive series is divergent and the alternating series is con-
vergent, the alternating series is conditionally convergent.

c. If the positive series is divergent but the alternating series test is
inconclusive, the series is either conditionally convergent or diver-
gent, but you still can’t tell which.

In most cases, you’re not going to get through all these steps and still have a
doubt about the series. In the unlikely event that you do find yourself in this
position, see whether you can break the alternating series into two separate
series — one with positive terms and the other with negative terms — and
study these two series for whatever clues you can.
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Chapter 13

Dressing up Functions
with the Taylor Series

In This Chapter
� Understanding elementary functions

� Seeing power series as polynomials with infinitely many terms

� Expressing functions as a Maclaurin series

� Discovering the Taylor series as a generalization of the Maclaurin series

� Approximating expressions with the Taylor and Maclaurin series

The infinite series known as the Taylor series is one of the most brilliant
mathematical achievements that you’ll ever come across. It’s also quite

a lot to get your head around. Although many calculus books tend to throw
you in the deep end with the Taylor series, I prefer to take you by the hand
and help you wade in slowly.

The Taylor series is a specific form of the power series. In turn, it’s helpful to
think of a power series as a polynomial with an infinite number of terms. So,
in this chapter, I begin with a discussion of polynomials. I contrast polynomi-
als with other elementary functions, pointing out a few reasons why mathe-
maticians like polynomials so much (often, to the exclusion of their families
and friends).

Then I move on to power series, showing you how to discover when a power
series converges and diverges. I also discuss the interval of convergence for
a power series, which is the set of x values for which that series converges.
After that, I introduce you to the Maclaurin series — a simplified, but power-
ful, version of the Taylor series.

Finally, the main event: the Taylor series. First, I show you how to use the
Taylor series to evaluate other functions; you’ll definitely need that for your
final exam. I introduce you to the Taylor remainder term, which allows you to
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find the margin of error when making an approximation. To finish up the
chapter, I show you why the Taylor series works, which helps to make sense
of the series, but may not be strictly necessary for passing an exam.

Elementary Functions
Elementary functions are those familiar functions that you work with all the
time in calculus. They include:

� Addition, subtraction, multiplication, and division

� Powers and roots

� Exponential functions and logarithms (usually, the natural log)

� Trig and inverse trig functions

� All combinations and compositions of these functions

In this section, I discuss some of the difficulties of working with elementary
functions. In contrast, I show you why a small subset of elementary
functions — the polynomials — is much easier to work with. To finish up,
I consider the advantages of expressing elementary functions as polynomials
when possible.

Knowing two drawbacks of
elementary functions
The set of elementary functions is closed under the operation of differentia-
tion. That is, when you differentiate an elementary function, the result is
always another elementary function.

Unfortunately, this set isn’t closed under the operation of integration. For
example, here’s an integral that can’t be evaluated as an elementary function:

dxe x 2

#

So, even though the set of elementary functions is large and complex enough
to confuse most math students, for you — the calculus guru — it’s a rather
small pool.

Another problem with elementary functions is that many of them are difficult
to evaluate for a given value of x. Even the simple function sin x isn’t so simple
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to evaluate because (except for 0) every integer input value results in an irra-
tional output for the function. For example, what’s the value of sin 3?

Appreciating why polynomials 
are so friendly
In contrast to other elementary functions, polynomials are just about the
friendliest functions around. Here are just a few reasons why:

� Polynomials are easy to integrate (see Chapter 4 to see how to compute
the integral of every polynomial).

� Polynomials are easy to evaluate for any value of x.

� Polynomials are infinitely differentiable — that is, you can calculate the
value of the first derivative, second derivative, third derivative, and so
on, infinitely.

Representing elementary functions
as polynomials
In Part II, I show you a set of tricks for computing and integrating elementary
functions. Many of these tricks work by taking a function whose integral can’t
be computed as such and tweaking it into a more friendly form.

For example, using the substitution u = sin x, you can turn the integral on the
left into the one on the right:

sin cosx x dx u du3 3= ##

In this case, you’re able to turn the product of two trig functions into a poly-
nomial, which is much simpler to work with and easy to integrate.

Representing elementary
functions as series
The tactic of expressing complicated functions as polynomials (and other
simple functions) motivates much of the study of infinite series.
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Although series may seem difficult to work with — and, admittedly, they do
pose their own specific set of challenges — they have two great advantages
that make them useful for integration:

� First, an infinite series breaks easily into terms. So in most cases, you
can use the Sum Rule to break a series into separate terms and evaluate
these terms individually.

� Second, series tend to be built from a recognizable pattern. So, if you
can figure out how to integrate one term, you can usually generalize this
method to integrate every term in the series.

Specifically, power series include many of the features that make polynomials
easy to work with. I discuss power series in the next section.

Power Series: Polynomials on Steroids
In Chapter 11, I introduce the geometric series:

. . .ax a ax ax axn

n

2 3

0
= + + + +

3

=

!

I also show you a simple formula to figure out whether the geometric series
converges or diverges.

The geometric series is a simplified form of a larger set of series called the
power series.

A power series is any series of the following form:
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n

n
0 1 2

2
3

3

0
= + + + +

3

=

!

Notice how the power series differs from the geometric series:

� In a geometric series, every term has the same coefficient.

� In a power series, the coefficients may be different — usually according
to a rule that’s specified in the sigma notation.

Here are a few examples of power series:
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You can think of a power series as a polynomial with an infinite number of
terms. For this reason, many useful features of polynomials (which I describe
earlier in this chapter) carry over to power series.

The most general form of the power series is as follows:

. . .c x a c c x a c x a c x an

n

n
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3

0
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3

=

! ^ ^ ^ ^h h h h

This form is for a power series that’s centered at a. Notice that when a = 0,
this form collapses to the simpler version that I introduce earlier in this sec-
tion. So a power series in this form is centered at 0.

Integrating power series
In Chapter 4, I show you a three-step process for integrating polynomials.
Because power series resemble polynomials, they’re simple to integrate by
using the same basic process:

1. Use the Sum Rule to integrate the series term by term.

2. Use the Constant Multiple Rule to move each coefficient outside its
respective integral.

3. Use the Power Rule to evaluate each integral.

For example, take a look at the following integral:

x dx
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3
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# !

At first glance, this integral of a series may look scary. But to give it a chance
to show its softer side, I expand the series out as follows:

. . .x x x dx4
1

8
1

16
1

32
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Now you can apply the three steps for integrating polynomials to evaluate
this integral:

1. Use the Sum Rule to integrate the series term by term:

. . .dx x dx x dx x dx4
1

8
1

16
1

32
12 3= + + + +####

2. Use the Constant Multiple Rule to move each coefficient outside its
respective integral:

. . .dx x dx x dx x dx4
1

8
1

16
1

32
12 3= + + + +####
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3. Use the Power Rule to evaluate each integral:

x x x x4
1

16
1

48
1

128
12 3 4 f= + + + +

Notice that this result is another power series, which you can turn back into
sigma notation:
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^ h

Understanding the interval of convergence
As with geometric series and p-series (which I discuss in Chapter 11), an
advantage to power series is that they converge or diverge according to a
well-understood pattern.

Unlike these simpler series, however, a power series often converges or
diverges based on its x value. This leads to a new concept when dealing with
power series: the interval of convergence.

The interval of convergence for a power series is the set of x values for which
that series converges.

The interval of convergence is never empty
Every power series converges for some value of x. That is, the interval of con-
vergence for a power series is never the empty set.

Although this fact has useful implications, it’s actually pretty much a no-
brainer. For example, take a look at the following power series:
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When x = 0, this series evaluates to 1 + 0 + 0 + 0 + ..., so it obviously converges
to 1. Similarly, take a peek at this power series:
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This time, when x = –5, the series converges to 0, just as trivially as the last
example.

Note that in both of these examples, the series converges trivially at x = a for
a power series centered at a (see the beginning of “Power Series: Polynomials
on Steroids”).
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Three varieties for the interval of convergence
Three possibilities exist for the interval of convergence of any power series:

� The series converges only when x = a.

� The series converges on some interval (open or closed at either end)
centered at a.

� The series converges for all real values of x.

For example, suppose that you want to find the interval of convergence for:

. . .nx x x x x2 3 4n
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This power series is centered at 0, so it converges when x = 0. Using the ratio
test (see Chapter 12), you can find out whether it converges for any other
values of x. To start out, set up the following limit:

lim nx
n x1

n
n

n 1+

"3

+
^ h

To evaluate this limit, start out by xn in the numerator and denominator:

lim n
n x1

n
=

+

"3

^ h

Next, distribute to remove the parentheses in the numerator:

lim n
nx x

n
=

+
"3

As it stands, this limit is of the form 3
3 , so apply L’Hospital’s Rule (see

Chapter 2), differentiating over the variable n:

lim x x
n

=
"3

From this result, the ratio test tells you that the series:

� Converges when –1 < x < 1

� Diverges when x < –1 and x > 1

� May converge or diverge when x = 1 and x = –1

Fortunately, it’s easy to see what happens in these two remaining cases.
Here’s what the series looks like when x = 1:
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Clearly, the series diverges. Similarly, here’s what it looks like when x = –1:
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This alternating series swings wildly between negative and positive values, so
it also diverges.

As a final example, suppose that you want to find the interval of convergence
for the following series:
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As in the last example, this series is centered at 0, so it converges when x = 0.
The real question is whether it converges for other values of x. Because this
is an alternating series, I apply the ratio test to the positive version of it to
see whether I can show that it’s absolutely convergent:
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First off, I want to simplify this a bit:
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2 2
2

n

n

n

2 2

2=
+"3

+

$
^

^

h

h

Next, I expand out the exponents and factorials, as I show you in Chapter 12:

!
!

lim
n n n

x x
x
n

2 2 2 1 2
2

n

n

n

2 2

2=
+ +"3

$
^ ^ ^

^

h h h

h

At this point, a lot of canceling is possible:

lim
n n

x
2 2 2 1

0
n

2

=
+ +

=
"3 ^ ^h h

This time, the limit falls between –1 and 1 for all values of x. This result tells
you that the series converges absolutely for all values of x, so the alternating
series also converges for all values of x.
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Expressing Functions as Series
In this section, you begin to explore how to express functions as infinite
series. I begin by showing some examples of formulas that express sin x and
cos x as series. These examples lead to a more general formula for expressing
a wider variety of elementary functions as series.

This formula is the Maclaurin series, a simplified but powerful version of the
more general Taylor series, which I introduce later in this chapter.

Expressing sin x as a series
Here’s an odd formula that expresses the sine function as an alternating series:

!
sinx

n
x1

2 1
n n

x

2 1

0
= -

+

3 +

=

! ^
^

h
h

To make sense of this formula, use expanded notation:

! ! !sinx x x x x
3 5 7

3 5 7

f= - + -

Notice that this is a power series (which I discuss earlier in this chapter). To
get a quick sense of how it works, here’s how you can find the value of sin 0
by substituting 0 for x:

sin 0 = ! ! !0 3
0

5
0

7
0 0

3 5 7

f- + - + =

As you can see, the formula verifies what you already know: sin 0 = 0.

You can use this formula to approximate sin x for any value of x to as many
decimal places as you like. For example, look what happens when you substi-
tute 1 for x in the first four terms of the formula:

sin 1 ≈ ,1 6
1

120
1

5 040
1

- + -

≈ 0.841468

Note that the actual value of sin 1 to six decimal places is 0.841471, so this
estimate is correct to five decimal places — not bad!

Table 13-1 shows the value of sin 3 approximated out to six terms. Note that
the actual value of sin 3 is approximately 0.14112, so the six-term approxima-
tion is correct to three decimal places. Again, not bad, though not quite as
good as the estimate for sin 1.
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Table 13-1 Approximating the Value of sin 3
# of Terms Substitution Approximation

1 3 3

2 3 – !3
3 3

–1.5

3 3 – ! !3
3

5
33 5

+ 0.525

4 3 – ! ! !3
3

5
3

7
33 5 7

+ - 0.09107

5 3 – ! ! ! !3
3

5
3

7
3

9
33 5 7 9

+ - + 0.14531

6 3 – ! ! ! ! !3
3

5
3

7
3

9
3

11
33 5 7 9 11

+ - + - 0.14087

As a final example, Table 13-2 shows the value of sin 10 approximated out to
eight terms. The true value of sin 10 is approximately –0.54402, so by any
standard this is a poor estimate. Nevertheless, if you continue to generate
terms, this estimate continues to get better and better, to any level of preci-
sion you like. If you doubt this, notice that after five terms, the approxima-
tions are beginning to get closer to the actual value.

Table 13-2 Approximating the Value of sin 10
# of Terms Substitution Approximation

1 10 10

2 10 – !3
103

–156.66667

3 10 – ! !3
10

5
103 5

+ 676.66667

4 10 – ! ! !3
10

5
10

7
103 5 7

+ - –1307.460317

5 10 – ! ! ! !3
10

5
10

7
10

9
103 5 7 9

+ - + 1448.272

6 10 – ! ! ! ! !3
10

5
10

7
10

9
10

11
103 5 7 9 11

+ - + - –1056.938

7 10 – ! ! ! ! ! !3
10

5
10

7
10

9
10

11
10

13
103 5 7 9 11 13

+ - + - + 548.966

8 10 – ! ! ! ! ! ! !3
10

5
10

7
10

9
10

11
10

13
10

15
103 5 7 9 11 13 15

+ - + - + - –215.750
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Expressing cos x as a series
In the previous section, I show you a formula that expresses the value of sin x
for all values of x as an infinite series. Differentiating both sides of this for-
mula leads to a similar formula for cos x:

! ! !sindx
d x dx

d x dx
d x

dx
d x

dx
d x

3 5 7
3 5 7

f= - + - +

Now, evaluate these derivatives:

cos x = ! ! !
x x x1 3 3 5 5 7 7

2 4 6

f- + - +

Finally, simplify the result a bit:

cos x = ! ! !
x x x1 2 4 6

2 4 6

f- + - +

As you can see, the result is another power series (which I discuss earlier in
this chapter). Here’s how you write it by using sigma notation:

!
cosx

n
x1
2

n n

n

2

0
= -

3

=

! ^
^

h
h

To gain some confidence that this series really works as advertised, note that
the substitution x = 0 provides the correct equation cos 0 = 1. Furthermore, sub-
stituting x = 1 into the first four terms gives you the following approximation:

cos 1 ≈ .1 2
1

24
1

720
1 0 5402777- + - =

This estimate is accurate to four decimal places.

Introducing the Maclaurin Series
In the last two sections, I show you formulas for expressing both sin x and
cos x as infinite series. You may begin to suspect that there’s some sort of
method behind these formulas. Without further ado, here it is:

!f x n
f

x
0( )n

n

n

0
=

3

=

!^
^

h
h

Behold the Maclaurin series, a simplified version of the much-heralded Taylor
series, which I introduce in the next section.

The notation f (n) means “the nth derivative of f.” This should become clearer
in the expanded version of the Maclaurin series:

! !f x f f x
f

x
f

x0 0 2
0

3
02 3 f= + + + +l

ll lll
^ ^ ^

^ ^
h h h

h h
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The Maclaurin series is the template for the two formulas I introduce earlier
in this chapter. It allows you to express many other functions as power series
by following these steps:

1. Find the first few derivatives of the function until you recognize a 
pattern.

2. Substitute 0 for x into each of these derivatives.

3. Plug these values, term by term, into the formula for the Maclaurin
series.

4. If possible, express the series in sigma notation.

For example, suppose that you want to find the Maclaurin series for ex.

1. Find the first few derivatives of ex until you recognize a pattern:

f'(x) = ex

f"(x) = ex

f '''(x) = ex

...

f (n)(x) = ex

2. Substitute 0 for x into each of these derivatives.

f'(0) = e0

f"(0) = e0

f '''(0) = e0

...

f (n)(x) = e0

3. Plug these values, term by term, into the formula for the Maclaurin
series:

ex = e0 + e0x + !2
e0

x2 + !3
e0

x3 + ...

= 1 + x + x
2

2

+ x
6

3

+ ...

4. If possible, express the series in sigma notation:

!n
xe x

n

n 0
=

3

=

!

To check this formula, use it to estimate e0 and e1 by substituting 0 and 1,
respectively, into the first six terms:

e0 = 1 + 0 + 0 + 0 + 0 + 0 + ... = 1

e1 ≈ 1 + 1 + 2
1 + 6

1 + 24
1 + 120

1 = 2.7166(repeating)
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This exercise nails e0 exactly, and approximates e1 to two decimal places.
And, as with the formulas for sin x and cos x that I show you earlier in this
chapter, the Maclaurin series for ex allows you to calculate this function for
any value of x to any number of decimal places.

As with the other formulas, however, the Maclaurin series for ex works best
when x is close to 0. As x moves away from 0, you need to calculate more
terms to get the same level of precision.

But now, you can begin to see why the Maclaurin series tends to provide
better approximations for values close to 0: The number 0 is “hardwired” into
the formula as f(0), f'(0), f"(0)x, and so forth.

Figure 13-1 illustrates this point. The first graph shows sin x approximated by
using the first two terms of the Maclaurin series — that is, as the third-degree 
polynomial !x x

3
3

- . The subsequent graph shows an approximation of sin x 
with four terms.
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A tale of three series
It’s easy to get confused about the three cate-
gories of series that I discuss in this chapter.
Here’s a helpful way to think about them:

� The power series is a subcategory of infi-
nite series.

� The Taylor series (named for mathematician
Brook Taylor) is a subcategory of power
series.

� The Maclaurin series (named for mathe-
matician Colin Maclaurin) is a subcategory
of Taylor series.

After you have that down, consider that the
power series has two basic forms:

� The specific form, which is centered at
zero, so a drops out of the expression.

� The general form, which isn’t centered at
zero, so a is part of the expression.

Furthermore, each of the other two series uses
one of these two forms of the power series:

� The Maclaurin series uses the specific form,
so it’s:

• Less powerful

• Simpler to work with

� The Taylor series uses the general form,
so it’s:

• More powerful

• Harder to work with
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As you can see, each successive approximation improves upon the previous
one. Furthermore, each equation tends to provide its best approximation
when x is close to 0.

Introducing the Taylor Series
Like the Maclaurin series (which I introduce in the previous section), the
Taylor series provides a template for representing a wide variety of functions
as power series.

x

y

y = sin x

y = x – x3 + x5 –x7

3! 5!  7!

Figure 13-1:
Approxi-

mating sin x
by using the

Maclaurin
series.

x

y

y = 2x –

y = sinx

x3
3!
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In fact, the Taylor series is really a more general version of the Maclaurin
series. The advantage of the Maclaurin series is that it’s a bit simpler to work
with. The advantage to the Taylor series is that you can tailor it to obtain a
better approximation of many functions.

Without further ado, here’s the Taylor series in all its glory:

!f x n
f a

x a
( )n

n

n 0
= -

3

=

!^
^

^h
h

h

As with the Maclaurin series, the Taylor series uses the notation f (n) to indi-
cate the nth derivative. Here’s the expanded version of the Taylor series:

! !f x f a f a x a
f a

x a
f a

x a2 3
2 3

f= + - + - + - +l
ll lll

^ ^ ^ ^
^

^
^

^h h h h
h

h
h

h

Notice that the Taylor series includes the variable a, which isn’t found in the
Maclaurin series. Or, more precisely, in the Maclaurin series, a = 0, so it drops
out of the expression.

The explanation for this variable can be found earlier in this chapter, in
“Power Series: Polynomials on Steroids.” In that section, I show you two
forms of the power series:

� A simpler form centered at 0, which corresponds to the Maclaurin series

� A more general form centered at a, which corresponds to the Taylor
series

In the next section, I show you the advantages of working with this extra 
variable.

Computing with the Taylor series
The presence of the variable a makes the Taylor series more complex to work
with than the Maclaurin series. But this variable provides the Taylor series
with greater flexibility, as the next example illustrates.

In “Expressing Functions as Series” earlier in this chapter, I attempt to
approximate the value of sin 10 with the Maclaurin series. Unfortunately,
taking this calculation out to eight terms still results in a poor estimate.
This problem occurs because the Maclaurin series always takes a default
value of a = 0, and 0 isn’t close enough to 10.
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298 Part IV: Infinite Series 

This time, I use only four terms of the Taylor series to make a much better
approximation. The key to this approximation is a shrewd choice for the 
variable a:

Let a = 3π

This choice has two advantages: First, this value of a is close to 10 (the value
of x), which makes for a better approximation. Second, it’s an easy value for
calculating sines and cosines, so the computation shouldn’t be too difficult.

To start off, substitute 10 for x and 3π for a in the first four terms of the
Taylor series:

! !sin sin π π π
π π π π

10 3 3 10 3 2
3 10 3

3
3 10 3

sin
sin sin

2 3

= + - +
-

+
-

l
ll lll

^ ^
^ ^ ^ ^

h h
h h h h

Next, substitute in the first, second, and third derivatives of the sine function
and simplify:

. !
.

!
.

sin cos
sin cos

π π
π π

3 3 0 5752 2
3 0 5752

3
3 0 5752

2 3

= + - -^ ^
^ ^ ^ ^

h h
h h h h

The good news is that sin 3π = 0, so the first and third terms fall out:

. !
.

cos
cos

π
π

3 0 5752 3
3 0 5752

3

= -^ ^
^ ^

h h
h h

At this point, you probably want to grab your calculator:

= –1 (0.5752) – 
6
1

- (0.5752)3

= –0.5752 + 0.0317 = –0.5434

This approximation is correct to two decimal places — quite an improvement
over the estimate from the Maclaurin series!

Examining convergent and 
divergent Taylor series
Earlier in this chapter, I show you how to find the interval of convergence for
a power series — that is, the set of x values for which that series converges.

Because the Taylor series is a form of power series, you shouldn’t be sur-
prised that every Taylor series also has an interval of convergence. When
this interval is the entire set of real numbers, you can use the series to find
the value of f(x) for every real value of x.
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However, when the interval of convergence for a Taylor series is bounded —
that is, when it diverges for some values of x — you can use it to find the
value of f(x) only on its interval of convergence.

For example, here are the three important Taylor series that I’ve introduced
so far in this chapter:

! ! ! ! . . .sinx
n
x x x x x1

2 1 3 5 7
n n

n

2 1

0

3 5 7

= -
+

= - + - +
3 +

=

! ^
^

h
h

! ! ! ! . . .cosx
n

x x x x1
2

1 2 4 6
n

n

n

0

2 2 4 6

= - = - + - +
3

=

! ^
^

h
h

! ! ! . . .n
x x x x1 2 3e x

n

n

2 3

0
= = + + + +

3

=

!

All three of these series converge for all real values of x (you can check this
by using the ratio test, as I show you earlier in this chapter), so each equals
the value of its respective function.

Now, consider the following function:

f(x) = x1
1
-

I express this function as a Maclaurin series, using the steps that I outline 
earlier in this chapter in “Expressing Functions as Series”:

1. Find the first few derivatives of f(x) = x1
1
-

until you recognize a 
pattern:

f'(x) = 
x1

1
2-

f"(x) = 
x1

2
3

-^ h

f '''(x) = 
x1

6
4

-^ h
...

f (n)(x) = !
x

n
1

n 1
-

+

^ h

2. Substitute 0 for x into each of these derivatives:

f'(0) = 1

f"(0) = 2

f '''(0) = 6

...

f (n)(0) = n!
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3. Plug these values, term by term, into the formula for the Maclaurin
series:

! !x f f x
f

x
f

x1
1 0 0 2

0
3

02 3 f
-

= + + + +l
ll lll

^ ^
^ ^

h h
h h

= 1 + x + x2 + x3 + ...

4. If possible, express the series in sigma notation:

x x x x x1
1 1n

n

2 3

0-
= = + + +

3

=

!

To test this formula, I use it to find f(x) when x = 2
1 .

f 2
1 1 2

1
4
1

8
1 2f= + + + + =c m

You can test the accuracy of this expression by substituting 2
1 into x1

1
-

:

f 2
1

1 2
1

1 2=
-

=c m

As you can see, the formula produces the correct answer. Now, I try to use it 

to find f(x) when x = 5, noting that the correct answer should be 1 5
1

4
1

-
= - :

f(5) = 1 + 5 + 25 + 125 + ... = ∞ WRONG!

What happened? This series converges only on the interval (–1, 1), so the for-
mula produces only the value f(x) when x is in this interval. When x is outside
this interval, the series diverges, so the formula is invalid.

Expressing functions versus
approximating functions
It’s important to be crystal clear in your understanding about the difference
between two key mathematical practices:

� Expressing a function as an infinite series

� Approximating a function by using a finite number of terms of series

Both the Taylor series and the Maclaurin series are variations of the power
series. You can think of a power series as a polynomial with infinitely many
terms. Also, recall that the Maclaurin series is a specific form of the more
general Taylor series, arising when the value of a is set to 0.
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Every Taylor series (and, therefore, every Maclaurin series) provides the exact
value of a function for all values of x where that series converges. That is, for
any value of x on its interval of convergence, a Taylor series converges to f(x).

In practice, however, adding up an infinite number of terms simply isn’t pos-
sible. Nevertheless, you can approximate the value of f(x) by adding up a
finite number from the appropriate Taylor series. You do this earlier in the
chapter to estimate the value of sin 10 and other expressions.

An expression built from a finite number of terms of a Taylor series is called a
Taylor polynomial, Tn(x). Like other polynomials, a Taylor polynomial is iden-
tified by its degree. For example, here’s the fifth-degree Taylor polynomial,
T5(x), that approximates ex:

ex ≈ ! ! ! !x x x x x1 2 3 4 5

2 3 4 5

+ + + + +

Generally speaking, a higher-degree polynomial results in a better approxima-
tion. And because this polynomial comes from the Maclaurin series, where
a = 0, it provides a much better estimate for values of ex when x is near 0. For
the value of ex when x is near 100, however, you get a better estimate by using
a Taylor polynomial for ex with a = 100:

! ! !

!

x x x x

x

100 2 100 3 100 4 100

5 100

e e e e e e

e

x 100 100
100 2 100 3 100 4

100 5

. + - + - + - + - +

-

^ ^ ^ ^

^

h h h h

h

To sum up, remember the following:

� A convergent Taylor series expresses the exact value of a function.

� A Taylor polynomial, Tn(x), from a convergent series approximates the
value of a function.

Calculating error bounds 
for Taylor polynomials
In the previous section, I discuss how a Taylor polynomial approximates the
value of a function:

f(x) ≈ Tn(x)

In many cases, it’s helpful to measure the accuracy of an approximation. This
information is provided by the Taylor remainder term:

f(x) = Tn(x) + Rn(x)
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Notice that the addition of the remainder term Rn(x) turns the approximation
into an equation. Here’s the formula for the remainder term:

Rn(x) = 
!n

f c
1

( )n 1

+

+

^

^

h

h
(x – a)n+1 c between a and x

It’s important to be clear that this equation is true for one specific value of c
on the interval between a and x. It does not work for just any value of c on
that interval.

Ideally, the remainder term gives you the precise difference between the
value of a function and the approximation Tn(x). However, because the value
of c is uncertain, in practice the remainder term really provides a worst-case
scenario for your approximation.

An example should help to make this idea clear. I use the sixth-degree Taylor
polynomial for cos x:

cos x ≈ T6(x) = ! ! !
x x x1 2 4 6

2 4 6

- + -

Suppose that I use this polynomial to approximate cos 1:

cos 1 ≈ T6(1) = 1 2
1

24
1

720
1

- + -

= .0 540277

How accurate is this approximation likely to be? To find out, utilize the
remainder term:

cos 1 = T6(x) + R6(x)

Adding the associated remainder term changes this approximation into an
equation. Here’s the formula for the remainder term:

R6(x) = !
cos c x7 0

( )7 7
-^ h

= ,
sinc x5 040

7 c between 0 and x

So, substituting 1 for x gives you:

R6(1) = ,
sinc
5 040 c between 0 and 1

At this point, you’re apparently stuck, because you don’t know the value of
sin c. However, the sin function always produces a number between –1 and 1,
so you can narrow down the remainder term as follows:

,5 040
1

- ≤ R6(1) ≤ ,5 040
1
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Note that ,5 040
1 ≈ 0.0001984, so the approximation of cos 1 given by the T6(1) 

is accurate to within 0.0001984 in either direction. And, in fact, cos 1 ≈
0.540302, so:

cos 1 – T6(1) ≈ 0.540302 – 0.540278 = 0.000024

As you can see, the approximation is within the error bounds predicted by
the remainder term.

Understanding Why the
Taylor Series Works

The best way to see why the Taylor series works is to see how it’s con-
structed in the first place. If you read through this chapter until this point,
you should be ready to go.

To make sure that you understand every step along the way, however, I con-
struct the Maclaurin series, which is just a tad more straightforward. This
construction begins with the key assumption that a function can be expressed
as a power series in the first place:

f(x) = c0 + c1x + c2x
2 + c3x

3 + ...

The goal now is to express the coefficients on the right side of this equation
in terms of the function itself. To do this, I make another relatively safe
assumption that 0 is in the domain of f(x). So when x = 0, all but the first term
of the series equal 0, leaving the following equation:

f(0) = c0

This process gives you the value of the coefficient c0 in terms of the function.
Now, differentiate f(x):

f'(x) = c1 + 2c2x + 3c3x
2 + 4c4x

3...

At this point, when x = 0, all the x terms drop out:

f'(0) = c1

So you have another coefficient, c1, expressed in terms of the function. To
continue, differentiate f'(x):

f"(x) = 2c2 + 6c3x + 12c4x
2 + 20c5x

3 + ...
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Again, when x = 0, the x terms disappear:

f"(0) = 2c2

f
2

0ll ^ h
= c2

By now, you’re probably noticing a pattern: You can always get the value of
the next coefficient by differentiating the previous equation and substituting
0 for x into the result:

f '''(x) = 6c3 + 24c4x + 60c5x
2 + 120c6x

3 + ...

f '''(0) = 6c3

f
6

0lll ^ h
= c3

Furthermore, the coefficients also have a pattern:

c0 = f(0)

c1 = f'(0)

c2 = !
f

2
0ll ^ h

c3 = !
f

3
0lll ^ h

...

cn = !n
f 0( )n

^ h

Substituting these coefficients into the original equation results in the familiar
Maclaurin series from earlier in this chapter:

f(x) = f(0) + f'(0)x + !
f

2
0l ^ h

x2 + !
f

3
0lll ^ h

x3 + ...

To construct the Taylor series, use a similar line of reasoning, starting with
the more general form of the power series:

f(x) = c0 + c1(x – a) + c2(x – a)2 + c3(x – a)3 + ...

In this case, setting x = a gives you the first coefficient:

f(a) = c0

Continue to find coefficients by differentiating f(x) and then repeating the
process.
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In this part . . .
You get a glimpse of what lies beyond Calculus II.

I give you an overview of the next two semesters of
math: Calculus III (the study of calculus in three or more
dimensions) and Differential Equations (equations with
derivatives mixed in as variables). 
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Chapter 14

Multivariable Calculus
In This Chapter
� Visualizing vectors

� Making the leap from two to three dimensions

� Understanding cylindrical and spherical coordinates

� Using partial derivatives

� Sorting out and solving multiple integrals

Space, as Captain Kirk says during the opening credits of the television
series Star Trek, is the final frontier. Multivariable calculus (also known

as Calculus III) focuses on techniques for doing calculus in space — that is,
in three dimensions.

Mathematicians have a variety of terms for three dimensions: 3-D, 3-space,
and R3 are the most common. Whatever you call it, adding a dimension makes
multivariable calculus more interesting and useful, but also a bit more tricky
than single variable calculus.

In this chapter, I give you a quick introduction to multivariable calculus,
touching on the highlights usually taught in a Calculus III class. First, I show
you how vectors provide a method for linking a value with a direction. Next,
I introduce you to three different 3-D coordinate systems: 3-D Cartesian coor-
dinates, cylindrical coordinates, and spherical coordinates.

Building on this understanding of 3-D, I discuss functions of more than one
variable, focusing on the function of two variables z = f(x, y). With an under-
standing of multivariable functions, I proceed to introduce you to the two
most important concepts in multivariable calculus: partial derivatives and
multiple integrals.

By the end of this chapter, you’ll have a great platform from which to begin
Calculus III.

22_225226-ch14.qxd  5/2/08  6:01 PM  Page 307



Visualizing Vectors
Vectors are used to link a real number (called a scalar) with a direction on the
plane or in space. They’re useful for navigation, where knowing what direc-
tion you’re sailing or flying in is important. Vectors also get a lot of play in
physics, where forces that push and pull are also directional. And, as you
may have guessed, Calculus III is chock full of vectors.

In this section, I introduce you to this important concept. Although I keep
this discussion in two dimensions, vectors are commonly used in three
dimensions as well.

Understanding vector basics
A simple way to think of a vector is as an arrow that has both length and
direction. By convention, a vector starts at the origin of the Cartesian plane
(0, 0) and extends a certain length in some direction. Figure 14-1 shows a 
variety of vectors.

As you can see, when a vector begins at the origin, its two components (its x
and y values) correspond to the Cartesian coordinates of its endpoint. For
example, the vector that begins at (0, 0) and ends at (3, 1) is distinguished as
the vector <3, 1>.

d = (–4, –1)

e = (2, –3)

c = (–3, 3)

b = (1, 2)

a = (3, 1)

Figure 14-1:
Vectors

starting at
the origin

are distin-
guished
by their

endpoints.

308 Part V: Advanced Topics 

22_225226-ch14.qxd  5/2/08  6:01 PM  Page 308



Don’t confuse a vector <x, y> with its corresponding Cartesian pair (x, y),
which is just a point.

By convention, vectors are labeled in books with boldfaced lowercase letters:
a, b, c, and so forth (see Figure 14-1). But when you’re working with vectors
on paper, most teachers are happy to see you replace the boldface with a
little line or arrow over the letter.

Displacing a vector from the origin doesn’t change its value. For example,
Figure 14-2 shows the vector <2, 3> with a variety of starting points.

Calculate the coordinates of a vector starting at (x1, y1) and ending at (x2, y2)
as <x2 – x1, y2 – y1>. For example, here’s how to calculate the coordinates of
vectors g, h, and i in Figure 14-2:

g = <0 – –2, 4 – 1> = <2, 3>

h = <–2 – –4, –1 – –4> = <2, 3>

i = <2 – 0, 1 – –2> = <2, 3>

As you can see, regardless of the starting and ending points, these vectors
are all equivalent to each other and to f.

h = (2, 3)

i = (2, 3)

f = (2, 3)

g = (2, 3)

Figure 14-2:
All vectors

with the
same length

and
direction

are
equivalent,
regardless

of where
they start.
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Distinguishing vectors and scalars
Just as Eskimos have tons of words for snow and Italians have even more
words for pasta, mathematicians have bunches of words for real numbers.
When you began algebra, you found out quickly that a constant or a coefficient
was just a real number in a specific context.

Similarly, when you’re discussing vectors and want to refer to a real number,
use the word scalar. Only the name is different — deep in its heart, a scalar
knows only too well that it’s just a good old-fashioned real number.

Some types of vector calculations produce new vectors, while others result in
scalars. As I introduce these calculations throughout the next section, I tell
you whether to expect a vector or a scalar as a result.

Calculating with vectors
Vectors are commonly used to model forces such as wind, sea current, grav-
ity, and electromagnetism. Vector calculations are essential for all sorts of
problems where forces collide. In this section, I give you a taste of how some
simple calculations with vectors are accomplished.

Calculating magnitude
The length of a vector is called its magnitude. The notation for absolute value
(| |) is also used for the magnitude of a vector. For example, |v| refers to
magnitude of the vector v. (By the way, some textbooks represent magnitude
with double bars [|| ||] instead of single bars. Either way, the meaning is
the same.)

310 Part V: Advanced Topics 

What’s in a name?
A scalar is just a fancy word for a real number.
The name arises because a scalar scales a
vector — that is, it changes the scale of a
vector. For example, the real number 2 scales

the vector v by a factor of 2, so that 2v is twice
as long as v. You find out more about scalar mul-
tiplication in “Calculating with vectors.”
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Calculate the magnitude of a vector v = <x, y> by using a variation of the dis-
tance formula. This formula is itself a variation of the trusty Pythagorean 
theorem:

x yv 2 2= +

For example, calculate the magnitude of the vector n = <4, –3> as follows:

n 4 3 52 2
= + - =^ h

As you can see, the use of the absolute value bars for the magnitude of vec-
tors is appropriate: Magnitude, like all other distances, is always measured
as a nonnegative value. The magnitude of a vector is the distance from the
origin of a graph to its tip, just as the absolute value of a number is the dis-
tance from 0 on a number line to that number.

The magnitude of a vector is a scalar.

Scalar multiplication
Multiplying a vector by a scalar is called scalar multiplication. To perform
scalar multiplication, multiply the scalar by each component of the vector.
Here’s how you multiply the vector v = <x, y> by the scalar k:

kv = k<x, y> = <kx, ky>

For example, here’s how you multiply the vector p = <3, 5> by the scalars 2, 
–4, and 3

1 :

2p = 2<3, 5> = <6, 10>

–4p = –4<3, 5> = <–12, –20>

p3
1 = 3

1 <3, 5> = <1, 3
5 >

When you multiply a vector by a scalar, the result is a vector.

Geometrically speaking, scalar multiplication achieves the following:

� Scalar multiplication by a positive number other than 1 changes the
magnitude of the vector but not its direction.

� Scalar multiplication by –1 reverses its direction but doesn’t change its
magnitude.

� Scalar multiplication by any other negative number both reverses the
direction of the vector and changes its magnitude.
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Scalar multiplication can change the magnitude of a vector by either increas-
ing it or decreasing it.

� Scalar multiplication by a number greater than 1 or less than –1
increases the magnitude of the vector.

� Scalar multiplication by a fraction between –1 and 1 decreases the magni-
tude of the vector.

For example, the vector 2p is twice as long as p, the vector 2
1 p is half as long 

as p, and the vector –p is the same length as p but extends in the opposite
direction from the origin (as shown in Figure 14-3).

Finding the unit vector
Every vector has a corresponding unit vector, which has the same direction
as that vector but a magnitude of 1. To find the unit vector u of the vector v =
<x, y>, divide that vector by its magnitude as follows:

u = 
v
v

Note that this formula uses scalar multiplication, as I show you in the preced-
ing section, because the numerator is a vector and the denominator is a
scalar.

p1
2

p2

p–

p

Figure 14-3:
Scalar

multipli-
cation of
a vector

changes its
magnitude

and/or its
direction.
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As you may guess from its name, the unit vector is a vector.

For example, to find the unit vector u of the vector q = <–2, 1>, first calculate
its magnitude |q| as I show you earlier in this section:

q 2 1 5
2 2= - + =^ h

Now, use the previous formula to calculate the unit vector:

< , > < , >u
5

2 1
5

2
5

1
=

-
= -

You can check that the magnitude of resulting vector u really is 1 as follows:

|u|
5

2
5

1
2 2

= - +
J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O

5
4

5
1 1= + =

Adding and subtracting vectors
Add and subtract vectors component by component, as follows:

<x1, y1> + <x2, y2> = <x1 + x2, y1 + y2>

<x1, y1> – <x2, y2> = <x1 – x2, y1 – y2>

For example, if r = <–1, 3> and s = <4, 2>, here’s how to add and subtract these
vectors:

r + s = <–1, 3> + <4, 2> = <–1 + 4, 3 + 2> = <3, 5>

r – s = <–1, 3> – <4, 2> = <–1 – 4, 3 – 2> = <–5, 1>

When you add or subtract two vectors, the result is a vector.

Geometrically speaking, the net effects of vector addition and subtraction are
shown in Figure 14-4. In this example, the endpoint of r + s is equivalent to
the endpoint of s when s begins at the endpoint of r. Similarly, the endpoint of
r – s is equivalent to the endpoint of –s — that is, <–4, –2> — when –s begins
at the endpoint of r.
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Leaping to Another Dimension
Multivariable calculus is all about three (or more) dimensions. In this section,
I show you three important systems for plotting points in 3-D.

Understanding 3-D Cartesian coordinates
The three-dimensional (3-D) Cartesian coordinate system (also called 3-D rec-
tangular coordinates) is the natural extension of the 2-D Cartesian graph. The
key difference is the addition of a third axis, the z-axis, extending perpendicu-
larly through the origin.

Drawing a 3-D graph in two dimensions is kind of tricky. To get a better sense
about how to think in 3-D, hold up Figure 14-5 where you can compare it with
the interior corner of a room (not a round room!). Note the following:

� The x-axis corresponds to where the left-hand wall meets the floor.

� The y-axis corresponds to where the right-hand wall meets the floor.

� The z-axis corresponds to where the two walls meet.

Just as the 2-D Cartesian graph is divided into four quadrants, the 3-D graph
is divided into eight octants. From your perspective as you look at the graph,
you’re standing inside the first octant, where all values of x, y, and z are 
positive.

– s

s

– s

r – s
r

r r +
 s

s
Figure 14-4:

Add and
subtract

vectors on
the graph by

beginning
one vector

at the
endpoint of

another
vector.
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Figure 14-6 shows the complete 3-D Cartesian system with the point (1, 2, 5)
plotted. In similarity with regular Cartesian coordinates, you plot this point
by counting 1 unit in the positive x direction, and then 2 units in the positive
y direction, and finally 5 units in the positive z direction.

z

y

x

Figure 14-6:
Plotting the

point (1, 2, 5)
on the 3-D
Cartesian

coordinate
system.

z

yx

Figure 14-5:
The first

octant of
the 3-D

Cartesian
coordinate

system.
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Using alternative 3-D coordinate systems
In Chapter 2, I discuss polar coordinates, an alternative to the Cartesian
graph. Polar coordinates are useful because they allow you to express and
solve a variety of problems more easily than Cartesian coordinates.

In this section, I show you two alternatives to the 3-D Cartesian coordinate
system: cylindrical coordinates and spherical coordinates. As with polar
coordinates, both of these systems give you greater flexibility to solve a
wider range of problems.

Cylindrical coordinates
You probably remember polar coordinates from Pre-Calculus or maybe even
Calculus I. Like the Cartesian coordinate system, the polar coordinate system
assigns a pairing of values to every point on the plane. Unlike the Cartesian
coordinate system, however, these values aren’t dependent upon two perpen-
dicular axes (though these axes are often drawn in to make the graph more
readable). The key axis is the horizontal axis, which corresponds to the posi-
tive x-axis in Cartesian coordinates.

While a Cartesian pair is of the form (x, y), polar coordinates use (r, θ).
Cylindrical coordinates are simply polar coordinates with the addition of a
vertical z-axis extending from the origin, as in 3-D Cartesian coordinates (see
“Understanding 3-D Cartesian coordinates” earlier in this chapter). Every
point in space is assigned a set of cylindrical coordinates of the form (r, θ, z).

Here’s what you need to know:

� The variable r measures the distance from the z-axis to that point.

� The variable θ measures angular distance from the horizontal axis. This
angle is measured in radians rather than degrees, so that 2π = 360°. (See
Chapter 2 for more about radians.)

� The variable z measures the distance from that point to the xy-plane.

When plotting cylindrical coordinates, plot the first coordinates (r and θ) just
as you would for polar coordinates (see Chapter 2). Then plot the z-coordinate
as you would for 3-D Cartesian coordinates.

Figure 14-7 shows you how to plot the point (3, π
2 , 2) in cylindrical coordinates:

1. Count 3 units to the right of the origin on the horizontal axis (as you
would when plotting polar coordinates).
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2. Travel counterclockwise along the arc of a circle until you reach the 
line drawn at a π

2 -angle from the horizontal axis (again, as with polar
coordinates).

3. Count 2 units above the plane and plot your point there.

Spherical coordinates
Spherical coordinates are used — with slight variation — to measure latitude,
longitude, and altitude on the most important sphere of them all, the planet
Earth.

Every point in space is assigned a set of spherical coordinates of the form
(ρ, θ, φ). In case you’re not in a sorority or fraternity, ρ is the lowercase Greek
letter rho, θ is the lowercase Greek letter theta (commonly used in math to
represent an angle), φ is the lower-case Greek letter phi, which is commonly
pronounced either “fee” or “fye” (but never “foe” or “fum”).

z

i

r

Figure 14-7:
Plotting

the point 
(3, π

2 , 2) in
cylindrical

coordinates.
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The coordinate ρ corresponds to altitude. On the Earth, altitude is measured
as the distance above or below sea level. In spherical coordinates, however,
altitude indicates how far in space a point is from the origin.

The coordinate θ corresponds to longitude: A measurement of angular dis-
tance from the horizontal axis.

The coordinate φ corresponds to latitude. On the Earth, latitude is measured
as angular distance from the equator. In spherical coordinates, however, lati-
tude is measured as the angular distance from the north pole.

Plotting φ can be tricky at first. To get a feel for it, picture a globe and imagine
traveling up and down along a single longitude line. Notice that as you travel,
your latitude keeps changing, so

� At the north pole, φ = 0

� At the equator, φ = π
2

� At the south pole, φ = π

Some textbooks substitute the Greek letter ρ (rho) for r. Either way, the coor-
dinate means the same thing: altitude, which is the distance of a point from
the origin. In other textbooks, the order of the last two coordinates is
changed around. Make sure that you know which convention your book uses.

Figure 14-8 shows you how to plot a point in spherical coordinates. For exam-
ple, suppose that you want to plot the point (4, π

2 , π
4

3 ). Follow these steps to
do that:

1. Count 4 units to the right of the origin on the horizontal axis.

2. Travel counterclockwise along the arc of a circle until you reach the 
line drawn at a π

2 -angle from the horizontal axis (again, as with polar
coordinates).

3. Imagine a single longitude line arcing from the north pole of a sphere
through the point on the equator where you are right now and
onward to the south pole.

4. Travel down to the line of latitude at an angular distance of π
4
3 from 

the north pole — that is, halfway between the equator and the south
pole — and plot your point there.
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Functions of Several Variables
You know from algebra that a function y = f(x) is basically a mathematical
machine for turning one number into another. The variable x is the input vari-
able and y is the output variable so that every value of x gives you no more
than one y value.

When you graph a curve, you can use the vertical-line test to make sure that
it’s a function: Any vertical line that intersects a function intersects it at
exactly one point, as illustrated in Figure 14-9.

These concepts related to functions also carry over into functions of more
than one variable. For example, here are some functions of two variables:

z = 2x + y + 5

sinz x y y= + +

z = exy – ln (1 + x2y2)

The general form for a function of two variables is z = f(x, y). Every function
of two variables takes a Cartesian pair (x, y) as its input and in turn outputs a
z value. Looking at the three previous examples, plugging in the input (0, 1)
gives you an output of 6 for the first function, 2 for the second function, and 1
for the third.

t

Figure 14-8:
Plotting

the point 
(4, π

2 , π
4

3 )
in spherical

coordinates.
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A good way to visualize a function of two variables is as a surface floating
over the xy-plane in a 3-D Cartesian graph. (True, this surface can cross the
plane and continue below it — just as a function can cross the x-axis — but
for now, just picture it floating.) Every point on this surface looms directly
above exactly one point on the plane. That is, if you pass a vertical line
through any point on the plane, it crosses the function at no more than
one point. Figure 14-10 illustrates this concept.

y

z

x

Figure 14-10:
The vertical-

line test for
a function

in three
dimensions.

y

x

ƒ(x)

Figure 14-9:
The vertical-

line test
shows that
a function

outputs no
more than

one y value
for every

inputted x
value.
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The concept of a function can be extended to higher dimensions. For exam-
ple, w = f(x, y, z) is the basic form for a function of three variables. Because
this function (as well as other functions of more than two variables) exists in
more than three dimensions, it’s a lot harder to picture. For now, just concen-
trate on making the leap from two to three dimensions — that is, from func-
tions of one variable to functions of two variables. Most of the multivariable
calculus that you study in Calculus III is in three dimensions. (Maybe it should
be called Calculus 3-D.)

Partial Derivatives
Partial derivatives are the higher-dimensional equivalent of the derivatives
that you know from Calculus I. Just as a derivative represents the slope of a
function on the Cartesian plane, a partial derivative represents a similar con-
cept of slope in higher dimensions. In this section, I clarify this notion of
slope in three dimensions. I also show you how to calculate the partial deriv-
atives of functions of two variables.

Measuring slope in three dimensions
In the earlier section “Functions of Several Variables,” I recommend that you
visualize a function of two variables z = f(x, y) as a surface floating over the
xy-plane of a 3-D Cartesian graph. (See Figure 14-9 for a picture of a sample
function.)

For example, take the function z = y, as shown in Figure 14-11. As you can see,
this function looks a lot like the sloped roof of a house. Imagine yourself
standing on this surface. When you walk parallel with the y-axis, your altitude
either rises or falls. In other words, as the value of y changes, so does the
value of z. But when you walk parallel with the x-axis, your altitude remains
the same; changing the value of x has no effect on z.

So intuitively, you expect that the partial derivative m
m

y
z — the slope in the 

direction of the y-axis — is 1. You also expect that the partial derivative m
m
x
z — 

the slope in the direction of the x-axis — is 0. In the next section, I show you
how to calculate partial derivatives to verify this result.
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Evaluating partial derivatives
Evaluating partial derivatives isn’t much more difficult than evaluating regu-
lar derivatives. Given a function z(x, y), the two partial derivatives are m

m
x
z

and m
m

y
z . Here’s how you calculate them:

� To calculate m
m
x
z , treat y as a constant and use x as your differentiation

variable.

� To calculate m
m

y
z , treat x as a constant and use y as your differentiation

variable.

For example, suppose that you’re given the equation z = 5x2y3. To find m
m
x
z , 

treat y as if it were a constant — that is, treat the entire factor 5y3 as if it’s one
big coefficient — and differentiate x2:

m
m
x
z = 5y3(2x) = 10xy3

To find m
m

y
z , treat x as if it were a constant — that is, treat 5x2 as if it’s the 

coefficient — and differentiate y3:

m
m

y
z = 5x2(3y2) = 15x2y2

As another example, suppose that you’re given the equation z = 2ex sin y + ln x. 
To find m

m
x
z , treat y as if it were a constant and differentiate by the variable x:

m
m
x
z = 2 sin y (ex) + x

1 = 2ex sin y + x
1

y

Surface crosses the
x-axis at a 45° angle

x
Figure 14-11:
The function

z = y.
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To find m
m

y
z , treat x as if it were a constant and differentiate by the variable y:

m
m

y
z = 2 ex cos y

As you can see, when differentiating by y, the ln x term is treated as a con-
stant and drops away completely.

Returning to the example from the previous section — the “sloped-roof” 
function z = y — here are both partial derivatives of this function:

m
m
x
z = 0

m
m

y
z = 1

As you can see, this calculation produces the predicted results.

Multiple Integrals
You already know that an integral allows you to measure area in two dimen-
sions (see Chapter 1 if this concept is unclear). And as you probably know
from solid geometry, the analog of area in three dimensions is volume.

Multiple integrals are the higher-dimensional equivalent of the good old-
fashioned integrals that you discover in Calculus II. They allow you to 
measure volume in three dimensions (or more).

Most of the multiple integrals that you’ll ever have to solve come in two vari-
eties: double integrals and triple integrals. In this section, I show you how to
understand and calculate both of these types of multiple integrals.

Measuring volume under a surface
Definite integrals provide a reliable way to measure the signed area between
a function and the x-axis as bounded by any two values of x. (I cover this in
detail in Chapters 1 and 3.) Similarly, a double integral allows you to measure
the signed volume between a function z = f(x, y) and the xy-plane as bounded
by any two values of x and any two values of y.

,f x y dxdy
0

1

0

2

## _ i
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To get a picture of this volume, look at Figure 14-12. The double integral mea-
sures the volume between f(x, y) and the xy-plane as bounded by a rectangle. In
this case, the rectangle is described by the four lines x = 0, x = 1, y = 0, and y = 2.

A double integral is really an integral inside another integral. To help you see
this, I bracket off the inner integral in the previous example:

,f x y dx dy
0

1

0

2

##
J

L

K
K _

N

P

O
Oi

When you focus on the integral inside the brackets, you can see that the
limits of integration 0 and 1 correspond with the dx — that is, x = 0 and x = 1.
Similarly, the limits of integration 0 and 2 correspond with the dy — that is,
y = 0 and y = 2.

Evaluating multiple integrals
Multiple integrals (double integrals, triple integrals, and so forth) are usually
definite integrals, so evaluating them results in a real number. Evaluating 
multiple integrals is similar to evaluating nested functions: Work from the
inside out.

Solving double integrals
Solve double integrals in two steps: First evaluate the inner integral, and then
plug this solution into the outer integral and solve that. For example, suppose
that you want to integrate the following double integral:

x
y

dy dx
x

x 2

4

5

1

3

##

y

x

1

Volume

Surface

Rectangle

2

Figure 14-12:
A double

integral
allows you

to measure
the area
under a

surface as
bounded by
a rectangle.
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To start out, place the inner integral in parentheses so that you can better
see what you’re working with:

x
y

dy dx
x

x 2

4

5

1

3

##
J

L

K
K

N

P

O
O

Now, focus on what’s inside the parentheses. For the moment, you can ignore
the rest. Your integration variable is y, so treat the variable x as if it were a
constant, moving it outside the integral:

x y dy1

x

x
2

4

5

#

Notice that the limits of integration in this integral are functions of x. So the
result of this definite integral will also be a function of x:

y x5=

x
y
3

3

= y x4=

x
x

x
x

x
x

x
x x3

5
3
4

3
125

3
64

3
613 3 3 3

2= - = - =

Now, plug this expression into the outer integral. In other words, substitute it
for what’s inside the parentheses:

x dx3
61 2

1

3

#

Evaluate this integral as usual:

x9
61

x

x
3

1

3

=
=

=

9
61 3 9

61 1
3 3

= -^ ^h h

61 9
61

9
488

= - =

Making sense of triple integrals
Triple integrals look scary, but if you take them step by step, they’re no more
difficult than regular integrals. As with double integrals, start in the center
and work your way out. For example:

x y z dx dy dz

y
z

y
z

z

z
3 5

2
4

1

2

###

Begin by separating the two inner integrals:

x y z dx dy dz

y
z

y
z

z

z
3 5

2
4

1

2

###

J

L

K
K
KK

N

P

O
O
OO

R

T

S
S
S
SS

V

X

W
W
W
WW
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Your plan of attack is to evaluate the integral in the brackets first, and then
the integral in the braces, and finally the outer integral. First things first:

x y z dx

y
z

y
z

3 5

2

#

x y z4
1

/

/

x z y

x z y
4 5

2

=
=

=

y
z y z y

z y z4
1 2

4
1

4
5

4
5= -c cm m

Notice that plugging in values for x results in an expression in terms of y and z.
Now simplify this expression to make it easier to work with:

= 4yz5 – 4
1 yz5 = 4

15 yz5

Plug this solution back in to replace the bracketed integral:

yz dy dz4
15

z

z
5

4

1

2

##
R

T

S
SS

V

X

W
WW

One integral down, two to go. This time, focus on the integral inside the
braces. This time, the integration variable is y:

yz dy4
15

z

z
5

4

#

y z8
15

y z

y z
2 5

4

=
=

=

= 8
15 (4z)2z5 –  8

15 z2z5

Again, simplify before proceeding:

= 30z7 – 8
15 z7 = 8

225 z7

Plug this result back into the integral as follows:

z dz8
225 7

1

2

#

Now evaluate this integral:

z64
225

z

z
8

1

2

=
=

=

= 64
225 28 – 64

225 18

= ,
64

57 600 – 64
225 = ,

64
57 375
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Chapter 15

What’s so Different about
Differential Equations?

In This Chapter
� Classifying different types of differential equations (DEs)

� Understanding the connection between DEs and integrals

� Checking a proposed solution to a DE

� Seeing how DEs arise in the physical world

� Using a variety of methods to solve DEs

The very mention of differential equations (DEs for short) strikes a spicy
combination of awe, horror, and utter confusion into nonmathematical

minds. Even intrepid calculus students have been known to consider a career
in art history when these untamed beasts come into focus on the radar
screen. Just what are differential equations? Where do they come from?
Why are they necessary? And how in the world do you solve them?

In this chapter, I answer these questions and give you some familiarity with
DEs. I show you how to identify the basic types of DEs so that if you’re ever
at a math department cocktail party (lucky you!), you won’t feel completely
adrift. I relate DEs to the integrals that you now understand so well. I show
you how to build your own DEs so that you’ll always have a hobby to pass
the time, and I also show you how to check DE solutions. In addition, you dis-
cover how DEs arise in physics. Finally, I show you a few simple methods for
solving some basic differential equations.
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Basics of Differential Equations
In a nutshell, a differential equation is any equation that includes at least one
derivative. For example:

dx
dy

= sin x ey

dx
d y

2

2

+ 10 dx
dy

+ 9y = 0

dx
d y

4

4

+ 
dx
d y

3

3

+ 
dx
d y

2

2

+ dx
dy

+ y = cos x

Solving a differential equation means finding the value of the dependent variable
in terms of the independent variable. Throughout this chapter, I use y as the
dependent variable, so the goal in each problem is to solve for y in terms of x.

In this section, I show you how to classify DEs. I also show you how to build
DEs and check the solution to a DE. 

Classifying DEs
As with other equations that you’ve encountered, differential equations come
in many varieties. And different varieties of DEs can be solved by using differ-
ent methods. In this section, I show you some important ways to classify DEs.

Ordinary and partial differential equations
An ordinary differential equation (ODE) has only derivatives of one variable —
that is, it has no partial derivatives (flip to Chapter 14 for more on partial 
differentiation). Here are a few examples of ODEs:

dx
dy

= x sin (x2) cos y

dx
dy

= y csc x + ex

dx
d y

2

2

+ 4xy dx
dy

+ 5y = 0

In contrast, a partial differential equation (PDE) has at least one partial deriva-
tive. Here are a few examples of PDEs:

m
m
x
u + m

m
y
u + u = ex – y

3
m
m
x
u

2 + 7 m m
m
x y
u + 6

m
m
y
u

2 = 0

m
m
t
v – k

m
m
x
v

2
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Ordinary differential equations are usually the topic of a typical Differential
Equations class in college. They’re a step or two beyond what you’re used to
working with, but many students actually find Differential Equations an easier
course than Calculus II (generally considered the most difficult class in the
calculus series). However, ODEs are limited in how well they can actually
express physical reality.

The real quarry is partial differential equations. A lot of physics gets done
with these little gems. Unfortunately, solving PDEs is one giant leap forward
in math from what the average calculus student is used to. Delving into the
kind of math that makes PDEs come alive is typically reserved for graduate
school.

Order of DEs
Differential equations are further classified according to their order. This clas-
sification is similar to the classification of polynomial equations by degree
(see Chapter 2 for more on polynomials).

First-order ODEs contain only first derivatives. For example:

dx
dy

= yex

3 dx
dy

= sin y + 2e2x

ln xy dx
dy

= 2x2 + y – tan x

Higher-order ODEs are classified, as polynomials are, by the greatest order of
their derivatives. Here are examples of second-, third-, and fourth-order ODEs:

Second-order ODE: 
dx
d y

dx
dy

y4 10 e x
2

2

+ - =

Third-order ODE: 
dx
d y

dx
d y

y 03

3

2

2

+ + =

Fourth-order ODE: cosx
dx
d y

y x2
4

4

+ =

As with polynomials, generally speaking, a higher-order DE is more difficult to
solve than one of lower order.

Linear DEs
What constitutes a linear differential equation depends slightly on who you
ask. For practical purposes, a linear first-order DE fits into the following form:

dx
dy

+ a(x)y = b(x)
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where a(x) and b(x) are functions of x. Here are a few examples of linear first-
order DEs:

dx
dy

+ y = x

dx
dy

+ 4xy = –ln x

dx
dy

– y sin x = ex

Linear DEs can often be solved, or at least simplified, using an integrating
factor. I show you how to do this later in this chapter.

A linear second-degree DE fits into the following form:

a
dx
d y

b dx
dy

cy 02

2

+ + =

where a, b, and c are all constants. Here are some examples:

dx
d y

dx
dy

y3 4 02

2

+ + =

dx
d y

dx
dy

y2 5 6 02

2

+ + =

dx
d y

02

2

=

Note that the constant a can always be reduced to 1, resulting in adjustments
to the other two coefficients. Linear second-degree DEs are usually an impor-
tant topic in a college-level course in differential equations. Solving them
requires knowledge of matrices and complex numbers that is beyond the
scope of this book.

Looking more closely at DEs
You don’t have to play professional baseball to enjoy baseball. Instead, you
can enjoy the game from the bleachers or, if you prefer, from a nice cushy
chair in front of the TV. Similarly, you don’t have to get too deep into differen-
tial equations to gain a general understanding of how they work. In this sec-
tion, I give you front-row seats to the game of differential equations.

How every integral is a DE
The integral is a particular example of a more general type of equation — the
differential equation. To see how this is so, suppose that you’re working with
this nice little integral:

cosy x dx= #
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Differentiating both sides turns it into a DE:

cosdx
dy

x=

Of course, you know how to solve this DE by thinking of it as an integral:

y = sin x + C

So in general, when a DE is of the form

dx
dy

= f(x)

with f(x) an arbitrary function of x, you can express that DE as an integral and
solve it by integrating.

Why building DEs is easier than solving them
The reason that the DE in the last section is so simple to solve is that the
derivative is isolated on one side of the equation. DEs attain a new level of
difficulty when the derivative isn’t isolated.

A good analogy can be made in lower math, when you make the jump from
arithmetic to algebra. For example, here’s an arithmetic problem:

x = 20 – (42 + 3)

Even though this is technically an algebra problem, you can solve it without
algebra because x is isolated at the start of the problem. However, the ball-
game changes when x becomes more enmeshed in the equation. For example:

2x3 – x2 + 5x – 17 = 0

Arithmetic isn’t strong enough for this problem, so algebra takes over.
Similarly, when derivatives get entangled into the fabric of an equation —
as in most of the DEs I show you earlier in “Classifying DEs” — integrating is
no longer effective and the search for new methods begins.

Although solving DEs is often tricky, building them is easy. For example, sup-
pose that you start with this simple quadratic equation:

y = 3x2 + 4x – 5

Now, find the first and second derivatives:

dx
dy

= 6x + 4

dx
d y

2

2

= 6
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Adding up the left and right sides of all three equations gives you the follow-
ing differential equation:

y + dx
dy

+ 
dx
d y

2

2

= 3x2 + 10x + 5

Because you built the equation yourself, you know what y equals. But if you
hand this equation off to some other students, they probably wouldn’t be
able to guess how you built it, so they would have to do some work to solve it
for y. For example, here’s another DE:

y + dx
dy

+ 
dx
d y

2

2

+ 
dx
d y

3

2

= 0

This equation probably looks difficult because you don’t have much informa-
tion. And yet, after I tell you the solution, it appears simple:

y = sin x dx
dy

= cos x

dx
d y

2

2

= –sin x
dx
d y

4

3

= –cos x

But even after you have the solution, how do you know whether it’s the only
solution? For starters, y = –sin x, y = cos x, and y = –cos x are all solutions. Do
other solutions exist? How do you find them? And how do you know when
you have them all?

Another difficulty arises when y itself becomes tangled up in the equation.
For example, how do you solve this equation for y?

sin
dx
dy x

e y=

As you can see, differential equations contain treacherous subtleties that you
don’t find in basic calculus.

Checking DE solutions
Even if you don’t know how to find a solution to a differential equation, you
can always check whether a proposed solution works. This is simply a matter
of plugging the proposed value of the dependent variable — I use y through-
out this chapter — into both sides of the equation to see whether equality is
maintained.

For example, here’s a DE:

dx
dy

= 3y + 4e3x cos x

You may not have a clue how to begin solving this DE, but imagine that an
angel lands on your pen and offers you this solution:

y = 4e3x sin x
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You can check to see whether this angel really knows math by plugging in
this value of y as follows:

dx
dy

= 3y + 4e3x cos x

dx
d 4e3x sin x = 3(4e3x sin x) + 4e3x cos x

4(3e3x sin x + e3x cos x) = 12 e3x sin x + 4e3x cos x

= 12 e3x sin x + 4e3x cos x = 12 e3x sin x + 4e3x cos x

Because the left and right sides of the equation are equal, the angel’s solution
checks out.

Solving Differential Equations
In this section, I show you how to solve a few types of DEs. First, you solve
everybody’s favorite DE, the separable equation. Next, you put this under-
standing to work to solve an initial-value problem (IVP). Finally, I show you
how to solve a linear first-order DE by using an integrating factor.

Solving separable equations
Differential equations become harder to solve the more entangled they
become. In certain cases, however, an equation that looks all tangled up is
actually easy to tease apart. Equations of this kind are called separable equa-
tions (or autonomous equations), and they fit into the following form:

dx
dy

= f(x) · g(y)

Separable equations are relatively easy to solve. For example, suppose that
you want to solve the following problem:

sin
dx
dy x

e y=

You can think of the symbol dx
dy

as a fraction and isolate the x and y terms of 

this equation on opposite sides of the equal sign:

ey dy = sin x dx

Now, integrate both sides:

sindy x dxe y = ##

ey + C1 = –cos x + C2
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In an important sense, the previous step is questionable because the variable
of integration is different on each side of the equal sign. You may think “No
problem, it’s all integration!” But imagine if you tried to divide one side of an
equation by 2 and the other by 3, and then laughed it off with “It’s all divi-
sion!” Clearly, you’d have a problem. The good news, however, is that for
technical reasons beyond the scope of this book, integrating both sides by
different variables actually produces the correct answer.

C1 and C2 are both constants, so you can use the equation C = C2 – C1 to sim-
plify the equation:

ey = –cos x + C

Next, use a natural log to undo the exponent, and then simplify:

ln e y = ln (–cos x + C)

y = ln (–cos x + C)

To check this solution, substitute this value for y into both sides of the origi-
nal equation:

sin
dx
dy x

e y=

ln cos sin
dx
d x C x

eln cos x C
- + =

- =
^

]
h

g

ln cos cos
sin

dx
d x C x C

x
- + =

- +
^ h

cos sin cos
sin

x C x x C
x1 :

- +
=

- +

cos
sin

cos
sin

x C
x

x C
x

- +
=

- +

Solving initial-value problems (IVPs)
In Chapter 3, I show you that the definite integral is a particular example of a
whole family of indefinite integrals. In a similar way, an initial-value problem
(IVP) is a particular example of a solution to a differential equation. Every IVP
gives you extra information — called an initial value — that allows you to use
the general solution to a DE to obtain a particular solution.
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For example, here’s an initial-value problem:

dx
dy

= y sec2 x y(0) = 5

This problem includes not only a DE, but also an additional equation. To
understand what this equation tells you, remember that y is a dependent vari-
able, a function of x. So, the notation y(0) = 5 means “when x = 0, y = 5.” You
see how this information comes into play as I continue with this example.

To solve an IVP, you first have to solve the DE. Do this by finding its general
solution without worrying about the initial value. Fortunately, this DE is a
separable equation, which you know how to solve from the last section:

y
1 dy = sec2 x dx

Integrate both sides:

secy dy x dx1 2= ##

ln y = tan x + C

In this last step, I use C to consolidate the constants of integration from
both sides of the equation into a single constant C. (If this doesn’t make
sense, I explain why in “Solving separable equations” earlier in this chapter.)
Next, I undo the natural log by using e:

eln y = etan x + C

y = etan x · eC

Because eC is a constant, this equation can be further simplified by using the
substitution D = eC:

y = Detan x

Before moving on, check to make sure that this solution is correct by substi-
tuting this value of y into both sides of the original equation:

dx
dy

= y sec2 x

dx
d Detan x = Detan x sec2 x

Detan x sec2 x = Detan x sec2 x
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This checks out, so y = Detan x is, indeed, the general solution to the DE. To
solve the initial-value problem, however, I need to find the specific value of
the variable D by using the additional information I have: When x = 0, y = 5.
Plugging both of these values into the equation makes it possible to solve
for D:

5 = Detan 0

5 = De0

5 = D

Now, plug this value of D back into the general solution of the problem to get
the IVP solution:

y = 5etan x

This solution satisfies not only the differential equation dx
dy

= y sec2 x but also
the initial value y(0) = 5.

Using an integrating factor
As I mention earlier in this chapter, in “Classifying DEs,” a linear first-order
equation takes the following form:

dx
dy

+ a(x)y = b(x)

A clever method for solving DEs in this form involves multiplying the entire
equation by an integrating factor. Follow these steps:

1. Calculate the integrating factor.

2. Multiply the DE by this integrating factor.

3. Restate the left side of the equation as a single derivative.

4. Integrate both sides of the equation and solve for y.

Don’t worry if these steps don’t mean much to you. In the upcoming sections,
I show you what an integrating factor is and how to use it to solve linear first-
order DEs.
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Getting very lucky
To help you understand how multiplying by an integrating factor works, I set
up an equation that practically solves itself — that is, if you know what to do:

dx
dy

x
y2

+ = 0

Notice that this is a linear first-degree DE, with a(x) = x
2 and b(x) = 0. I now

tweak this equation by multiplying every term by x2 (you see why shortly):

dx
dy

x x
y

x x
2

02 2 2+ =$ $ $

Next, I use algebra to do a little simplifying and rearranging:

dx
dy

· x2 + 2x · y = 0

Now, here’s where I appear to get extremely lucky: The two terms on the left
side of the equation just happen to be the result of the application of the
Product Rule to the expression y · x2 (for more on the Product Rule, see
Chapter 2):

dx
d (y · x2) = dx

dy
· x2 + 2x · y

Notice that the right side of this equation is exactly the same as the left side
of the previous equation. So I can make the following substitution:

dx
d (y · x2) = 0

Now, to undo the derivative on the left side, I integrate both sides, and then I
solve for y:

dx
d y x dx dx02 =$ ## _ i; E

y · x2 = C

y = 
x
C

2

To check this solution, I plug this value of y back into the original equation:

dx
dy

x
y2

+ = 0

dx
d

x
C

x x
C2

2 2+ $ = 0

x
C

x
C2 2

3 3
-

+ = 0

0 = 0
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Making your luck
The previous example works because I found a way to multiply the entire
equation by a factor that made the left side of the equation look like a deriva-
tive resulting from the Product Rule. Although this looked lucky, if you know
what to multiply by, every linear first-order DE can be transformed in this way.
Recall that the form of a linear first-order DE is as follows:

dx
dy

+ a(x)y = b(x)

The trick is to multiply the DE by an integrating factor based on a(x). Here’s
the integrating factor:

e ( )a x dx#

How the integrating factor is originally derived is beyond the scope of this
book. All you need to know here is that it works.

For example, in the previous problem, you know that a(x) = x
2 . So here’s how

to find the integrating factor:

e e e( ) lna x dx x dx x2 2= =# #

Remember that 2 ln x = ln x2, so:

e ln x 2

= x2

As you can see, the integrating factor x2 is the exact value that I multiplied by
to solve the problem. To see how this process works now that you know the
trick, here’s another DE to solve:

dx
dy

+ 3y = ex

In this case, a(x) = 3, so compute the integrating factor as follows:

e e e( )a x dx dx x3 3= =# #

Now, multiply every term in the equation by this factor:

dx
dy

· e3x + 3y · e3x = ex· e3x

If you like, use algebra to simplify the right side and rearrange the left side:

dx
dy

· e3x + 3e3x · y = e4x
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Now, you can see how the left side of this equation looks like the result of the
Product Rule applied to evaluate the following derivative:

dx
d (y · e3x) = dx

dy
· e3x + 3e3x · y

Because the right side of this equation is the same as the left side of the pre-
vious equation, I can make the following substitution:

dx
d (y · e3x) = e4x

Notice that I change the left side of the equation by using the Product Rule in
reverse. That is, I’m expressing the whole left side as a single derivative. Now,
I can integrate both sides to undo this derivative:

dx
d y dx dxe ex x3 4=$# #_ i; E

y · e3x = 4
e x4

+ C

Now, solve for y and simplify:

y = C
4e
e

ex

x

x3

4

3+ = 4
e x

+ Ce–3x

To check this answer, substitute this value of y back into the original DE:

dx
dy

+ 3y = ex

dx
d C C4 3 4

e e e e
x

x
x

x3 3+ + +- -
c cm m = ex

C C4 3 4
3 3e e e e

x
x

x
x3 3- + +- - = ex

4 4
3e ex x

+ = ex

ex = ex

As if by magic, this answer checks out, so the solution is valid.
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In this part . . .

As a special bonus, here are two top-ten lists on 
calculus-related topics: ten important Calculus II

“aha” moments and ten useful test-taking tips.
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Chapter 16

Ten “Aha!” Insights in Calculus II
In This Chapter
� Understanding the key concepts of integration

� Distinguishing the definite integral from the indefinite integral

� Knowing the basics of infinite series

O kay, here you are near the end of the book. You read every single word
that I wrote, memorized the key formulas, and worked through all the

problems. You’re all set to ace your final exam, and you’ve earned it. Good for
you! (Or maybe you just picked up the book and skipped to the end. That’s
fine, too! This is a great place to get an overview of what this Calculus II stuff
is all about.)

But still, you have this sneaking suspicion that you’re stuck in the middle of
the forest and can’t see it because of all those darn trees. Forget the equa-
tions for a moment and spend five minutes looking over these top ten “Aha!”
insights. When you understand them, you have a solid conceptual framework
for Calculus II.

Integrating Means Finding the Area
Finding the area of a polygon or circle is easy. Integration is all about finding
the area of shapes with weird edges that are hard to work with. These edges
may be the curves that result from polynomials, exponents, logarithms,
trig functions, or inverse trig functions, or the products and compositions
of these functions.

Integration gives you a concrete way to look at this question, known as the
area problem. No matter how complicated integration gets, you can always
understand what you’re working on in terms of this simple question: “How
does what I’m doing help me find an area?”

See Chapter 1 for more about the relationship between integration and area.
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When You Integrate, Area Means
Signed Area

In the real world, area is always positive. For example, there’s no such thing
as a piece of land that’s –4 square miles in area. This concept of area is called
unsigned area.

But on the Cartesian graph in the context of integration, area is measured as
signed area, with area below the x-axis considered to be negative area.

In this context, a 2-x-2-unit square below the x-axis is considered to be –4
square units in signed area. Similarly, a 2-x-2-unit square that’s divided in half
by the x-axis is considered to have an area of 0.

The definite integral always produces the signed area between a curve and the
x-axis, within the limits of integration. So if an application calls for the unsigned
area, you need to measure the positive area and negative area separately,
change the sign of the negative area, and add these two results together.

See Chapter 3 for more about signed area.

Integrating Is Just Fancy Addition
To measure the area of an irregularly shaped polygon, a good first step is to
cut it into smaller shapes that you know how to measure — for example, tri-
angles and rectangles — and then add up the areas of these shapes.

Integration works on the same principle. It allows you to slice a shape into
smaller shapes that approximate the area that you’re trying to measure, and
then add up the pieces. In fact, the integral sign # itself is simply an elon-
gated S, which stands for sum.

See Chapter 1 for more about how integration relates to addition.

Integration Uses Infinitely Many
Infinitely Thin Slices

Here’s where integration differs from other methods of measuring area:
Integration allows you to slice an area into infinitely many pieces, all of which
are infinitely thin, and then add up these pieces to find the total area.
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Or, to put a slightly more mathematical spin on it: The definite integral is the
limit of the total area of all these slices as the number of slices approaches
infinity and the thickness of each slice approaches 0.

This concept is also useful when you’re trying to find volume, as I show you
in Chapter 10.

See Chapter 1 for more about how this concept of infinite slicing relates to
integration.

Integration Contains a Slack Factor
Math is a harsh mistress. A small error at the beginning of a problem often
leads to a big mistake by the end.

So finding out that you can thin-slice an area in a bunch of different ways
and still get the correct answer is refreshing. Some of these methods for thin-
slicing include left rectangles, right rectangles, and the midpoint rectangles.
I cover them all in Chapter 3.

This slack factor, as I call it, comes about because integration exploits an infi-
nite sequence of successive approximations. Each approximation brings you
closer to the answer that you’re seeking. So, no matter what route you take
to get there, an infinite number of such approximations brings you to the
answer.

See Chapter 3 for more about the distinction between approximating and
evaluating integrals.

A Definite Integral Evaluates 
to a Number

A definite integral represents the well-defined area of a shape on a graph. You
can represent any such area as a number of square units, so the definite inte-
gral is a number.

See Chapter 3 for more about the definite integral.
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An Indefinite Integral Evaluates 
to a Function

An indefinite integral is a template that allows you to calculate an infinite
number of related definite integrals by plugging in some parameters. In math,
such a template is called a function.

The input values to an indefinite integral are the two limits of integration.
Specifying these two values turns the indefinite integral into a definite inte-
gral, which then outputs a number representing an area.

But if you don’t specify the limits of integration, you can still evaluate an indef-
inite integral as a function. The process of finding an indefinite integral turns
an input function (for example, cos x) into an output function (sin x + C).

See Chapter 3 for more about the indefinite integral and Part II for a variety of
techniques for evaluating indefinite integrals.

Integration Is Inverse Differentiation
Integration and differentiation are inverse operations: Either of these opera-
tions undoes the other (up to a constant C). Another way to say this is that
integration is anti-differentiation.

Here’s an example of how differentiation undoes integration:

x dx x C5 4
53 4= +#

dx
d

4
5 x4 + C = 5x3

As you can see, integrating a function and then differentiating the result 
produces the function that you started with.

Now, here’s an example of how integration undoes differentiation:

dx
d sin x = cos x

cos sinx dx x C= +#

As you can see, differentiating a function and then integrating the result pro-
duces the function that you started with, plus a constant C.
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See Part II for more on how this inverse relationship between integration and
differentiation provides a variety of clever methods for integrating compli-
cated functions.

Every Infinite Series Has
Two Related Sequences

Every infinite series has two related sequences that are important for under-
standing how that series works: its defining sequence and its sequence of
partial sums.

The defining sequence of a series is simply the sequence that defines the
series in the first place. For example, the series

. . .n
1 1 2

1
3
1

4
1

5
1

n 1
= + + + + +

3

=

!

has the defining sequence

, , , ,n
1 1 2

1
3
1

4
1

5
1 f=' '1 1

Notice that the same function — in this case, n
1 — appears in the shorter

notation for both the series and its defining sequence.

The sequence of partial sums of a series is the sequence that results when you
successively add a finite number of terms. For example, the previous series
has the following sequence of partial sums:

, , , , ,1 2
3

6
11

12
25

60
137 f

Notice that a series may diverge while its defining sequence converges, as in
this example. However, a series and its sequence of partial sums always con-
verge or diverge together. In fact, the definition of convergence for a series is
based upon the behavior of its sequence of partial sums (see the next section
for more on convergence and divergence).

See Part IV for more about infinite series.
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Every Infinite Series Either 
Converges or Diverges

Every infinite series either converges or diverges, with no exceptions.

A series converges when it evaluates to (equals) a real number. For example:

. . .2
1

2
1

4
1

8
1

16
1 1

n

n 1
= + + + + =

3

=

! c m

On the other hand, a series diverges when it doesn’t evaluate to a real
number. Divergence can happen in two different ways. The more common
type of divergence is when the series explodes to ∞ or –∞. For example:

. . .n 1 2 3 4
n 1

= + + + +
3

=

!

Clearly, this series doesn’t add up to a real number — it just keeps getting
bigger and bigger forever.

Another type of divergence occurs when a series bounces forever among two
or more values. This happens only when a series is alternating (see Chapter 12
for more on alternating series). For example:

. . .1 1 1 1 1
n

n 1
- = - + - + -

3

=

! ^ h

The sequence of partial sums (see the previous section) for this series alter-
nates forever between –1 and 0, never settling in to a single value, so the
series diverges.

See Part IV for more about infinite series.
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Chapter 17

Ten Tips to Take to the Test
In This Chapter
� Staying calm when the test is passed out

� Remembering those dxs and + Cs

� Getting unstuck

� Checking for mistakes

I’ve never met anyone who loved taking a math test. The pressure is on,
the time is short, and that formula that you can’t quite remember is out of

reach. Unfortunately, exams are a part of every student’s life. Here are my top
ten suggestions to make test-taking just a little bit easier.

Breathe
This is always good advice — after all, where would you be if you weren’t
breathing? Well, not a very nice place at all.

A lot of what you may feel when facing a test — for example, butterflies in
your stomach, sweaty palms, or trembling — is simply a physical reaction to
stress that’s caused by adrenalin. Your body is preparing you for a fight-or-
flight response, but with a test, you have nothing to fight and nowhere to fly.

A little deep breathing is a simple physical exertion that can help dissipate
the adrenalin and calm you down. So, while you’re waiting for the professor
to arrive and hand out the exams, take a few deep breaths in and out. If you
like, picture serenity and deep knowledge of all things mathematical entering
your body on the in-breath, and all the bad stuff exiting on the out-breath.
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Start by Reading through the Exam
When you receive your exam, take a minute to read through it so that you
know what you’re up against. This practice starts your brain working (con-
sciously or not) on the problems.

While you’re reading, see whether you can find a problem that looks easier to
you than the others (see the next section).

Solve the Easiest Problem First
After the initial read-through, turn to the page with the easiest problem
and solve it. This warm-up gets your brain working and usually reduces
your anxiety.

Don’t Forget to Write dx and + C
Remember to include those pesky little dxs in every integration statement.
They need to be there, and some professors take it very personally when you
don’t include them. You have absolutely no reason to lose points over some-
thing so trivial.

And don’t forget that the solution to every indefinite integral ends with + C (or
whatever constant you choose). No exceptions! As with the dxs, omitting this
constant can cost you points on an exam, so get in the habit of including it.

Take the Easy Way Out
Whenever Possible

In Chapters 4 through 8, I introduce the integration techniques in the order of
difficulty. Before you jump in to your calculation, take a moment to walk
through all the methods you know, from easiest to hardest.

Always check first to see whether you know a simple formula: For example, 

x x
dx

1
1

2-
# may cause you to panic until you remember that the answer 
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is simply arcsec x + C. If no formula exists, think through whether a simple
variable substitution is possible. What about integration by parts? Your last
resorts are always trig substitution and integration with partial fractions.

When you’re working on solving area problems, stay open to the possibility
that calculus may not be necessary. For example, you don’t need calculus to
find the area under a straight line or semicircle. So, before you start integrat-
ing, step back for a moment to see whether you can spot an easier way.

If You Get Stuck, Scribble
When you look at a problem and you just don’t know which way to go, grab
a piece of scratch paper and scribble everything you can think of, without
trying to make sense of it.

Use algebra, trig identities, and variable substitutions of all kinds. Write
series in both sigma notation and expanded notation. Draw pictures and
graphs. Write it all down, even the ideas that seem worthless.

You may find that this process jogs your brain. Even copying the problem —
equations, graphs, and all — can sometimes help you to notice something
important that you missed in your first reading of the question.

If You Really Get Stuck, Move On
I see no sense in beating your head against a brick wall, unless you like get-
ting brick dust in your hair. Likewise, I see no sense in spending the whole
exam frozen in front of one problem.

So, after you scribble and scribble some more (see the previous section) and
you’re still getting nowhere with a problem, move on. You may as well make
the most of the time you’re given by solving the problems that you can solve.
What’s more, many problems seem easier on the second try. And working on
other areas of the test may remind you of some important information that
you’d forgotten.

Check Your Answers
Toward the end of the test, especially if you’re stuck, take a moment to check
over some of the problems that you already completed. Does what you’ve writ-
ten still make sense? If you see any missing dxs or + Cs, fill them in. Make sure
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you didn’t drop any minus signs. Most important, do a reality check of your
answer compared with the original problem to see whether it makes sense.

For example, suppose that you’re integrating to find an area someplace inside
a 2 x 2 region on a graph, and your answer is 7 trillion. Obviously, something
went wrong. If you have time to find out what happened, trace back over your
steps.

Although fixing a problem on an exam can be tedious, it usually takes less time
than starting (and maybe not finishing) a brand-new problem from scratch.

If an Answer Doesn’t Make
Sense, Acknowledge It

Suppose that you’re integrating to find an area someplace inside a 2 x 2
region on a graph, and your answer is 7 trillion. Obviously, something went
wrong. If you don’t have time to find out what happened, write a note to the
professor acknowledging the problem.

Writing such a note lets your professor know that your conceptual understand-
ing of the problem is okay — that is, you get the idea that integration means
area. So, if it turns out that your calculation got messed up because of a minor
mistake like a lost decimal point, you’ll probably lose only a couple of points.

Repeat the Mantra “I’m Doing My
Best,” and Then Do Your Best

All you can do is your best, and even the best math student occasionally for-
gets a formula or stares at an exam question and goes “Huh?”

When these moments arrive, and they will, you can do a shame spiral about
all the studying you shoulda, coulda, woulda done. But there’s no cheese
down that tunnel. You can also drop your pencil, leave the room, quit school,
fly to Tibet, and join a monastery. This plan of action is also not recom-
mended unless you’re fluent in Tibetan (which is way harder than calculus!).

Instead, breathe (see the section on breathing earlier in this chapter) and
gently remind yourself “I’m doing my best.” And then do your best with what
you have. Perfection is not of this world, but if you can cut yourself a bit of
slack when you’re under pressure, you’ll probably end up doing better than
you would’ve otherwise.

352 Part VI: The Part of Tens 

26_225226-ch17.qxd  5/2/08  6:48 PM  Page 352



• Symbols & Numerics •
φ spherical coordinate, 318
� symbol, 17
θ spherical coordinate, 318
Σ symbol, 24, 51–52
! symbol, 38
3-D coordinate, 314–319
3-D problems

meat-slicer method
overview, 220
pyramids, 222–224
rotating solids, 225–226
solids between two surfaces, 230–234
solids of revolution, 227–228
solids with congruent cross sections,

220–221
solids with similar cross sections,

221–222
weird solids, 224–225

overview, 219–220
shell method

overview, 234
peeling and measuring can of soup,

235–236
use of, 236–238

surface of revolution, 229–230
tips for solving, 238–239

• A •
absolute convergence, 280–281
adding vector, 313–314
advanced math

differential equations, 34
Fourier analysis, 34
multivariable calculus, 33
numerical analysis, 34–35
real analysis, 35

algebraic function, DI-agonal Method,
145–148

algebraic times cosine function, 139

algebraic times exponential function, 139
algebraic times sine function, 139
algorithm, 35
alternating series

absolute convergence, 280–281
based on convergent positive series, 277
conditional convergence, 280–281
defined, 257
divergence, 348
making new series from old, 276
overview, 261, 275
sequence of partial sums, 248
testing, 277–279, 281–282
two forms of basic, 276

alternative 3-D coordinate system, 316–319
alternative indeterminate forms of limits,

68–72
altitude, 318
analytic geometry, 12–14
angle, measuring, 3
angular distance, 50
anti-derivative, 28, 73
anti-differentiation

defined, 4
indefinite integrals, 96–97
in integration, 94, 346

approximate integration
overview, 74
with rectangles, 74–77
Simpson’s Rule, 80–83
slack factor, 78
Trapezoid Rule, 79–80

approximating
area problem, 25–27
definite integrals, 23
functions in Taylor series, 300–301
in numerical analysis, 35

arc notation, 58
arccos x function, 138, 143
arccot x function, 138, 143
Archimedes, 13
arc-length formula, 5, 215–217, 229
arcsin x function, 138, 143

Index
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arctan x function, 138, 143
area function, 92–94
area problems. See also approximate

integration; definite integral; indefinite
integral

advanced math
differential equations, 34
Fourier analysis, 34
multivariable calculus, 33
numerical analysis, 34–35
real analysis, 35

building formula
height, 25
limiting margin of error, 23–24
other ways of approximating, 25–27
overview, 22–23
sigma notation, 24–25
width, 24

calculating arc length, 215–217
classical versus analytic geometry, 12–14
generalizing, 15–16
improper integral

horizontally infinite, 199–201
overview, 199
vertically infinite, 201–204

infinite series
convergent versus divergent, 32–33
distinguishing sequences from, 31
evaluating, 32

Mean Value Theorem for Integrals, 213–215
overview, 11–12, 197
rule for, 198–199
slicing space into rectangles, 19–22
solving with integration

finding area between curves, 29
measuring curve lengths, 29–30
overview, 28–29, 343
solid of revolution, 30–31

solving with more than one function
finding area between two functions,

206–209
finding area under functions, 205–206
measuring unsigned areas, 211–213
overview, 204–205
signed areas, 209–211

solving without Riemann sum formula,
97–99

asymptote, 47, 202

autonomous equation, 333
axe

in Cartesian coordinate system, 314
in cylindrical coordinate systems, 316
x

area problems, 15
Cartesian coordinates, 314
definite integrals, 12
signed areas, 209

• B •
Barrow, Isaac, 91
basic anti-derivative, 106–107
basic integral

basic anti-derivatives, 106–107
integration rules, 107–110
overview, 106

benchmark series, 264, 267
boldfaced text, 3
braces in notations, 244
breathing exercise, 349

• C •
Calculus I

derivatives
limit formula for, 56
notation for, 56–57
overview, 55–56

differentiation
Chain Rule, 62–64
Constant Multiple Rule, 59
memorizing key derivatives, 57–59
overview, 57
Power Rule, 60
Product Rule, 61
Quotient Rule, 61–62
Sum Rule, 59

limits, 53–55
overview, 37, 53

Calculus II
definite integrals, 345
indefinite integrals, 346
infinite series

convergence or divergence, 348
related sequences, 347
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integration
as fancy addition, 344
finding area, 343
as inverse differentiation, 346–347
signed areas, 344
slack factor, 345
slices, 344–345

overview, 1–8, 343
Calculus III. See also vector

dimension
3-D Cartesian coordinates, 314–315
alternative 3-D coordinate systems,

316–319
functions of several variables, 319–321
multiple integrals

evaluating, 324–326
measuring volume under surface,

323–324
overview, 323

overview, 33, 307
partial derivatives

evaluating, 322–323
measuring slope in three dimensions,

321–322
overview, 321

Cartesian coordinate
3-D, 314–315
analytic geometry, 13
versus polar coordinates, 50–51
vector basics, 308

case, trig substitution
distinguishing, 162–163
secant, 169–171
sine, 164–166
tangent, 166–169

Chain Rule
differentiating functions, 62–64, 106
finding derivative of functions, 115
finding integrals

of nested functions, 120
of products, 121

checking test answer, 351–352
circle

area problems, 12
as cross sections, 227, 239

circumference of circle formula, 229
classical geometry, 12–14
coefficient, 310

comma, 252
comparison test

direct, 265–267
limit, 267–270
overview, 264–265

composition of function
Chain Rule, 62–63
finding integrals of, 118–120
integrating function multiplied by set of,

121–122
variable substitution

integrating with, 123–125
overview, 117
shortcut for, 125–128

computing integrals, 114
conceptual understanding, 352
conditional convergence, 280–281
congruent cross section, volume of solids

with, 220–221
conic section, 11
Constant Multiple Rule

differentiation, 59
finding integrals of nested functions, 119
finding values using roots, 182
integration

overview, 108
polynomials, 110
power series, 287

moving denominator, 154
to separate integrals, 153
for series, 250–251

constant of integration C, 97, 99
constant, 310
continuity, 115
continuous function, 19, 47–48
convergence

absolute, 280–281
conditional, 280–281
intervals of in power series, 288–290
sequences, 245–246
series, 32–33, 52, 277
Taylor series, 298–300
tests of

integral, 270–272
nth-term, 263
one-way, 263–264
overview, 261
ratio, 273–274
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convergence, tests of (continued)
root, 274–275
starting, 262
two-way, 264

coordinate
alternative 3-D, 316–319
Cartesian

3-D, 314–315
analytic geometry, 13
vector basics, 308

cylindrical, 316–317
polar, 50–51, 314
spherical, 317–319

cos x function, 293
cosecant, 159–161
cosine

double-angle identities for, 50
integrating powers of, 152–155

cosine function, 46, 148
cosine times exponential function, 139
cotangent, 159–161
counting numbers, summation formula for,

83–84
cross section

circular, 227, 239
horizontal, 238
meat-slicer method

area between curves, 231–233
congruent, 220–221
rotating solids, 225–226
similar, 221–222
solids of revolution, 228
volume of pyramids, 223
weird solids, 224–225

vertical, 238
cubic number, summation formula for,

84–85
curve

finding area between, 29
measuring lengths, 29–30
measuring unsigned area between,

211–213
solid of revolution, 30

cylinder, 220
cylindrical coordinate, 316–317

• D •
DE (differential equation)

building versus solving, 331–332
checking solutions, 332–333
defined, 6
integrals, 330–331
linear, 329–330
order of, 329
ordinary and partial, 328–329
overview, 34, 327–328
solving

initial-value problems, 334–336
separable equations, 333–334
using integrating factor, 336–339

defining sequence, 252–253, 347
definite integral

approximate integration
overview, 74
with rectangles, 74–77
Simpson’s Rule, 80–83
slack factor, 78
Trapezoid Rule, 79–80

approximating, 23
area problem, 12, 16–19
in Calculus II, 345
defined, 4
Fundamental Theorem of Calculus

additional part of, 95
area function, 92–94
connecting slope and area, 94
overview, 89–91
slope, 92

indefinite integral
anti-differentiation, 96–97
versus definite, 101–102
overview, 95–96
signed areas, 99–101
solving without Riemann sum formula,

97–99
Mean Value Theorem for Integrals, 214
overview, 73
Riemann sum formula

defined, 4
evaluating limit, 89
expressing function as sum, 86–87
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limits of integration, 86
overview, 23–27, 85–86
solving problem, 88

signed areas, 344
summation formulas, 83–85
unsigned areas, 210
variable substitution to evaluate, 132–133

degree, 42, 187
denominators in partial fraction, 181
derivative. See also differentiation

defined, 33
limit formula for, 56
memorizing, 57–59, 106
notation for, 56–57
overview, 55–56
partial

evaluating, 322–323
measuring slope in three dimensions,

321–322
in multivariable calculus, 33
overview, 321

of trig functions, 58
determinate form of limit, 65–66
DI-agonal Method

algebraic functions, 145–148
inverse trig functions, 143–145
logarithmic functions, 141–143
overview, 140–141
trig functions, 148–150

Difference Rule, 59, 108
differentiability of polynomial, 285
differential equation (DE)

building versus solving, 331–332
checking solutions, 332–333
defined, 6
integrals, 330–331
linear, 329–330
order of, 329
ordinary and partial, 328–329
overview, 34, 327–328
solving

initial-value problems, 334–336
separable equations, 333–334
using integrating factor, 336–339

differentiation
Chain Rule, 62–64
Constant Multiple Rule, 59
formulas for inverse trig functions, 163

memorizing key derivatives, 57–59
overview, 57
Power Rule, 60
Product Rule, 61
Quotient Rule, 61–62
Sum Rule, 59

dimension in multivariable calculus
3-D Cartesian coordinates, 314–315
alternative 3-D coordinate systems,

316–319
discontinuous function, 115
discontinuous integrand, 203–204
distinct linear factor, 177–178
distinct quadratic factor, 178
divergence

sequences, 245–246
series, 32–33, 52
Taylor series, 298–300
tests of

integral, 270–272
nth-term, 263
one-way, 263–264
overview, 261
ratio, 273–274
root, 274–275
starting, 262
two-way, 264

division, polynomial, 188–191
does not exist (DNE), limit

common functions, 65
defined, 54
improper integral, 201
sequence, 246

double integral 323–325
double-angle identies, 50
dx constant, 350

• E •
elementary functions

advantages of polynomials, 285
drawbacks of, 284–285
overview, 284
representing

integrals as, 114–115
as polynomials, 285
as series, 285–286

ellipse, 13–14
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equation. See also differential equation (DE)
autonomous, 333
heat, 34
Laplace, 34
separable, 333–334
systems of, 182–183

error bound for Taylor series, 301–303
even power integration

cosines, 154–155
secants

with tangents, 155
without tangents, 157

sines, 154–155
tangents

with odd powers of secants, 158–159
without secants, 156–157

exam-taking tips, 349–352
exercise, breathing, 349
expanded notation, 247, 249–250
exponent

integrating
cotangents and cosecants, 159–160
sines and cosines, 152–155
tangents and secants, 155–159

negative, 40, 109, 160
Power Rule, 60
in Pre-Calculus, 39–41

exponential curve, 14, 224
exponential function, 44–45
expressing functions, 300–301
expression

of form f(x) · g(x), 129–130
of form f(x) · h(g(x)), 130–132

• F •
factorial, 38–39, 273
first-degree polynomial, 268
formula. See also Riemann sum formula

arc-length, 5, 215–217, 229
building for area problems

approximating definite integral, 23
height, 25
limiting margin of error, 23–24
other ways of approximating, 25–27
overview, 22–23

sigma notation, 24–25
width, 24

circumference of circle, 229
for finding surface of revolution, 229–230
half-angle, 228
for inverse trig functions, 163
limit, for derivatives, 56
summation, 83–85

Fourier analysis, 34
fourth-order ODE, 329
fractional coefficient, 190
fractional exponent, 60
fraction, 38–39. See also partial fraction
FTC (Fundamental Theorem of Calculus)

additional part of, 95
anti-derivatives, 106–107
area function, 92–94
connecting slope and area, 94
indefinite integrals, 73
overview, 28, 89–91
slope, 92

functions. See also individual functions by
type; nested function

area, in Fundamental Theorem of
Calculus, 92–94

DI-agonal Method
algebraic, 145–148
inverse trig, 143–145
logarithmic, 141–143

differentiating, 63–64
elementary

advantage of polynomials, 285
drawbacks of, 284–285
overview, 284
representing as polynomials, 285
representing as series, 285–286

expressing as series
cos x, 293
overview, 291
sin x, 291–292

graphing common
exponential, 44–45
linear and polynomial, 43–44
logarithmic, 45
trigonometric, 46–47
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horizontal transformations, 48
indefinite integrals, 28
integrating, multiplied by set of nested,

121–122
limits, 53–54, 65
Maclaurin series, 293–296
multiplied by functions, 123
overview, 283–284
power series

integrating, 287–288
interval of convergence, 288–290
overview, 286–287

related area functions, 94
representing integrals as, 114–115
Riemann sum formula, 86–87
of several variables, 319–321
solving area problems with more

than one
finding area between two, 206–209
finding area under, 205–206
measuring unsigned area, 211–213
overview, 204–205
signed areas, 209–211

substitution when one part differentiates
to another, 129–132

Taylor series
calculating error bounds for, 301–303
computing with, 297–298
constructing, 303–304
convergent and divergent, 298–300
expressing versus approximating,

300–301
overview, 296–297

transforming continuous, 47–48
trigonometric

derivatives of, 58–59
DI-agonal Method, 148–150
integrating combinations of, 160–161

vertical transformations, 48
Fundamental Theorem of Calculus (FTC)

additional part of, 95
anti-derivatives, 106–107
area function, 92–94
connecting slope and area, 94
indefinite integrals, 73
overview, 28, 89–91
slope, 92

• G •
Gauss, Karl Friedrich, 84
general expression, 87
general form of power series, 295
general solution, 334
generalizing area problem, 15–16
geometric series, 258, 286
geometry, 12–14
graphing common function

exponential and logarithmic, 44–45
linear and polynomial, 43–44
logarithmic, 45
trigonometric, 46–47

• H •
half-angle identities, 50, 154, 228
harmonic series

defined, 32
divergence of, 258–259
making new from old, 276
sequence of partial sums, 254

heat equation, 34
height

area problem, 25
of rectangles, 22

horizontal axes in polar coordinate
system, 316

horizontal cross section, 238
horizontal transformations of function, 48
horizontally infinite improper integral,

199–201
hyperbola, 14

• I •
identities

integration of trig functions using, 112–113
trig

even powers of sines and cosines, 156
half-angle, 154
important, 48–50
using to integrate trig functions, 112–113

using to tweak functions, 160–161
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improper integral
defined, 5
horizontally infinite, 199–201
overview, 199
vertically infinite, 201–204

improper polynomial fraction, 191
improper rational function

integrating
distinguishing from proper, 187
overview, 187
polynomial division, 188–191

overview, 173
incorrect test answer, 352
indefinite integral. See also integration by

parts; partial fraction; variable
substitution

anti-differentiation, 96–97
area problem, 27–28
in Calculus II, 346
versus definite integrals, 101–102
limits of integration, 17
overview, 4–5, 95–96
signed areas, 99–101
solving without Riemann sum formula,

97–99
indeterminate forms of limit

alternative, 68–72
L’Hospital’s Rule, 66–68
overview, 55, 65–66

infinite improper integral
horizontally, 199–201
vertically, 201–204

infinite sequence
convergent, 245–246
converting into infinite series, 31
divergent, 245–246
notation for, 244–245
overview, 244

infinite series. See also functions; test
alternating

absolute convergence, 280–281
based on convergent positive series, 277
conditional convergence, 280–281
defined, 257
divergence, 348
making new series from old, 276

overview, 275
sequence of partial sums, 248
testing, 277–279, 281–282
two forms of basic, 276

basics, 247–249
in Calculus II

convergence or divergence, 348
related sequences, 347

connecting with related sequences,
252–254

convergent versus divergent, 32–33
defined, 2
distinguishing from sequences, 31
evaluating, 32
expressing functions as

versus approximating, 300
cos x, 293
overview, 291
sin x, 291–292

geometric, 255–257
harmonic, 258
infinite sequences

convergent, 245–246
divergent, 245–246
notation for, 244–245
overview, 244

overview, 5–6, 243
power series

differentiating from other series, 295
integrating, 287–288
interval of convergence, 288–290
overview, 286–287

p-series, 257–259
representing elementary functions as,

285–286
sigma notation

Constant Multiple Rule, 250–251
overview, 249
Sum Rule, 251–252
ways to use, 250
writing in expanded form, 249–250

Sum Rule, 286
initial-value problem, 334–336
inner function, 63, 125–128
input values to indefinite integral, 346
integrability, 113–116
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integral. See also definite integral;
indefinite integral; partial fraction

computing, 114
Constant Multiple Rule, 119, 153
differential equations, 330–331
evaluating basic

anti-derivatives, 106–107
integration rules, 107–110
overview, 106

improper
horizontally infinite, 199–201
overview, 199
vertically infinite, 201–204

Mean Value Theorem for Integrals,
197, 213–215

multiple
evaluating, 324–326
measuring volume under surface,

323–324
in multivariable calculus, 33
overview, 323

Power Rule, 153
representing as functions, 114–115
Sum Rule, 136, 153
variable substitution

to evaluate definite, 132–133
of nested functions, 118–120
of product, 120–121

well defined, 115
integral test, 270–272
integrands, discontinuous, 203–204
integrating factor, 336–339
integration. See also 3-D problems; area

problems; definite integral; partial
fraction; trig substitution; variable
substitution

approximate
overview, 74
with rectangles, 74–77
Simpson’s Rule, 80–83
slack factor, 78
Trapezoid Rule, 79–80

asymptotic limits of, 202
in Calculus II

as fancy addition, 344
finding area, 343
as inverse differentiation, 346–347

signed areas, 344
slack factor, 345
slices, 344–345

defined, 2
evaluating basic integrals

17 basic anti-derivatives, 106–107
integration rules, 107–110
overview, 106

integrability, 113–116
overview, 4–5, 11, 105
polynomials, 110–111
power series, 287–288
rational expressions, 111
solving problems with

finding area between curves, 29
measuring curve lengths, 29–30
overview, 28–29
solid of revolution, 30–31

of trig functions using identities, 112–113
integration by parts

DI-agonal Method
algebraic functions, 145–148
inverse trig functions, 143–145
logarithmic functions, 141–143
overview, 140–141
trig functions, 148–150

overview, 135
reversing Product Rule, 136–137
use of, 137–139

intervals of convergence, 288–290
inverse identities, 49
inverse trig function

derivatives of, 58–59
DI-agonal Method, 143–145
integration by parts, 139

inverses of function, 225
italicized text, 3

• L •
Laplace equation, 34
latitude, 318
left rectangle, 25, 74–75
left-hand limits of integration, 74
Leibniz, Gottfried, 57, 91
Leibniz notation, 56–57
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length
calculating arc, 215–217
measuring curve, 29–30

L’Hospital’s Rule
alternative indeterminate forms, 68–72
determinate form of limits, 65–66
indeterminate form of limits, 65–66
limit comparison tests, 269
overview, 64–65
use of, 66–68

limit
alternative indeterminate, 68–72
asymptotic, of integration, 202
in Calculus I, 53–55
determinate form of, 65–66
does not exist

common functions, 65
defined, 54
improper integral, 201
sequence, 246

formulas for derivatives, 56
indeterminate form of, 65–66
of integration, 12, 15
Riemann sum formula, 86, 89

linear differential equation, 329–330
linear factor

distinct, 177–178
integrating partial fractions, 184
repeated, 178–179

linear function, 43–44
log composed with algebraic function, 139
log function, 139
log rolling, 71
log times algebraic function, 139
logarithmic curve, 14
logarithmic function

DI-agonal Method, 141–143
integration by parts, 138
overview, 45

longitude, 318

• M •
Maclaurin, Colin, 295
Maclaurin series, 291, 293–297
magnitude, vector, 310–311
margin of error, 23–24

Mean Value Theorem for Integrals,
197, 213–215

meat-slicer method
overview, 220
pyramids, 222–224
solids

with congruent cross sections, 220–221
of revolution, 227–228
rotating, 225–226
with similar cross sections, 221–222
between two different surfaces, 230–234
weird, 224–225

memorizing derivatives, 57–59, 106
method of exhaustion, 13
midpoint rectangle, 26
Midpoint Rule, 74, 76–77
minus sign, 56
monofont text, 3
multiple integral

evaluating, 324–326
measuring volume under surface, 323–324
in multivariable calculus, 33
overview, 323

multiplication, scalar, 311–312
multivariable calculus. See also vector

dimension
3-D Cartesian coordinates, 314–315
alternative 3-D coordinate systems,

316–319
functions of several variables, 319–321
multiple integrals

evaluating, 324–326
measuring volume under surface, 323–324
overview, 323

overview, 33, 307
partial derivatives

evaluating, 322–323
measuring slope in three dimensions,

321–322
overview, 321

• N •
natural log function

DI-agonal Method, 141–143
integration by parts, 138
overview, 45
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negative area, 99, 344
negative power

cotangents and cosecants, 160
overview, 40
Power Rule, 60, 109

nested function
Chain Rule, 62–63
finding integrals of, 118–120
integrating function multiplied by set of,

121–122
variable substitution

integrating with, 123–125
overview, 117
shortcut for, 125–128

Newton, Isaac, 57, 91
nonnegative integer exponent, 40
notation. See also sigma notation

arc, 58
braces in, 244
defined, 4
for derivatives, 56–57
expanded, 247, 249–250
for infinite sequences, 244–245
Leibniz, 56–57
trig, 41–42
with and without braces, 244

nth-term test, 256, 263, 279
numerators in partial fraction, 181
numerical analysis, 34–35

• O •
octant, 314
odd power integration

secants
with even powers of tangents, 158–159
without tangents, 157–158

sines and cosines, 152–153
tangents, 156

ODE (ordinary differential equation),
328–329

one-way test, 261, 263–264
ordinary differential equation (ODE),

328–329
outer function, 63, 125–128

• P •
pairing trig function, 160–161
parabola, 14
partial derivative

evaluating, 322–323
measuring slope in three dimensions,

321–322
in multivariable calculus, 33
overview, 321

partial differential equation (PDE),
34, 328–329

partial fraction
example, 191–193
integrating improper rationals

overview, 187
polynomial division, 188–191
versus proper rational expressions, 187

overview, 173–174
with rational expressions, 175–176
solving integrals by using

distinct linear factors, 177–178
distinct quadratic factors, 178
finding unknowns, 181–183
integrating, 184–186
overview, 176
repeated linear factors, 178–179
repeated quadratic factors, 179–180
setting up, 180–181

partial sum, sequences of, 253–254
past material. See Calculus I; L’Hospital’s

Rule; Pre-Calculus
PDE (partial differential equation),

34, 328–329
phi, 317
plotting cylindrical coordinate, 316
plus sign, 252
polar coordinate, 50–51, 314
polynomial

advantage of, 285
benchmark series, 268
converting from functions, 153
division, 188–191
elementary functions, 285
graphing common functions, 43–44
integration, 110–111
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polynomial (continued)
overview, 39
representing elementary functions as, 285
Taylor, 301–303

positive integer exponent, 40
positive series, 275, 277
power

integrating
cotangents and cosecants, 159–160
sines and cosines, 152–155
tangents and secants, 155–159

negative, 40, 109, 160
Power Rule, 60
in Pre-Calculus, 39–41

Power Rule
differentiation, 60
evaluating integrals, 153
integrating

overview, 109
polynomials, 110–111
power series, 287–288

power series
differentiating from other series, 295
integrating, 287–288
interval of convergence, 288–290
overview, 286–287

practice problem, 2
Pre-Calculus

asymptotes, 47
exponents, 39–41
factorials, 38–39
graphing common functions

exponential, 44–45
linear and polynomial, 43–44
logarithmic, 45
trigonometric, 46–47

important trig identities, 48–50
overview, 37–38
polar coordinates, 50–51
polynomials, 39
radians, 42–43
sigma notation, 51–52
transforming continuous functions, 47–48
trig notation, 41–42

precision, 35
prism, 220

product, integral of, 120–121
Product Rule

differentiation, 61, 106, 114
integration by parts, 135
linear first-order DEs, 338
reversing, 136–137, 339

proper rational expression, 173, 187
pyramid, volume of, 222–224

• Q •
quadratic factor

distinct, 178
of form (ax2 + bx + c), 185–186
of form (ax2 + c), 184–185
repeated, 179–180

quadrature method, 13
Quotient Rule, 61–62, 106

• R •
r spherical coordinate, 318
radian, 3, 42–43
ratio test, 273–274
rational expression

integration, 111
limit comparison tests, 268
partial fractions with, 174–176

rational power, 109
reading through exam, 350
real analysis, 7, 35
rectangle

approximate integration with, 74–77
approximating area with

left, 25
midpoint, 26
right, 26

in classical geometry, 12
finding height of, 22
slicing space into to calculate area, 19–22

rectangular coordinate, 3-D, 314–315
remainder

polynomial division with, 189–191
polynomial division without, 188–189

remainder term, Taylor, 283–284, 301–303
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repeated linear factor, 178–179
repeated quadratic factor, 179–180
reviews of past material. See Calculus I;

L’Hospital’s Rule; Pre-Calculus
revolution

solids of
meat-slicer method, 227–228
overview, 30–31

surfaces of, 229–230
Riemann, Bernhard, 91
Riemann sum, 12, 78
Riemann sum formula

calculating definite integral
calculating sum, 88
evaluating limit, 89
expressing function as sum, 86–87
limits of integration, 86
overview, 85–86
solving problem, 88

defined, 4
overview, 23–27

right rectangle, 26, 75–76
right-hand limit of integration, 75
root, 181–182
root test, 274–275
rotating problems, meat-slicer method,

225–226
rule. See also Constant Multiple Rule;

Power Rule; Sum Rule
for area problems, 198–199
Chain Rule

differentiating functions, 106
differentiation, 62–64
finding derivative of functions, 115
finding integral of nested functions, 120
finding integral of products, 121

Difference Rule, 59, 108
integration, 107–110
L’Hospital’s Rule

alternative indeterminate forms, 68–72
determinate form of limits, 65–66
indeterminate form of limits, 65–66
limit comparison tests, 269
overview, 64–65
use of, 66–68

Midpoint Rule, 74, 76–77
Product Rule

differentiation, 61, 106, 114
integration by parts, 135
linear first-order DEs, 338
reversing, 136–137, 339

Quotient Rule, 61–62, 106
Simpson’s Rule, 74, 80–83
Trapezoid Rule, 74, 79–80

Rumsey, Deborah, 37
Ryan, Mark, 37, 53

• S •
scalar, 308, 310
scalar multiplication, 311–312
scribbling during exam, 351
secant, integrating powers of, 155–159
secant case, trig substitution, 163–164,

169–171
second-degree polynomial, 268
second-order ODE, 329
separable equation, 333–334
sequence

connecting series with related, 252–254
infinite

convergent and divergent, 245–246
notations for, 244–245
overview, 244

overview, 31
of partial sums, 32, 248, 347

series. See infinite series
shell method

overview, 234
peeling and measuring can of soup,

235–236
use of, 236–238

shortcut
for intergrating nested functions, 128
for variable substitution of nested

functions, 125–128
sigma notation

area problem, 24–25
overview, 51–52, 247
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sigma notation (continued)
series

Constant Multiple Rule, 250–251
overview, 249–252
Sum Rule, 251–252
use of, 250
writing in expanded form, 249–250

signed area, 99–101, 209–211
similar cross sections, volume of solid

with, 221–222
Simpson’s Rule, 74, 80–83
sine

double-angle identities for, 50
expressing as series, 291–292
half-angle formulas for, 228
integrating powers of, 152–155
pairing with cosines, 161

sine case, trig substitution, 163–166
sine curve, 14
sine function, 46, 148
sine times exponential function, 139
slack factor, approximate integration, 78
slope

Fundamental Theorem of Calculus, 92, 94
measuring in three dimensions, 321–322

solid
meat-slicer method to find volume of

with congruent cross sections, 220–221
with similar cross sections, 221–222
between two different surfaces, 

230–234
weird, 224–225

overview, 219
solids of revolution

meat-slicer method, 227–228
overview, 30–31

specific form of power series, 295
spherical coordinate, 317–319
square identities, 49
square number, summation formula for, 84
straight-line distance, 215
study tip, 2
substitution. See trig substitution; variable

substitution
subtracting vector, 313–314
sum formula. See Riemann sum formula

Sum Rule
differentiation, 59
even powers of tangents with secants, 159
finding values using roots, 182
infinite series, 251–252, 286
integrating

overview, 108
polynomials, 110
power series, 287

to separate integrals, 153
solving rational expressions, 175–176
split integrals, 136
splitting functions, 154

summation formula, 83–85
surface, measuring under volume, 323–324
surface of revolution, 229–230
system of equation, 182–183

• T •
tangent

double-angle identities for, 50
integrating powers of, 155–159
pairing with secants, 161

tangent case, trig substitution, 163–164,
166–169

Taylor polynomial, 301
Taylor series

calculating error bounds for, 301–303
computing with, 297–298
constructing, 303–304
convergent, 298–300
divergent, 298–300
expressing versus approximating

functions, 300–301
versus other series, 295
overview, 296–297
remainder term, 283–284, 301–303

term, 244
test

alternating series, 277–279, 281–282
comparison

direct, 265–267
limit, 267–270
overview, 264–265
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of convergence and divergence
integral, 270–272
nth-term, 263
one-way, 263–264
overview, 261
ratio, 273–274
root, 274–275
starting, 262
two-way, 264

failing, 264
passing, 264
of p-series, 258–259
tips for taking math, 349–352

theta, 317
third-order ODE, 329
three-dimensional coordinate, 314–319
three-dimensional problem

meat-slicer method
overview, 220
pyramids, 222–224
rotating solids, 225–226
solids between two surfaces, 230–234
solids of revolution, 227–228
solids with congruent cross sections,

220–221
solids with similar cross sections,

221–222
weird solids, 224–225

overview, 219–220
shell method

overview, 234
peeling and measuring can of soup,

235–236
use of, 236–238

surface of revolution, 229–230
tips for solving, 238–239

tip
for studying, 2
for test-taking, 349–352

top-and-bottom trick, 212–213
tractability, 35
transforming continuous functions, 47–48
Trapezoid Rule, 74, 79–80
triangle

area problems, 12
as trapezoids, 80

trig substitution
calculating arc length, 217
distinguishing cases for, 162–163
integration

combinations of trig functions, 
160–161

overview, 163–164
powers of cotangents and cosecants,

159–160
powers of sines and cosines, 152–155
powers of tangents and secants,

155–159
secant case, 169–171
sine case, 164–166
tangent case, 166–169
trig functions, 151–152

overview, 151
when to avoid, 171

trigonometry
functions

derivatives of, 58–59
DI-agonal Method, 148–150
graphing common, 46–47
integrating, 151–152, 160–161

identities
even powers of sines and cosines, 156
half-angle, 154
important, 48–50
using to integrate functions, 112–113

notation, 41–42
triple integral, 325–326
two-way test

defined, 261
integrals, 270–272
overview, 264
ratio, 273–274
root, 274–275

• U •
unary operator, 56
understanding, conceptual, 352
unit vector, 312–313
unknowns, 176, 181–183
unsigned area, 209, 211–213, 344
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• V •
variable

functions of several, 319–321
Fundamental Theorem of Calculus, 95

variable substitution
anti-differentiation, 4
integrating rational function, 193
linear factor cases, 184–185
overview, 117
versus trig substitution, 161–162
use of

to evaluate definite integrals, 132–133
finding integral of nested functions,

118–120
finding integral of product, 120–121
integrating function multiplied by set of

nested functions, 121–122
overview, 118

when to use
integrating nested functions, 123–125
overview, 123
shortcut for nested functions, 125–128
when one part of function differentiates

to another, 129–132
vector

basics, 308–309
calculating with

adding and subtracting, 313–314
finding unit vector, 312–313
magnitude, 310–311
overview, 310
scalar multiplication, 311–312

overview, 308
versus scalars, 310

vertical asymptote, 201
vertical cross section, 238
vertical transformations of function, 48
vertical z-axes in cylindrical coordinate

system, 316
vertical-line test, 319–320
vertically infinite improper integral,

199, 201–204

volume
measuring under surface, 323–324
meat-slicer method to find

overview, 220
pyramids, 222–224
rotating solids, 225–226
solids between different surfaces,

230–234
solids of revolution, 227–228
solids with congruent cross sections,

220–221
solids with similar cross sections,

221–222
weird solids, 224–225

shell method
overview, 234
peeling and measuring can of soup,

235–236
use of, 236–238

• W •
well defined integral, 115
width, 24

• X •
x-axe

area problems, 15
Cartesian coordinates, 314
definite integrals, 12
signed areas, 209

• Y •
y-axe in Cartesian coordinate system, 314

• Z •
z-axe in Cartesian coordinate system, 314
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