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Preface

This book covers elementary trigonometry. It is suitable for a one-semester course at

the college level, though it could also be used in high schools. The prerequisites are

high school algebra and geometry.

This book basically consists of my lecture notes from teaching trigonometry at

Schoolcraft College over several years, expanded with some exercises. There are ex-

ercises at the end of each section. I have tried to include some more challenging

problems, with hints when I felt those were needed. An average student should be

able to do most of the exercises. Answers and hints to many of the odd-numbered and

some of the even-numbered exercises are provided in Appendix A.

This text probably has a more geometric feel to it than most current trigonometry

texts. That was, in fact, one of the reasons I wanted to write this book. I think that

approaching the subject with too much of an analytic emphasis is a bit confusing to

students. It makes much of the material appear unmotivated. This book starts with

the “old-fashioned” right triangle approach to the trigonometric functions, which is

more intuitive for students to grasp.

In my experience, presenting the definitions of the trigonometric functions and then

immediately jumping into proving identities is too much of a detour from geometry to

analysis for most students. So this book presents material in a very different order

than most books today. For example, after starting with the right triangle definitions

and some applications, general (oblique) triangles are presented. That seems like a

more natural progression of topics, instead of leaving general triangles until the end

as is usually the case.

The goal of this book is a bit different, too. Instead of taking the (doomed) approach

that students have to be shown that trigonometry is “relevant to their everyday lives”

(which inevitably comes off as artificial), this book has a different mindset: prepar-

ing students to use trigonometry as it is used in other courses. Virtually no students

will ever in their “everyday life” figure out the height of a tree with a protractor or

determine the angular speed of a Ferris wheel. Students are far more likely to need

trigonometry in other courses (e.g. engineering, physics). I think that math instruc-

tors have a duty to prepare students for that.

In Chapter 5 students are asked to use the free open-source software Gnuplot to

graph some functions. However, any program can be used for those exercises, as long

as it produces accurate graphs. Appendix B contains a brief tutorial on Gnuplot.

There are a few exercises that require the student to write his or her own computer

program to solve some numerical computation problems. There are a few code sam-
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iv PREFACE

ples in Chapter 6, written in the Java and Python programming languages, hopefully

sufficiently clear so that the reader can figure out what is being done even without

knowing those languages. Octave and Sage are also mentioned. This book probably

discusses numerical issues more than most texts at this level (e.g. the numerical in-

stability of Heron’s formula for the area of a triangle, the secant method for solving

trigonometric equations). Numerical methods probably should have been emphasized

even more in the text, since it is rare when even a moderately complicated trigonomet-

ric equation can be solved with elementary methods, and since mathematical software

is so readily available.

I wanted to keep this book as brief as possible. Someone once joked that trigonom-

etry is two weeks of material spread out over a full semester, and I think that there

is some truth to that. However, some decisions had to be made on what material to

leave out. I had planned to include sections on vectors, spherical trigonometry - a

subject which has basically vanished from trigonometry texts in the last few decades

(why?) - and a few other topics, but decided against it. The hardest decision was to

exclude Paul Rider’s clever geometric proof of the Law of Tangents without using any

sum-to-product identities, though I do give a reference to it.

This book is released under the GNU Free Documentation License (GFDL), which

allows others to not only copy and distribute the book but also to modify it. For more

details, see the included copy of the GFDL. So that there is no ambiguity on this

matter, anyone can make as many copies of this book as desired and distribute it

as desired, without needing my permission. The PDF version will always be freely

available to the public at no cost (go to http://www.mecmath.net/trig). Feel free

to contact me at mcorral@schoolcraft.edu for any questions on this or any other

matter involving the book (e.g. comments, suggestions, corrections, etc). I welcome

your input.

July 2009 MICHAEL CORRAL

Livonia, Michigan

http://www.mecmath.net/trig
mailto:mcorral@schoolcraft.edu
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1 Right Triangle Trigonometry

Trigonometry is the study of the relations between the sides and angles of triangles.

The word “trigonometry” is derived from the Greek words trigono (τρίγωνo), meaning

“triangle”, and metro (µǫτρώ), meaning “measure”. Though the ancient Greeks, such

as Hipparchus and Ptolemy, used trigonometry in their study of astronomy between

roughly 150 B.C. - A.D. 200, its history is much older. For example, the Egyptian scribe

Ahmes recorded some rudimentary trigonometric calculations (concerning ratios of

sides of pyramids) in the famous Rhind Papyrus sometime around 1650 B.C.1

Trigonometry is distinguished from elementary geometry in part by its extensive

use of certain functions of angles, known as the trigonometric functions. Before dis-

cussing those functions, we will review some basic terminology about angles.

1.1 Angles

Recall the following definitions from elementary geometry:

(a) An angle is acute if it is between 0◦ and 90◦.

(b) An angle is a right angle if it equals 90◦.

(c) An angle is obtuse if it is between 90◦ and 180◦.

(d) An angle is a straight angle if it equals 180◦.

(a) acute angle (b) right angle (c) obtuse angle (d) straight angle

Figure 1.1.1 Types of angles

In elementary geometry, angles are always considered to be positive and not larger

than 360◦. For now we will only consider such angles.2 The following definitions will

be used throughout the text:

1Ahmes claimed that he copied the papyrus from a work that may date as far back as 3000 B.C.
2Later in the text we will discuss negative angles and angles larger than 360◦.

1



2 Chapter 1 • Right Triangle Trigonometry §1.1

(a) Two acute angles are complementary if their sum equals 90◦. In other words, if

0◦ ≤∠A , ∠B ≤ 90◦ then ∠A and ∠B are complementary if ∠A+∠B = 90◦.

(b) Two angles between 0◦ and 180◦ are supplementary if their sum equals 180◦. In

other words, if 0◦ ≤ ∠A , ∠B ≤ 180◦ then ∠A and ∠B are supplementary if ∠A +
∠B = 180◦.

(c) Two angles between 0◦ and 360◦ are conjugate (or explementary) if their sum

equals 360◦. In other words, if 0◦ ≤∠A , ∠B ≤ 360◦ then ∠A and ∠B are conjugate

if ∠A+∠B = 360◦.

∠A

∠B

(a) complementary

∠A

∠B

(b) supplementary

∠A
∠B

(c) conjugate

Figure 1.1.2 Types of pairs of angles

Instead of using the angle notation ∠A to denote an angle, we will sometimes use

just a capital letter by itself (e.g. A, B, C) or a lowercase variable name (e.g. x, y, t). It

is also common to use letters (either uppercase or lowercase) from the Greek alphabet,

shown in the table below, to represent angles:

Table 1.1 The Greek alphabet

Letters Name Letters Name Letters Name

A α alpha I ι iota P ρ rho

B β beta K κ kappa Σ σ sigma

Γ γ gamma Λ λ lambda T τ tau

∆ δ delta M µ mu Υ υ upsilon

E ǫ epsilon N ν nu Φ φ phi

Z ζ zeta Ξ ξ xi X χ chi

H η eta O o omicron Ψ ψ psi

Θ θ theta Π π pi Ω ω omega

In elementary geometry you learned that the sum of the angles in a triangle equals

180◦, and that an isosceles triangle is a triangle with two sides of equal length.

Recall that in a right triangle one of the angles is a right angle. Thus, in a right

triangle one of the angles is 90◦ and the other two angles are acute angles whose sum

is 90◦ (i.e. the other two angles are complementary angles).
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Example 1.1

For each triangle below, determine the unknown angle(s):

A

B

C

35◦ 20◦

D

E

F

53◦

X

Y

Z

α α

3α

Note: We will sometimes refer to the angles of a triangle by their vertex points. For example,

in the first triangle above we will simply refer to the angle ∠BAC as angle A.

Solution: For triangle △ABC, A = 35◦ and C = 20◦, and we know that A+B+C = 180◦, so

35◦ + B + 20◦ = 180◦ ⇒ B = 180◦ − 35◦ − 20◦ ⇒ B = 125◦ .

For the right triangle △DEF, E = 53◦ and F = 90◦, and we know that the two acute angles D

and E are complementary, so

D + E = 90◦ ⇒ D = 90◦ − 53◦ ⇒ D = 37◦ .

For triangle △XY Z, the angles are in terms of an unknown number α, but we do know that

X +Y +Z = 180◦, which we can use to solve for α and then use that to solve for X , Y , and Z:

α + 3α + α = 180◦ ⇒ 5α = 180◦ ⇒ α = 36◦ ⇒ X = 36◦ , Y = 3×36◦ = 108◦ , Z = 36◦

Example 1.2

Thales’ Theorem states that if A, B, and C are (distinct) points on a circle such that the line

segment AB is a diameter of the circle, then the angle ∠ACB is a right angle (see Figure

1.1.3(a)). In other words, the triangle △ABC is a right triangle.

A B

C

O

(a)

A B

C

O

α

α β

β

(b)

Figure 1.1.3 Thales’ Theorem: ∠ACB = 90◦

To prove this, let O be the center of the circle and draw the line segment OC, as in Figure

1.1.3(b). Let α=∠BAC and β=∠ABC. Since AB is a diameter of the circle, OA and OC have

the same length (namely, the circle’s radius). This means that △OAC is an isosceles triangle,

and so ∠OCA =∠OAC = α. Likewise, △OBC is an isosceles triangle and ∠OCB =∠OBC = β.

So we see that ∠ACB =α+β. And since the angles of △ABC must add up to 180◦, we see that

180◦ =α+ (α+β)+β= 2(α+β), so α+β= 90◦. Thus, ∠ACB = 90◦. QED
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A C

B

b

a
c

Figure 1.1.4

In a right triangle, the side opposite the right angle is called

the hypotenuse, and the other two sides are called its legs. For

example, in Figure 1.1.4 the right angle is C, the hypotenuse is the

line segment AB, which has length c, and BC and AC are the legs,

with lengths a and b, respectively. The hypotenuse is always the

longest side of a right triangle (see Exercise 11).

By knowing the lengths of two sides of a right triangle, the

length of the third side can be determined by using the Pythagorean Theorem:

Theorem 1.1. Pythagorean Theorem: The square of the length of the hypotenuse

of a right triangle is equal to the sum of the squares of the lengths of its legs.

Thus, if a right triangle has a hypotenuse of length c and legs of lengths a and b, as

in Figure 1.1.4, then the Pythagorean Theorem says:

a2 + b2 = c2 (1.1)

Let us prove this. In the right triangle △ABC in Figure 1.1.5(a) below, if we draw

a line segment from the vertex C to the point D on the hypotenuse such that CD

is perpendicular to AB (that is, CD forms a right angle with AB), then this divides

△ABC into two smaller triangles △CBD and △ACD, which are both similar to △ABC.

A C

B

b

a

c

D
d

c−
d

(a) △ABC

C D

B

d
a

(b) △CBD

A D

C

c−d

b

(c) △ACD

Figure 1.1.5 Similar triangles △ABC, △CBD, △ACD

Recall that triangles are similar if their corresponding angles are equal, and that

similarity implies that corresponding sides are proportional. Thus, since △ABC is

similar to △CBD, by proportionality of corresponding sides we see that

AB is to CB (hypotenuses) as BC is to BD (vertical legs) ⇒
c

a
=

a

d
⇒ cd = a2 .

Since △ABC is similar to △ACD, comparing horizontal legs and hypotenuses gives

b

c−d
=

c

b
⇒ b2 = c2 − cd = c2 − a2 ⇒ a2 + b2 = c2 . QED

Note: The symbols ⊥ and ∼ denote perpendicularity and similarity, respectively. For

example, in the above proof we had CD ⊥ AB and △ABC ∼△CBD ∼△ACD.
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Example 1.3

For each right triangle below, determine the length of the unknown side:

A C

B

4

a
5

D F

E

e

1
2

X Z

Y

1

1
z

Solution: For triangle △ABC, the Pythagorean Theorem says that

a2 + 42 = 52 ⇒ a2 = 25 − 16 = 9 ⇒ a = 3 .

For triangle △DEF, the Pythagorean Theorem says that

e2 + 12 = 22 ⇒ e2 = 4 − 1 = 3 ⇒ e =
p

3 .

For triangle △XY Z, the Pythagorean Theorem says that

12 + 12 = z2 ⇒ z2 = 2 ⇒ z =
p

2 .

Example 1.4

h

8

17

90◦

A 17 ft ladder leaning against a wall has its foot 8 ft from the base of the wall.

At what height is the top of the ladder touching the wall?

Solution: Let h be the height at which the ladder touches the wall. We can

assume that the ground makes a right angle with the wall, as in the picture

on the right. Then we see that the ladder, ground, and wall form a right

triangle with a hypotenuse of length 17 ft (the length of the ladder) and legs

with lengths 8 ft and h ft. So by the Pythagorean Theorem, we have

h2 + 82 = 172 ⇒ h2 = 289 − 64 = 225 ⇒ h = 15 ft .

�



�
	Exercises

For Exercises 1-4, find the numeric value of the indicated angle(s) for the triangle △ABC.

1. Find B if A = 15◦ and C = 50◦. 2. Find C if A = 110◦ and B = 31◦.

3. Find A and B if C = 24◦, A =α, and B = 2α. 4. Find A, B, and C if A =β and B = C = 4β.

For Exercises 5-8, find the numeric value of the indicated angle(s) for the right triangle △ABC,

with C being the right angle.

5. Find B if A = 45◦. 6. Find A and B if A =α and B = 2α.

7. Find A and B if A =φ and B =φ2. 8. Find A and B if A = θ and B = 1/θ.

9. A car goes 24 miles due north then 7 miles due east. What is the straight distance between

the car’s starting point and end point?
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10. One end of a rope is attached to the top of a pole 100 ft high. If the rope is 150 ft long,

what is the maximum distance along the ground from the base of the pole to where the

other end can be attached? You may assume that the pole is perpendicular to the ground.

11. Prove that the hypotenuse is the longest side in every right triangle. (Hint: Is a2+b2 > a2?)

12. Can a right triangle have sides with lengths 2, 5, and 6? Explain your answer.

13. The lengths of the sides of any right triangle form what is called a Pythagorean triple:

positive integers a, b, and c such that a2 +b2 = c2. The triple is normally written as (a,b,c).

For example, (3,4,5) and (5,12,13) are well-known Pythagorean triples.

(a) Show that (6,8,10) is a Pythagorean triple.

(b) Show that if (a,b,c) is a Pythagorean triple then so is (ka,kb,kc) for any integer k > 0.

How would you interpret this geometrically?

(c) Show that (2mn,m2 −n2,m2 +n2) is a Pythagorean triple for all integers m > n > 0.

(d) The triple in part(c) is known as Euclid’s formula for generating Pythagorean triples.

Write down the first ten Pythagorean triples generated by this formula, i.e. use: m = 2

and n = 1; m = 3 and n = 1, 2; m = 4 and n = 1, 2, 3; m = 5 and n = 1, 2, 3, 4.

14. This exercise will describe how to draw a line through any point outside a circle such that

the line intersects the circle at only one point. This is called a tangent line to the circle (see

the picture on the left in Figure 1.1.6), a notion which we will use throughout the text.

tangent line

not tangent

•A

O P
C

Figure 1.1.6

On a sheet of paper draw a circle of radius 1 inch, and call the center of that circle O. Pick

a point P which is 2.5 inches away from O. Draw the circle which has OP as a diameter,

as in the picture on the right in Figure 1.1.6. Let A be one of the points where this circle

intersects the first circle. Draw the line through P and A. In general the tangent line

through a point on a circle is perpendicular to the line joining that point to the center of

the circle (why?). Use this fact to explain why the line you drew is the tangent line through

A and to calculate the length of P A. Does it match the physical measurement of P A?

A B

C

O

15. Suppose that △ABC is a triangle with side AB a diameter of a

circle with center O, as in the picture on the right, and suppose

that the vertex C lies on the circle. Now imagine that you rotate

the circle 180◦ around its center, so that △ABC is in a new posi-

tion, as indicated by the dashed lines in the picture. Explain how

this picture proves Thales’ Theorem.
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1.2 Trigonometric Functions of an Acute Angle

A C

B

b
adjacent

a

o
p

p
o
site

c
hypot

en
use

Consider a right triangle △ABC, with the right angle at C and

with lengths a, b, and c, as in the figure on the right. For the

acute angle A, call the leg BC its opposite side, and call the leg

AC its adjacent side. Recall that the hypotenuse of the triangle

is the side AB. The ratios of sides of a right triangle occur often

enough in practical applications to warrant their own names, so

we define the six trigonometric functions of A as follows:

Table 1.2 The six trigonometric functions of A

Name of function Abbreviation Definition

sine A sin A =
opposite side

hypotenuse
=

a

c

cosine A cos A =
adjacent side

hypotenuse
=

b

c

tangent A tan A =
opposite side

adjacent side
=

a

b

cosecant A csc A =
hypotenuse

opposite side
=

c

a

secant A sec A =
hypotenuse

adjacent side
=

c

b

cotangent A cot A =
adjacent side

opposite side
=

b

a

We will usually use the abbreviated names of the functions. Notice from Table 1.2

that the pairs sin A and csc A, cos A and sec A, and tan A and cot A are reciprocals:

csc A =
1

sin A
sec A =

1

cos A
cot A =

1

tan A

sin A =
1

csc A
cos A =

1

sec A
tan A =

1

cot A



8 Chapter 1 • Right Triangle Trigonometry §1.2

Example 1.5

A C

B

4

3
5

For the right triangle △ABC shown on the right, find the values of all six

trigonometric functions of the acute angles A and B.

Solution: The hypotenuse of △ABC has length 5. For angle A, the opposite

side BC has length 3 and the adjacent side AC has length 4. Thus:

sin A =
opposite

hypotenuse
=

3

5
cos A =

adjacent

hypotenuse
=

4

5
tan A =

opposite

adjacent
=

3

4

csc A =
hypotenuse

opposite
=

5

3
sec A =

hypotenuse

adjacent
=

5

4
cot A =

adjacent

opposite
=

4

3

For angle B, the opposite side AC has length 4 and the adjacent side BC has length 3. Thus:

sin B =
opposite

hypotenuse
=

4

5
cos B =

adjacent

hypotenuse
=

3

5
tan B =

opposite

adjacent
=

4

3

csc B =
hypotenuse

opposite
=

5

4
sec B =

hypotenuse

adjacent
=

5

3
cot B =

adjacent

opposite
=

3

4

Notice in Example 1.5 that we did not specify the units for the lengths. This raises

the possibility that our answers depended on a triangle of a specific physical size.

For example, suppose that two different students are reading this textbook: one in

the United States and one in Germany. The American student thinks that the lengths

3, 4, and 5 in Example 1.5 are measured in inches, while the German student thinks

that they are measured in centimeters. Since 1 in ≈ 2.54 cm, the students are using

triangles of different physical sizes (see Figure 1.2.1 below, not drawn to scale).

A

B

C

3

4

5

(a) Inches

A′

B′

C′

3

4

5

(b) Centimeters

A

A′

B

B′

CC′

(c) Similar triangles

Figure 1.2.1 △ABC ∼ △A′B′C′

If the American triangle is △ABC and the German triangle is △A′B′C′, then we

see from Figure 1.2.1 that △ABC is similar to △A′B′C′, and hence the corresponding

angles are equal and the ratios of the corresponding sides are equal. In fact, we know
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that common ratio: the sides of △ABC are approximately 2.54 times longer than the

corresponding sides of △A′B′C′. So when the American student calculates sin A and

the German student calculates sin A′, they get the same answer:3

△ABC ∼ △A′B′C′ ⇒
BC

B′C′ =
AB

A′B′ ⇒
BC

AB
=

B′C′

A′B′ ⇒ sin A = sin A′

Likewise, the other values of the trigonometric functions of A and A′ are the same. In

fact, our argument was general enough to work with any similar right triangles. This

leads us to the following conclusion:

When calculating the trigonometric functions of an acute angle A, you

may use any right triangle which has A as one of the angles.

Since we defined the trigonometric functions in terms of ratios of sides, you can

think of the units of measurement for those sides as canceling out in those ratios.

This means that the values of the trigonometric functions are unitless numbers. So

when the American student calculated 3/5 as the value of sin A in Example 1.5, that

is the same as the 3/5 that the German student calculated, despite the different units

for the lengths of the sides.

Example 1.6

A

B

C

1

1

1

1

p
2

45◦

Find the values of all six trigonometric functions of 45◦.

Solution: Since we may use any right triangle which has 45◦ as one of

the angles, use the simplest one: take a square whose sides are all 1

unit long and divide it in half diagonally, as in the figure on the right.

Since the two legs of the triangle △ABC have the same length, △ABC

is an isosceles triangle, which means that the angles A and B are equal.

So since A +B = 90◦, this means that we must have A = B = 45◦. By the

Pythagorean Theorem, the length c of the hypotenuse is given by

c2 = 12 + 12 = 2 ⇒ c =
p

2 .

Thus, using the angle A we get:

sin 45◦ =
opposite

hypotenuse
=

1
p

2
cos 45◦ =

adjacent

hypotenuse
=

1
p

2
tan 45◦ =

opposite

adjacent
=

1

1
= 1

csc 45◦ =
hypotenuse

opposite
=

p
2 sec 45◦ =

hypotenuse

adjacent
=

p
2 cot 45◦ =

adjacent

opposite
=

1

1
= 1

Note that we would have obtained the same answers if we had used any right triangle similar

to △ABC. For example, if we multiply each side of △ABC by
p

2, then we would have a similar

triangle with legs of length
p

2 and hypotenuse of length 2. This would give us sin 45◦ =
p

2
2

,

which equals
p

2p
2·
p

2
= 1p

2
as before. The same goes for the other functions.

3We will use the notation AB to denote the length of a line segment AB.
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Example 1.7

A

B

C1 1

2 2
p

3

60◦ 60◦

30◦

2

Find the values of all six trigonometric functions of 60◦.

Solution: Since we may use any right triangle which has 60◦ as one

of the angles, we will use a simple one: take a triangle whose sides

are all 2 units long and divide it in half by drawing the bisector from

one vertex to the opposite side, as in the figure on the right. Since

the original triangle was an equilateral triangle (i.e. all three sides

had the same length), its three angles were all the same, namely 60◦.
Recall from elementary geometry that the bisector from the vertex

angle of an equilateral triangle to its opposite side bisects both the

vertex angle and the opposite side. So as in the figure on the right,

the triangle △ABC has angle A = 60◦ and angle B = 30◦, which forces

the angle C to be 90◦. Thus, △ABC is a right triangle. We see that the hypotenuse has length

c = AB = 2 and the leg AC has length b = AC = 1. By the Pythagorean Theorem, the length a of

the leg BC is given by

a2 + b2 = c2 ⇒ a2 = 22 − 12 = 3 ⇒ a =
p

3 .

Thus, using the angle A we get:

sin 60◦ =
opposite

hypotenuse
=

p
3

2
cos 60◦ =

adjacent

hypotenuse
=

1

2
tan 60◦ =

opposite

adjacent
=

p
3

1
=

p
3

csc 60◦ =
hypotenuse

opposite
=

2
p

3
sec 60◦ =

hypotenuse

adjacent
= 2 cot 60◦ =

adjacent

opposite
=

1
p

3

Notice that, as a bonus, we get the values of all six trigonometric functions of 30◦, by using

angle B = 30◦ in the same triangle △ABC above:

sin 30◦ =
opposite

hypotenuse
=

1

2
cos 30◦ =

adjacent

hypotenuse
=

p
3

2
tan 30◦ =

opposite

adjacent
=

1
p

3

csc 30◦ =
hypotenuse

opposite
= 2 sec 30◦ =

hypotenuse

adjacent
=

2
p

3
cot 30◦ =

adjacent

opposite
=

p
3

1
=

p
3

Example 1.8

A

B

C

2

b

3

A is an acute angle such that sin A = 2
3
. Find the values of the other trigono-

metric functions of A.

Solution: In general it helps to draw a right triangle to solve problems

of this type. The reason is that the trigonometric functions were defined

in terms of ratios of sides of a right triangle, and you are given one such

function (the sine, in this case) already in terms of a ratio: sin A = 2
3
. Since

sin A is defined as
opposite

hypotenuse
, use 2 as the length of the side opposite A and use 3 as the length

of the hypotenuse in a right triangle △ABC (see the figure above), so that sin A = 2
3
. The

adjacent side to A has unknown length b, but we can use the Pythagorean Theorem to find it:

22 + b2 = 32 ⇒ b2 = 9 − 4 = 5 ⇒ b =
p

5
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We now know the lengths of all sides of the triangle △ABC, so we have:

cos A =
adjacent

hypotenuse
=

p
5

3
tan A =

opposite

adjacent
=

2
p

5

csc A =
hypotenuse

opposite
=

3

2
sec A =

hypotenuse

adjacent
=

3
p

5
cot A =

adjacent

opposite
=

p
5

2

You may have noticed the connections between the sine and cosine, secant and cose-

cant, and tangent and cotangent of the complementary angles in Examples 1.5 and

1.7. Generalizing those examples gives us the following theorem:

Theorem 1.2. Cofunction Theorem: If A and B are the complementary acute an-

gles in a right triangle △ABC, then the following relations hold:

sin A = cos B sec A = csc B tan A = cot B

sin B = cos A sec B = csc A tan B = cot A

We say that the pairs of functions { sin,cos }, { sec,csc }, and { tan,cot } are cofunctions.

So sine and cosine are cofunctions, secant and cosecant are cofunctions, and tangent

and cotangent are cofunctions. That is how the functions cosine, cosecant, and cotan-

gent got the “co” in their names. The Cofunction Theorem says that any trigonometric

function of an acute angle is equal to its cofunction of the complementary angle.

Example 1.9

Write each of the following numbers as trigonometric functions of an angle less than 45◦: (a)

sin 65◦; (b) cos 78◦; (c) tan 59◦.

Solution: (a) The complement of 65◦ is 90◦−65◦ = 25◦ and the cofunction of sin is cos, so by

the Cofunction Theorem we know that sin 65◦ = cos 25◦.
(b) The complement of 78◦ is 90◦−78◦ = 12◦ and the cofunction of cos is sin, so cos 78◦ = sin 12◦.
(c) The complement of 59◦ is 90◦−59◦ = 31◦ and the cofunction of tan is cot, so tan 59◦ = cot 31◦.

a

a
a
p

2

45◦
45◦

(a) 45−45−90

a
p

3

a
2a

30◦

60◦

(b) 30−60−90

Figure 1.2.2 Two general right triangles (any a > 0)

The angles 30◦, 45◦, and 60◦ arise often in applications. We can use the Pythagorean

Theorem to generalize the right triangles in Examples 1.6 and 1.7 and see what any

45−45−90 and 30−60−90 right triangles look like, as in Figure 1.2.2 above.
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Example 1.10

p 3

30
◦

A

B

C

D

E

F

√
3
2

√
3
2

2

1

45◦

Find the sine, cosine, and tangent of 75◦.

Solution: Since 75◦ = 45◦+30◦, place a 30−60−90 right tri-

angle △ADB with legs of length
p

3 and 1 on top of the

hypotenuse of a 45 − 45 − 90 right triangle △ABC whose

hypotenuse has length
p

3, as in the figure on the right.

From Figure 1.2.2(a) we know that the length of each leg

of △ABC is the length of the hypotenuse divided by
p

2.

So AC = BC =
p

3p
2
=

√
3
2
. Draw DE perpendicular to AC,

so that △ADE is a right triangle. Since ∠BAC = 45◦ and

∠DAB = 30◦, we see that ∠DAE = 75◦ since it is the sum

of those two angles. Thus, we need to find the sine, cosine,

and tangent of ∠DAE.

Notice that ∠ADE = 15◦, since it is the complement of

∠DAE. And ∠ADB = 60◦, since it is the complement of

∠DAB. Draw BF perpendicular to DE, so that △DFB is

a right triangle. Then ∠BDF = 45◦, since it is the difference

of ∠ADB = 60◦ and ∠ADE = 15◦. Also, ∠DBF = 45◦ since it

is the complement of ∠BDF. The hypotenuse BD of △DFB

has length 1 and △DFB is a 45−45−90 right triangle, so we know that DF = FB = 1p
2
.

Now, we know that DE ⊥ AC and BC ⊥ AC, so FE and BC are parallel. Likewise, FB and

EC are both perpendicular to DE and hence FB is parallel to EC. Thus, FBCE is a rectangle,

since ∠BCE is a right angle. So EC = FB = 1p
2

and FE = BC =
√

3
2
. Hence,

DE = DF + FE = 1p
2
+

√
3
2

=
p

3 + 1p
2

and AE = AC − EC =
√

3
2
− 1p

2
=

p
3 − 1p

2
. Thus,

sin 75◦ = DE
AD

=
p

3+1p
2

2
=

p
6+

p
2

4
, cos 75◦ = AE

AD
=

p
3−1p

2

2
=

p
6−

p
2

4
, and tan 75◦ = DE

AE
=

p
3+1p

2p
3−1p

2

=
p

6+
p

2p
6−

p
2

.

Note: Taking reciprocals, we get csc 75◦ = 4p
6+

p
2
, sec 75◦ = 4p

6−
p

2
, and cot 75◦ =

p
6−

p
2p

6+
p

2
.

�



�
	Exercises

A

B

C

a

b

c

Figure 1.2.3

For Exercises 1-10, find the values of all six trigonometric functions of

angles A and B in the right triangle △ABC in Figure 1.2.3.

1. a = 5, b = 12, c = 13 2. a = 8, b = 15, c = 17

3. a = 7, b = 24, c = 25 4. a = 20, b = 21, c = 29

5. a = 9, b = 40, c = 41 6. a = 1, b = 2, c =
p

5 7. a = 1, b = 3

8. a = 2, b = 5 9. a = 5, c = 6 10. b = 7, c = 8

For Exercises 11-18, find the values of the other five trigonometric functions of the acute angle

A given the indicated value of one of the functions.
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11. sin A = 3
4

12. cos A = 2
3

13. cos A = 2p
10

14. sin A = 2
4

15. tan A = 5
9

16. tan A = 3 17. sec A = 7
3

18. csc A = 3

For Exercises 19-23, write the given number as a trigonometric function of an acute angle less

than 45◦.

19. sin 87◦ 20. sin 53◦ 21. cos 46◦ 22. tan 66◦ 23. sec 77◦

For Exercises 24-28, write the given number as a trigonometric function of an acute angle

greater than 45◦.

24. sin 1◦ 25. cos 13◦ 26. tan 26◦ 27. cot 10◦ 28. csc 43◦

29. In Example 1.7 we found the values of all six trigonometric functions of 60◦ and 30◦.

(a) Does sin 30◦ + sin 30◦ = sin 60◦? (b) Does cos 30◦ + cos 30◦ = cos 60◦?

(c) Does tan 30◦ + tan 30◦ = tan 60◦? (d) Does 2 sin 30◦ cos 30◦ = sin 60◦?

30. For an acute angle A, can sin A be larger than 1? Explain your answer.

31. For an acute angle A, can cos A be larger than 1? Explain your answer.

32. For an acute angle A, can sin A be larger than tan A? Explain your answer.

33. If A and B are acute angles and A < B, explain why sin A < sin B.

34. If A and B are acute angles and A < B, explain why cos A > cos B.

35. Prove the Cofunction Theorem (Theorem 1.2). (Hint: Draw a right triangle and label the

angles and sides.)

36. Use Example 1.10 to find all six trigonometric functions of 15◦.

p
3

B

D
A

C
O 2

Figure 1.2.4

37. In Figure 1.2.4, CB is a diameter of a circle with a radius

of 2 cm and center O, △ABC is a right triangle, and CD

has length
p

3 cm.

(a) Find sin A. (Hint: Use Thales’ Theorem.)

(b) Find the length of AC.

(c) Find the length of AD.

(d) Figure 1.2.4 is drawn to scale. Use a protractor to

measure the angle A, then use your calculator to find

the sine of that angle. Is the calculator result close to

your answer from part(a)?

Note: Make sure that your calculator is in degree mode.

38. In Exercise 37, verify that the area of △ABC equals 1
2

AB ·CD. Why does this make sense?

39. In Exercise 37, verify that the area of △ABC equals 1
2

AB · AC sin A.

40. In Exercise 37, verify that the area of △ABC equals 1
2
(BC)2 cot A.
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1.3 Applications and Solving Right Triangles

Throughout its early development, trigonometry was often used as a means of indirect

measurement, e.g. determining large distances or lengths by using measurements of

angles and small, known distances. Today, trigonometry is widely used in physics,

astronomy, engineering, navigation, surveying, and various fields of mathematics and

other disciplines. In this section we will see some of the ways in which trigonometry

can be applied. Your calculator should be in degree mode for these examples.

Example 1.11

A person stands 150 ft away from a flagpole and measures an angle of elevation of 32◦ from his

horizontal line of sight to the top of the flagpole. Assume that the person’s eyes are a vertical

distance of 6 ft from the ground. What is the height of the flagpole?

150

32◦

6

h

Solution: The picture on the right describes the situation. We

see that the height of the flagpole is h+6 ft, where

h

150
= tan 32◦ ⇒ h = 150 tan 32◦ = 150 (0.6249) = 94 .

How did we know that tan 32◦ = 0.6249? By using a calculator.

And since none of the numbers we were given had decimal places,

we rounded off the answer for h to the nearest integer. Thus, the height of the flagpole is

h+6= 94+6= 100 ft .

Example 1.12

A person standing 400 ft from the base of a mountain measures the angle of elevation from

the ground to the top of the mountain to be 25◦. The person then walks 500 ft straight back

and measures the angle of elevation to now be 20◦. How tall is the mountain?

h

500 400 x

20◦ 25◦

Solution: We will assume that the ground is flat and not

inclined relative to the base of the mountain. Let h be the

height of the mountain, and let x be the distance from the

base of the mountain to the point directly beneath the top

of the mountain, as in the picture on the right. Then we

see that

h

x+400
= tan 25◦ ⇒ h = (x+400) tan 25◦ , and

h

x+400+500
= tan 20◦ ⇒ h = (x+900) tan 20◦ , so

(x+400) tan 25◦ = (x+900) tan 20◦, since they both equal h. Use that equation to solve for x:

x tan 25◦ − x tan 20◦ = 900 tan 20◦ − 400 tan 25◦ ⇒ x =
900 tan 20◦ − 400 tan 25◦

tan 25◦ − tan 20◦ = 1378 ft

Finally, substitute x into the first formula for h to get the height of the mountain:

h = (1378+400) tan 25◦ = 1778 (0.4663) = 829 ft
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Example 1.13

A blimp 4280 ft above the ground measures an angle of depression of 24◦ from its horizontal

line of sight to the base of a house on the ground. Assuming the ground is flat, how far away

along the ground is the house from the blimp?

24◦

4280

θ

x

Solution: Let x be the distance along the ground from the blimp

to the house, as in the picture to the right. Since the ground and

the blimp’s horizontal line of sight are parallel, we know from

elementary geometry that the angle of elevation θ from the base

of the house to the blimp is equal to the angle of depression from

the blimp to the base of the house, i.e. θ = 24◦. Hence,

4280

x
= tan 24◦ ⇒ x =

4280

tan 24◦ = 9613 ft .

Example 1.14

An observer at the top of a mountain 3 miles above sea level measures an angle of depression

of 2.23◦ to the ocean horizon. Use this to estimate the radius of the earth.

r

r

3

A B

H

O

2.23◦

θ

Figure 1.3.1

Solution: We will assume that the earth is a sphere.4 Let r

be the radius of the earth. Let the point A represent the top

of the mountain, and let H be the ocean horizon in the line of

sight from A, as in Figure 1.3.1. Let O be the center of the

earth, and let B be a point on the horizontal line of sight from

A (i.e. on the line perpendicular to OA). Let θ be the angle

∠AOH.

Since A is 3 miles above sea level, we have OA = r+3. Also,

OH = r. Now since AB ⊥ OA, we have ∠OAB = 90◦, so we see

that ∠OAH = 90◦−2.23◦ = 87.77◦. We see that the line through

A and H is a tangent line to the surface of the earth (consid-

ering the surface as the circle of radius r through H as in the

picture). So by Exercise 14 in Section 1.1, AH ⊥OH and hence

∠OHA = 90◦. Since the angles in the triangle △OAH add up

to 180◦, we have θ = 180◦−90◦−87.77◦ = 2.23◦. Thus,

cos θ =
OH

OA
=

r

r+3
⇒

r

r+3
= cos 2.23◦ ,

so solving for r we get

r = (r + 3) cos 2.23◦ ⇒ r − r cos 2.23◦ = 3 cos 2.23◦

⇒ r =
3 cos 2.23◦

1 − cos 2.23◦

⇒ r = 3958.3 miles .

Note: This answer is very close to the earth’s actual (mean) radius of 3956.6 miles.

4Of course it is not perfectly spherical. The earth is an ellipsoid, i.e. egg-shaped, with an observed

ellipticity of 1/297 (a sphere has ellipticity 0). See pp. 26-27 in W.H. MUNK AND G.J.F MACDONALD,

The Rotation of the Earth: A Geophysical Discussion, London: Cambridge University Press, 1960.
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Example 1.15

O
A

B

α

As another application of trigonometry to astronomy, we will find the dis-

tance from the earth to the sun. Let O be the center of the earth, let A

be a point on the equator, and let B represent an object (e.g. a star) in

space, as in the picture on the right. If the earth is positioned in such a

way that the angle ∠OAB = 90◦, then we say that the angle α=∠OBA is

the equatorial parallax of the object. The equatorial parallax of the sun

has been observed to be approximately α= 0.00244◦. Use this to estimate

the distance from the center of the earth to the sun.

Solution: Let B be the position of the sun. We want to find the length of

OB. We will use the actual radius of the earth, mentioned at the end of

Example 1.14, to get OA = 3956.6 miles. Since ∠OAB = 90◦, we have

OA

OB
= sin α ⇒ OB =

OA

sin α
=

3956.6

sin 0.00244◦ = 92908394 ,

so the distance from the center of the earth to the sun is approximately 93 million miles .

Note: The earth’s orbit around the sun is an ellipse, so the actual distance to the sun varies.

In the above example we used a very small angle (0.00244◦). A degree can be divided

into smaller units: a minute is one-sixtieth of a degree, and a second is one-sixtieth

of a minute. The symbol for a minute is ′ and the symbol for a second is ′′. For example,

4.5◦ = 4◦ 30′. And 4.505◦ = 4◦ 30′ 18′′:

4◦ 30′ 18′′ = 4 +
30

60
+

18

3600
degrees = 4.505◦

In Example 1.15 we used α = 0.00244◦ ≈ 8.8′′, which we mention only because some

angle measurement devices do use minutes and seconds.

Example 1.16

E S

A

B

32′ 4′′

An observer on earth measures an angle of 32′ 4′′ from one visi-

ble edge of the sun to the other (opposite) edge, as in the picture

on the right. Use this to estimate the radius of the sun.

Solution: Let the point E be the earth and let S be the center

of the sun. The observer’s lines of sight to the visible edges of

the sun are tangent lines to the sun’s surface at the points A

and B. Thus, ∠EAS = ∠EBS = 90◦. The radius of the sun equals AS. Clearly AS = BS. So

since EB = EA (why?), the triangles △EAS and △EBS are similar. Thus, ∠AES = ∠BES =
1
2
∠AEB = 1

2
(32′ 4′′)= 16′ 2′′ = (16/60)+ (2/3600)= 0.26722◦.

Now, ES is the distance from the surface of the earth (where the observer stands) to the

center of the sun. In Example 1.15 we found the distance from the center of the earth to the

sun to be 92,908,394 miles. Since we treated the sun in that example as a point, then we are

justified in treating that distance as the distance between the centers of the earth and sun.

So ES = 92908394− radius of earth= 92908394−3956.6= 92904437.4 miles. Hence,

sin (∠AES) =
AS

ES
⇒ AS = ES sin 0.26722◦ = (92904437.4) sin 0.26722◦ = 433,293 miles .

Note: This answer is close to the sun’s actual (mean) radius of 432,200 miles.
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You may have noticed that the solutions to the examples we have shown required

at least one right triangle. In applied problems it is not always obvious which right

triangle to use, which is why these sorts of problems can be difficult. Often no right

triangle will be immediately evident, so you will have to create one. There is no

general strategy for this, but remember that a right triangle requires a right angle, so

look for places where you can form perpendicular line segments. When the problem

contains a circle, you can create right angles by using the perpendicularity of the

tangent line to the circle at a point5 with the line that joins that point to the center of

the circle. We did exactly that in Examples 1.14, 1.15, and 1.16.

Example 1.17

O

P

B

d

C

D

E

1
.3

8

37◦

A

The machine tool diagram on the right shows a symmetric

V-block, in which one circular roller sits on top of a smaller

circular roller. Each roller touches both slanted sides of the

V-block. Find the diameter d of the large roller, given the

information in the diagram.

Solution: The diameter d of the large roller is twice the ra-

dius OB, so we need to find OB. To do this, we will show that

△OBC is a right triangle, then find the angle ∠BOC, and then

find BC. The length OB will then be simple to determine.

Since the slanted sides are tangent to each roller, ∠ODA =
∠PEC = 90◦. By symmetry, since the vertical line through

the centers of the rollers makes a 37◦ angle with each slanted

side, we have ∠OAD = 37◦. Hence, since △ODA is a right

triangle, ∠DOA is the complement of ∠OAD. So ∠DOA = 53◦.
Since the horizontal line segment BC is tangent to each roller, ∠OBC =∠PBC = 90◦. Thus,

△OBC is a right triangle. And since ∠ODA = 90◦, we know that △ODC is a right triangle.

Now, OB = OD (since they each equal the radius of the large roller), so by the Pythagorean

Theorem we have BC = DC:

BC2 = OC2 − OB2 = OC2 − OD2 = DC2 ⇒ BC = DC

Thus, △OBC and △ODC are congruent triangles (which we denote by △OBC ∼=△ODC), since

their corresponding sides are equal. Thus, their corresponding angles are equal. So in partic-

ular, ∠BOC =∠DOC. We know that ∠DOB =∠DOA = 53◦. Thus,

53◦ = ∠DOB = ∠BOC + ∠DOC =∠BOC + ∠BOC = 2∠BOC ⇒ ∠BOC = 26.5◦ .

Likewise, since BP = EP and ∠PBC = ∠PEC = 90◦, △BPC and △EPC are congruent right

triangles. Thus, BC = EC. But we know that BC = DC, and we see from the diagram that

EC+DC = 1.38. Thus, BC+BC = 1.38 and so BC = 0.69. We now have all we need to find OB:

BC

OB
= tan ∠BOC ⇒ OB =

BC

tan ∠BOC
=

0.69

tan 26.5◦ = 1.384

Hence, the diameter of the large roller is d = 2×OB = 2(1.384)= 2.768 .

5This will often be worded as the line that is tangent to the circle.
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Example 1.18

A slider-crank mechanism is shown in Figure 1.3.2 below. As the piston moves downward the

connecting rod rotates the crank in the clockwise direction, as indicated.

co
n

n
e
ctin

g
ro

d

b

A

B

O

cr
an

k

a

c

C

r

θ

piston

Figure 1.3.2 Slider-crank mechanism

The point A is the center of the connecting rod’s wrist pin and only moves vertically. The

point B is the center of the crank pin and moves around a circle of radius r centered at the

point O, which is directly below A and does not move. As the crank rotates it makes an angle

θ with the line OA. The instantaneous center of rotation of the connecting rod at a given time

is the point C where the horizontal line through A intersects the extended line through O and

B. From Figure 1.3.2 we see that ∠OAC = 90◦, and we let a = AC, b = AB, and c = BC. In the

exercises you will show that for 0◦ < θ < 90◦,

c =

√
b2 − r2 sin2 θ

cos θ
and a = r sin θ +

√
b2 − r2 sin2 θ tan θ .



Applications and Solving Right Triangles • Section 1.3 19

θ

r cos θ

r sin θ
r

For some problems it may help to remember that when a right

triangle has a hypotenuse of length r and an acute angle θ, as in

the picture on the right, the adjacent side will have length r cos θ

and the opposite side will have length r sin θ. You can think of

those lengths as the horizontal and vertical “components” of the

hypotenuse.

Notice in the above right triangle that we were given two pieces of information: one

of the acute angles and the length of the hypotenuse. From this we determined the

lengths of the other two sides, and the other acute angle is just the complement of the

known acute angle. In general, a triangle has six parts: three sides and three angles.

Solving a triangle means finding the unknown parts based on the known parts. In

the case of a right triangle, one part is always known: one of the angles is 90◦.

Example 1.19

A C

B

b

a
c

Figure 1.3.3

Solve the right triangle in Figure 1.3.3 using the given

information:

(a) c = 10, A = 22◦

Solution: The unknown parts are a, b, and B. Solving yields:

a = c sin A = 10 sin 22◦ = 3.75

b = c cos A = 10 cos 22◦ = 9.27

B = 90◦ − A = 90◦ − 22◦ = 68◦

(b) b = 8, A = 40◦

Solution: The unknown parts are a, c, and B. Solving yields:

a

b
= tan A ⇒ a = b tan A = 8 tan 40◦ = 6.71

b

c
= cos A ⇒ c =

b

cos A
=

8

cos 40◦ = 10.44

B = 90◦ − A = 90◦ − 40◦ = 50◦

(c) a = 3, b = 4

Solution: The unknown parts are c, A, and B. By the Pythagorean Theorem,

c =
√

a2 + b2 =
√

32 + 42 =
p

25 = 5 .

Now, tan A = a
b
= 3

4
= 0.75. So how do we find A? There should be a key labeled

�
�

�
�tan−1 on

your calculator, which works like this: give it a number x and it will tell you the angle θ

such that tan θ = x. In our case, we want the angle A such that tan A = 0.75:

Enter: 0.75 Press:
�
�

�
�tan−1 Answer: 36.86989765

This tells us that A = 36.87◦, approximately. Thus B = 90◦− A = 90◦−36.87◦ = 53.13◦.
Note: The

�
�

�
�sin−1 and

�
�

�
�cos−1 keys work similarly for sine and cosine, respectively. These

keys use the inverse trigonometric functions, which we will discuss in Chapter 5.
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�



�
	Exercises

150
h

12◦
34◦

1. From a position 150 ft above the ground, an observer in a

building measures angles of depression of 12◦ and 34◦ to

the top and bottom, respectively, of a smaller building, as

in the picture on the right. Use this to find the height h of

the smaller building.

h

b a

β α

2. Generalize Example 1.12: A person standing a ft from the

base of a mountain measures an angle of elevation α from

the ground to the top of the mountain. The person then

walks b ft straight back and measures an angle of elevation

β to the top of the mountain, as in the picture on the right.

Assuming the ground is level, find a formula for the height

h of the mountain in terms of a, b, α, and β.

3. As the angle of elevation from the top of a tower to the sun decreases from 64◦ to 49◦

during the day, the length of the shadow of the tower increases by 92 ft along the ground.

Assuming the ground is level, find the height of the tower.

A B

C

500

w

56◦ 41◦
4. Two banks of a river are parallel, and the distance between

two points A and B along one bank is 500 ft. For a point C

on the opposite bank, ∠BAC = 56◦ and ∠ABC = 41◦, as in the

picture on the right. What is the width w of the river?

(Hint: Divide AB into two pieces.)

A
B

d

N E

β
α

h

5. A tower on one side of a river is directly east and north

of points A and B, respectively, on the other side of the

river. The top of the tower has angles of elevation α and β

from A and B, respectively, as in the picture on the right.

Let d be the distance between A and B. Assuming that

both sides of the river are at the same elevation, show

that the height h of the tower is

h =
d

√
cot2 α + cot2 β

.

6. The equatorial parallax of the moon has been observed to be approximately 57′. Taking the

radius of the earth to be 3956.6 miles, estimate the distance from the center of the earth to

the moon. (Hint: See Example 1.15.)

7. An observer on earth measures an angle of 31′ 7′′ from one visible edge of the moon to the

other (opposite) edge. Use this to estimate the radius of the moon. (Hint: Use Exercise 6

and see Example 1.16.)
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1
2

′′

90◦

120◦

8. A ball bearing sits between two metal grooves, with the top groove hav-

ing an angle of 120◦ and the bottom groove having an angle of 90◦, as in

the picture on the right. What must the diameter of the ball bearing be

for the distance between the vertices of the grooves to be half an inch?

You may assume that the top vertex is directly above the bottom vertex.

1.5

1.7

d

30◦

9. The machine tool diagram on the right shows a symmet-

ric worm thread, in which a circular roller of diameter 1.5

inches sits. Find the amount d that the top of the roller

rises above the top of the thread, given the information in

the diagram. (Hint: Extend the slanted sides of the thread

until they meet at a point.)

10. Repeat Exercise 9 using 1.8 inches as the distance across

the top of the worm thread.

11. In Exercise 9, what would the distance across the top of

the worm thread have to be to make d equal to 0 inches?

12. For 0◦ < θ < 90◦ in the slider-crank mechanism in Example 1.18, show that

c =

√
b2 − r2 sin2 θ

cos θ
and a = r sin θ +

√
b2 − r2 sin2 θ tan θ .

(Hint: In Figure 1.3.2 draw line segments from B perpendicular to OA and AC.)

r

2 1
8

′′

1 1
2

′′

54◦

13. The machine tool diagram on the right shows a symmetric die

punch. In this view, the rounded tip is part of a circle of radius r,

and the slanted sides are tangent to that circle and form an angle

of 54◦. The top and bottom sides of the die punch are horizontal.

Use the information in the diagram to find the radius r.

A

B

C

D E

a

θ

14. In the figure on the right, ∠BAC = θ and BC = a. Use this to

find AB, AC, AD, DC, CE, and DE in terms of θ and a.

(Hint: What is the angle ∠ACD ?)

A C

B

b

a
c

Figure 1.3.4

For Exercises 15-23, solve the right triangle in Figure 1.3.4 using the

given information.

15. a = 5, b = 12 16. c = 6, B = 35◦ 17. b = 2, A = 8◦

18. a = 2, c = 7 19. a = 3, A = 26◦ 20. b = 1, c = 2
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21. b = 3, B = 26◦ 22. a = 2, B = 8◦ 23. c = 2, A = 45◦

24. In Example 1.10 in Section 1.2, we found the exact values of all six trigonometric func-

tions of 75◦. For example, we showed that cot 75◦ =
p

6−
p

2p
6+

p
2
. So since tan 15◦ = cot 75◦ by

the Cofunction Theorem, this means that tan 15◦ =
p

6−
p

2p
6+

p
2
. We will now describe another

method for finding the exact values of the trigonometric functions of 15◦. In fact, it can

be used to find the exact values for the trigonometric functions of θ
2

when those for θ are

known, for any 0◦ < θ < 90◦. The method is illustrated in Figure 1.3.5 and is described below.

60◦30◦15◦7.5◦

O Q 1ABC

P

Figure 1.3.5

Draw a semicircle of radius 1 centered at a point O on a horizontal line. Let P be the point

on the semicircle such that OP makes an angle of 60◦ with the horizontal line, as in Figure

1.3.5. Draw a line straight down from P to the horizontal line at the point Q. Now create a

second semicircle as follows: Let A be the left endpoint of the first semicircle, then draw a

new semicircle centered at A with radius equal to AP. Then create a third semicircle in the

same way: Let B be the left endpoint of the second semicircle, then draw a new semicircle

centered at B with radius equal to BP.

This procedure can be continued indefinitely to create more semicircles. In general, it can

be shown that the line segment from the center of the new semicircle to P makes an angle

with the horizontal line equal to half the angle from the previous semicircle’s center to P.

(a) Explain why ∠P AQ = 30◦. (Hint: What is the supplement of 60◦?)

(b) Explain why ∠PBQ = 15◦ and ∠PCQ = 7.5◦.

(c) Use Figure 1.3.5 to find the exact values of sin 15◦, cos 15◦, and tan 15◦. (Hint: To start,

you will need to use ∠POQ = 60◦ and OP = 1 to find the exact lengths of PQ and OQ.)

(d) Use Figure 1.3.5 to calculate the exact value of tan 7.5◦.

(e) Use the same method but with an initial angle of ∠POQ = 45◦ to find the exact values

of sin 22.5◦, cos 22.5◦, and tan 22.5◦.
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r

4

25. A manufacturer needs to place ten identical ball bear-

ings against the inner side of a circular container such that

each ball bearing touches two other ball bearings, as in the

picture on the right. The (inner) radius of the container is

4 cm.

(a) Find the common radius r of the ball bearings.

(b) The manufacturer needs to place a circular ring

inside the container. What is the largest possible

(outer) radius of the ring such that it is not on top

of the ball bearings and its base is level with the

base of the container?

1

26. A circle of radius 1 is inscribed inside a polygon with eight

sides of equal length, called a regular octagon. That is, each

of the eight sides is tangent to the circle, as in the picture on

the right.

(a) Calculate the area of the octagon.

(b) If you were to increase the number of sides of the

polygon, would the area inside it increase or decrease?

What number would the area approach, if any? Explain.

(c) Inscribe a regular octagon inside the same circle. That is,

draw a regular octagon such that each of its eight vertices

touches the circle. Calculate the area of this octagon.

A

B
θ

27. The picture on the right shows a cube whose sides are of

length a > 0.

(a) Find the length of the diagonal line segment AB.

(b) Find the angle θ that AB makes with the base of the cube.

A

B

CD

α β

Figure 1.3.6

28. In Figure 1.3.6, suppose that α, β, and AD are known. Show that:

(a) BC =
AD

cot α−cot β

(b) AC =
AD · tan β

tan β− tan α

(c) BD =
AD · sin α

sin (β−α)

(Hint: What is the measure of the angle ∠ABD ?)

29. Persons A and B are at the beach, their eyes are 5 ft and 6 ft, respectively, above sea level.

How many miles farther out is Person B’s horizon than Person A’s? (Note: 1 mile = 5280 ft)
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1.4 Trigonometric Functions of Any Angle

To define the trigonometric functions of any angle - including angles less than 0◦ or

greater than 360◦ - we need a more general definition of an angle. We say that an

angle is formed by rotating a ray
−−→
OA about the endpoint O (called the vertex), so that

the ray is in a new position, denoted by the ray
−−→
OB. The ray

−−→
OA is called the initial

side of the angle, and
−−→
OB is the terminal side of the angle (see Figure 1.4.1(a)).

AO
initial side

B

te
rm

in
al

si
de

(a) angle ∠AOB

counter-clockwise

direction (+)

clockwise

direction (−)
A

O

B

(b) positive and negative angles

Figure 1.4.1 Definition of a general angle

We denote the angle formed by this rotation as ∠AOB, or simply ∠O, or even just

O. If the rotation is counter-clockwise then we say that the angle is positive, and the

angle is negative if the rotation is clockwise (see Figure 1.4.1(b)).

One full counter-clockwise rotation of
−−→
OA back onto itself (called a revolution),

so that the terminal side coincides with the initial side, is an angle of 360◦; in the

clockwise direction this would be −360◦.6 Not rotating
−−→
OA constitutes an angle of 0◦.

More than one full rotation creates an angle greater than 360◦. For example, notice

that 30◦ and 390◦ have the same terminal side in Figure 1.4.2, since 30+360= 390.

30◦

390◦

Figure 1.4.2 Angle greater than 360◦

6The system of measuring angles in degrees, such that 360◦ is one revolution, originated in ancient

Babylonia. It is often assumed that the number 360 was used because the Babylonians (supposedly)

thought that there were 360 days in a year (a year, of course, is one full revolution of the Earth around

the Sun). However, there is another, perhaps more likely, explanation which says that in ancient times a

person could travel 12 Babylonian miles in one day (i.e. one full rotation of the Earth about its axis). The

Babylonian mile was large enough (approximately 7 of our miles) to be divided into 30 equal parts for

convenience, thus giving 12×30= 360 equal parts in a full rotation. See p.26 in H. EVES, An Introduction

to the History of Mathematics, 5th ed., New York: Saunders College Publishing, 1983.



Trigonometric Functions of Any Angle • Section 1.4 25

We can now define the trigonometric functions of any angle in terms of Cartesian

coordinates. Recall that the xy-coordinate plane consists of points denoted by

pairs (x, y) of real numbers. The first number, x, is the point’s x coordinate, and the

second number, y, is its y coordinate. The x and y coordinates are measured by their

positions along the x-axis and y-axis, respectively, which determine the point’s posi-

tion in the plane. This divides the xy-coordinate plane into four quadrants (denoted

by QI, QII, QIII, QIV), based on the signs of x and y (see Figure 1.4.3(a)-(b)).

x

y

0

QI

x > 0

y> 0

QII

x < 0

y> 0

QIII

x < 0

y< 0

QIV

x > 0

y< 0

(a) Quadrants I-IV

x

y

0

(2,3)

(−3,2)

(−2,−2)
(3,−3)

(b) Points in the plane

x

y

0

θ

r

(x, y)

(c) Angle θ in the plane

Figure 1.4.3 xy-coordinate plane

Now let θ be any angle. We say that θ is in standard position if its initial side

is the positive x-axis and its vertex is the origin (0,0). Pick any point (x, y) on the

terminal side of θ a distance r > 0 from the origin (see Figure 1.4.3(c)). (Note that

r =
√

x2 + y2. Why?) We then define the trigonometric functions of θ as follows:

sin θ =
y

r
cos θ =

x

r
tan θ =

y

x
(1.2)

csc θ =
r

y
sec θ =

r

x
cot θ =

x

y
(1.3)

As in the acute case, by the use of similar triangles these definitions are well-defined

(i.e. they do not depend on which point (x, y) we choose on the terminal side of θ). Also,

notice that |sin θ | ≤ 1 and |cos θ | ≤ 1, since |y| ≤ r and |x| ≤ r in the above definitions.
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Notice that in the case of an acute angle these definitions are equivalent to our ear-

lier definitions in terms of right triangles: draw a right triangle with angle θ such that

x = adjacent side, y = opposite side, and r = hypotenuse. For example, this would give

us sin θ = y

r
= opposite

hypotenuse
and cos θ = x

r
= adjacent

hypotenuse
, just as before (see Figure 1.4.4(a)).

x

y

0

θ

r
h
yp

ot
en

u
se

(x, y)

x

adjacent side

y

opposite side

(a) Acute angle θ

x

y

0

QI

0◦ < θ < 90◦
QII

90◦ < θ < 180◦

QIII

180◦ < θ < 270◦
QIV

270◦ < θ < 360◦

0◦

90◦

180◦

270◦

(b) Angles by quadrant

Figure 1.4.4

In Figure 1.4.4(b) we see in which quadrants or on which axes the terminal side

of an angle 0◦ ≤ θ < 360◦ may fall. From Figure 1.4.3(a) and formulas (1.2) and (1.3),

we see that we can get negative values for a trigonometric function. For example,

sin θ < 0 when y < 0. Figure 1.4.5 summarizes the signs (positive or negative) for the

trigonometric functions based on the angle’s quadrant:

x

y

0

QI

sin +
cos +
tan +
csc +
sec +
cot +

QII

sin +
cos −
tan −
csc +
sec −
cot −

QIII

sin −
cos −
tan +
csc −
sec −
cot +

QIV

sin −
cos +
tan −
csc −
sec +
cot −

Figure 1.4.5 Signs of the trigonometric functions by quadrant
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Example 1.20

x

y

0

120◦
p

3

1

2

(−1,
p

3)

60◦

Find the exact values of all six trigonometric functions of 120◦.

Solution: We know 120◦ = 180◦−60◦. By Example 1.7 in Section

1.2, we see that we can use the point (−1,
p

3) on the terminal

side of the angle 120◦ in QII, since we saw in that example that

a basic right triangle with a 60◦ angle has adjacent side of length

1, opposite side of length
p

3, and hypotenuse of length 2, as in

the figure on the right. Drawing that triangle in QII so that the

hypotenuse is on the terminal side of 120◦ makes r = 2, x =−1, and

y=
p

3. Hence:

sin 120◦ =
y

r
=

p
3

2
cos 120◦ =

x

r
=

−1

2
tan 120◦ =

y

x
=

p
3

−1
= −

p
3

csc 120◦ =
r

y
=

2
p

3
sec 120◦ =

r

x
=

2

−1
= −2 cot 120◦ =

x

y
=

−1
p

3

Example 1.21

x

y

0

225◦

1

1

2

(−1,−1)

45◦

Find the exact values of all six trigonometric functions of 225◦.

Solution: We know that 225◦ = 180◦+45◦. By Example 1.6 in Sec-

tion 1.2, we see that we can use the point (−1,−1) on the terminal

side of the angle 225◦ in QIII, since we saw in that example that

a basic right triangle with a 45◦ angle has adjacent side of length

1, opposite side of length 1, and hypotenuse of length
p

2, as in

the figure on the right. Drawing that triangle in QIII so that the

hypotenuse is on the terminal side of 225◦ makes r =
p

2, x = −1,

and y=−1. Hence:

sin 225◦ =
y

r
=

−1
p

2
cos 225◦ =

x

r
=

−1
p

2
tan 225◦ =

y

x
=

−1

−1
= 1

csc 225◦ =
r

y
= −

p
2 sec 225◦ =

r

x
= −

p
2 cot 225◦ =

x

y
=

−1

−1
= 1

Example 1.22

x

y

0

330◦ 1

p
3

2

(
p

3,−1)

30◦

Find the exact values of all six trigonometric functions of 330◦.

Solution: We know that 330◦ = 360◦ −30◦. By Example 1.7 in

Section 1.2, we see that we can use the point (
p

3,−1) on the ter-

minal side of the angle 225◦ in QIV, since we saw in that example

that a basic right triangle with a 30◦ angle has adjacent side of

length
p

3, opposite side of length 1, and hypotenuse of length 2,

as in the figure on the right. Drawing that triangle in QIV so

that the hypotenuse is on the terminal side of 330◦ makes r = 2,

x =
p

3, and y=−1. Hence:

sin 330◦ =
y

r
=

−1

2
cos 330◦ =

x

r
=

p
3

2
tan 330◦ =

y

x
=

−1
p

3

csc 330◦ =
r

y
= −2 sec 330◦ =

r

x
=

2
p

3
cot 330◦ =

x

y
= −

p
3
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Example 1.23

x

y

0

0◦

(1,0)

90◦(0,1)

180◦

(−1,0)

270◦(0,−1)

Figure 1.4.6

Find the exact values of all six trigonometric functions of 0◦,
90◦, 180◦, and 270◦.

Solution: These angles are different from the angles we have

considered so far, in that the terminal sides lie along either the

x-axis or the y-axis. So unlike the previous examples, we do

not have any right triangles to draw. However, the values of

the trigonometric functions are easy to calculate by picking the

simplest points on their terminal sides and then using the def-

initions in formulas (1.2) and (1.3).

For instance, for the angle 0◦ use the point (1,0) on its ter-

minal side (the positive x-axis), as in Figure 1.4.6. You could

think of the line segment from the origin to the point (1,0) as

sort of a degenerate right triangle whose height is 0 and whose

hypotenuse and base have the same length 1. Regardless, in the formulas we would use r = 1,

x = 1, and y= 0. Hence:

sin 0◦ =
y

r
=

0

1
= 0 cos 0◦ =

x

r
=

1

1
= 1 tan 0◦ =

y

x
=

0

1
= 0

csc 0◦ =
r

y
=

1

0
= undefined sec 0◦ =

r

x
=

1

1
= 1 cot 0◦ =

x

y
=

1

0
= undefined

Note that csc 0◦ and cot 0◦ are undefined, since division by 0 is not allowed.

Similarly, from Figure 1.4.6 we see that for 90◦ the terminal side is the positive y-axis, so

use the point (0,1). Again, you could think of the line segment from the origin to (0,1) as a

degenerate right triangle whose base has length 0 and whose height equals the length of the

hypotenuse. We have r = 1, x = 0, and y= 1, and hence:

sin 90◦ =
y

r
=

1

1
= 1 cos 90◦ =

x

r
=

0

1
= 0 tan 90◦ =

y

x
=

1

0
= undefined

csc 90◦ =
r

y
=

1

1
= 1 sec 90◦ =

r

x
=

1

0
= undefined cot 90◦ =

x

y
=

0

1
= 0

Likewise, for 180◦ use the point (−1,0) so that r = 1, x =−1, and y= 0. Hence:

sin 180◦ =
y

r
=

0

1
= 0 cos 180◦ =

x

r
=

−1

1
= −1 tan 180◦ =

y

x
=

0

−1
= 0

csc 180◦ =
r

y
=

1

0
= undefined sec 180◦ =

r

x
=

1

−1
= −1 cot 180◦ =

x

y
=

−1

0
= undefined

Lastly, for 270◦ use the point (0,−1) so that r = 1, x = 0, and y=−1. Hence:

sin 270◦ =
y

r
=

−1

1
= −1 cos 270◦ =

x

r
=

0

1
= 0 tan 270◦ =

y

x
=

−1

0
= undefined

csc 270◦ =
r

y
=

1

−1
= −1 sec 270◦ =

r

x
=

1

0
= undefined cot 270◦ =

x

y
=

0

−1
= 0
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The following table summarizes the values of the trigonometric functions of angles

between 0◦ and 360◦ which are integer multiples of 30◦ or 45◦:

Table 1.3 Table of trigonometric function values

Angle sin cos tan csc sec cot

0◦ 0 1 0 undefined 1 undefined

30◦ 1
2

p
3

2
1p
3

2 2p
3

p
3

45◦ 1p
2

1p
2

1
p

2
p

2 1

60◦
p

3
2

1
2

p
3 2p

3
2 1p

3

90◦ 1 0 undefined 1 undefined 0

120◦
p

3
2

−1
2

−
p

3 2p
3

−2 − 1p
3

135◦ 1p
2

− 1p
2

−1
p

2 −
p

2 −1

150◦ 1
2

−
p

3
2

− 1p
3

2 − 2p
3

−
p

3

180◦ 0 −1 0 undefined −1 undefined

210◦ −1
2

−
p

3
2

1p
3

−2 − 2p
3

p
3

225◦ − 1p
2

− 1p
2

1 −
p

2 −
p

2 1

240◦ −
p

3
2

−1
2

p
3 − 2p

3
−2 1p

3

270◦ −1 0 undefined −1 undefined 0

300◦ −
p

3
2

1
2

−
p

3 − 2p
3

2 − 1p
3

315◦ − 1p
2

1p
2

−1 −
p

2
p

2 −1

330◦ −1
2

p
3

2
− 1p

3
2 − 2p

3
−
p

3

Since 360◦ represents one full revolution, the trigonometric function values repeat

every 360◦. For example, sin 360◦ = sin 0◦, cos 390◦ = cos 30◦, tan 540◦ = tan 180◦,

sin (−45◦) = sin 315◦, etc. In general, if two angles differ by an integer multiple of

360◦ then each trigonometric function will have equal values at both angles. Angles

such as these, which have the same initial and terminal sides, are called coterminal.

In Examples 1.20-1.22, we saw how the values of trigonometric functions of an angle

θ larger than 90◦ were found by using a certain acute angle as part of a right triangle.

That acute angle has a special name: if θ is a nonacute angle then we say that the

reference angle for θ is the acute angle formed by the terminal side of θ and either
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the positive or negative x-axis. So in Example 1.20, we see that 60◦ is the reference

angle for the nonacute angle θ = 120◦; in Example 1.21, 45◦ is the reference angle for

θ = 225◦; and in Example 1.22, 30◦ is the reference angle for θ = 330◦.

Example 1.24

28◦

x

y

0

208◦

928◦

Figure 1.4.7

Let θ = 928◦.

(a) Which angle between 0◦ and 360◦ has the same terminal side

(and hence the same trigonometric function values) as θ?

(b) What is the reference angle for θ?

Solution: (a) Since 928◦ = 2×360◦ +208◦, then θ has the same

terminal side as 208◦, as in Figure 1.4.7.

(b) 928◦ and 208◦ have the same terminal side in QIII, so the

reference angle for θ = 928◦ is 208◦−180◦ = 28◦.

Example 1.25

Suppose that cos θ =− 4
5
. Find the exact values of sin θ and tan θ.

Solution: We can use a method similar to the one used to solve Example 1.8 in Section 1.2.

That is, draw a right triangle and interpret cos θ as the ratio
adjacent

hypotenuse
of two of its sides.

Since cos θ = − 4
5
, we can use 4 as the length of the adjacent side and 5 as the length of the

hypotenuse. By the Pythagorean Theorem, the length of the opposite side must then be 3.

Since cos θ is negative, we know from Figure 1.4.5 that θ must be in either QII or QIII. Thus,

we have two possibilities, as shown in Figure 1.4.8 below:

x

y

0

θ3

4

5

(−4,3)

(a) θ in QII

x

y

0

θ

3

4

5

(−4,−3)

(b) θ in QIII

Figure 1.4.8 cos θ =− 4
5

When θ is in QII, we see from Figure 1.4.8(a) that the point (−4,3) is on the terminal side of θ,

and so we have x =−4, y= 3, and r = 5. Thus, sin θ = y
r
= 3

5
and tan θ = y

x
= 3

−4
.

When θ is in QIII, we see from Figure 1.4.8(b) that the point (−4,−3) is on the terminal side of

θ, and so we have x =−4, y=−3, and r = 5. Thus, sin θ = y
r
= −3

5
and tan θ = y

x
= −3

−4
= 3

4
.

Thus, either sin θ = 3
5

and tan θ =− 3
4

or sin θ =− 3
5

and tan θ = 3
4

.

Since reciprocals have the same sign, csc θ and sin θ have the same sign, sec θ and

cos θ have the same sign, and cot θ and tan θ have the same sign. So it suffices to

remember the signs of sin θ, cos θ, and tan θ:
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For an angle θ in standard position and a point (x, y) on its terminal side:

(a) sin θ has the same sign as y

(b) cos θ has the same sign as x

(c) tan θ is positive when x and y have the same sign

(d) tan θ is negative when x and y have opposite signs

�



�
	Exercises

For Exercises 1-10, state in which quadrant or on which axis the given angle lies.

1. 127◦ 2. −127◦ 3. 313◦ 4. −313◦ 5. −90◦

6. 621◦ 7. 230◦ 8. 2009◦ 9. 1079◦ 10. −514◦

11. In which quadrant(s) do sine and cosine have the same sign?

12. In which quadrant(s) do sine and cosine have the opposite sign?

13. In which quadrant(s) do sine and tangent have the same sign?

14. In which quadrant(s) do sine and tangent have the opposite sign?

15. In which quadrant(s) do cosine and tangent have the same sign?

16. In which quadrant(s) do cosine and tangent have the opposite sign?

For Exercises 17-21, find the reference angle for the given angle.

17. 317◦ 18. 63◦ 19. −126◦ 20. 696◦ 21. 275◦

For Exercises 22-26, find the exact values of sin θ and tan θ when cos θ has the indicated value.

22. cos θ = 1
2

23. cos θ =− 1
2

24. cos θ = 0 25. cos θ = 2
5

26. cos θ = 1

For Exercises 27-31, find the exact values of cos θ and tan θ when sin θ has the indicated value.

27. sin θ = 1
2

28. sin θ =− 1
2

29. sin θ = 0 30. sin θ =− 2
3

31. sin θ = 1

For Exercises 32-36, find the exact values of sin θ and cos θ when tan θ has the indicated value.

32. tan θ = 1
2

33. tan θ =− 1
2

34. tan θ = 0 35. tan θ = 5
12

36. tan θ = 1

For Exercises 37-40, use Table 1.3 to answer the following questions.

37. Does sin 180◦ + sin 45◦ = sin 225◦ ? 38. Does tan 300◦ − tan 30◦ = tan 270◦ ?

39. Does cos 180◦ − cos 60◦ = cos 120◦ ? 40. Does cos 240◦ = (cos 120◦)2 − (sin 120◦)2 ?

41. Expand Table 1.3 to include all integer multiples of 15◦. See Example 1.10 in Section 1.2.
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1.5 Rotations and Reflections of Angles

Now that we know how to deal with angles of any measure, we will take a look at how

certain geometric operations can help simplify the use of trigonometric functions of

any angle, and how some basic relations between those functions can be made. The

two operations on which we will concentrate in this section are rotation and reflection.

To rotate an angle means to rotate its terminal side around the origin when the

angle is in standard position. For example, suppose we rotate an angle θ around the

origin by 90◦ in the counterclockwise direction. In Figure 1.5.1 we see an angle θ

in QI which is rotated by 90◦, resulting in the angle θ+90◦ in QII. Notice that the

complement of θ in the right triangle in QI is the same as the supplement of the angle

θ+90◦ in QII, since the sum of θ, its complement, and 90◦ equals 180◦. This forces the

other angle of the right triangle in QII to be θ.

x

y

x

y

x

y

θ

90◦

θ+90◦
θ

r
r

(x, y)

(−y, x)

Figure 1.5.1 Rotation of an angle θ by 90◦

Thus, the right triangle in QI is similar to the right triangle in QII, since the trian-

gles have the same angles. The rotation of θ by 90◦ does not change the length r of its

terminal side, so the hypotenuses of the similar right triangles are equal, and hence

by similarity the remaining corresponding sides are also equal. Using Figure 1.5.1

to match up those corresponding sides shows that the point (−y, x) is on the terminal

side of θ+90◦ when (x, y) is on the terminal side of θ. Hence, by definition,

sin (θ+90◦) =
x

r
= cos θ , cos (θ+90◦) =

−y

r
= −sin θ , tan (θ+90◦) =

x

−y
= −cot θ .

Though we showed this for θ in QI, it is easy (see Exercise 4) to use similar arguments

for the other quadrants. In general, the following relations hold for all angles θ:

sin (θ+90◦) = cos θ (1.4)

cos (θ+90◦) = −sin θ (1.5)

tan (θ+90◦) = −cot θ (1.6)
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Example 1.26

Recall that any nonvertical line in the xy-coordinate plane can be written as y= mx+b, where

m is the slope of the line (defined as m = rise
run ) and b is the y-intercept, i.e. where the line

crosses the y-axis (see Figure 1.5.2(a)). We will show that the slopes of perpendicular lines are

negative reciprocals. That is, if y= m1x+b1 and y= m2x+b2 are nonvertical and nonhorizontal

perpendicular lines, then m2 =− 1
m1

(see Figure 1.5.2(b)).

x

y

0

y= mx+b

b run

rise

m = rise
run

(a) Slope of a line

x

y

0

y= m1x+b1

b1

y= m2x+b2

b2

(b) Perpendicular lines

Figure 1.5.2

First, suppose that a line y = mx+ b has nonzero slope. The line crosses the x-axis some-

where, so let θ be the angle that the positive x-axis makes with the part of the line above the

x-axis, as in Figure 1.5.3. For m > 0 we see that θ is acute and tan θ = rise
run = m.

x

y

0 θ

y= mx+b

b run > 0

rise > 0

(a) m > 0, θ acute, rise > 0

x

y

0

θ

y= mx+b

b
run > 0

rise < 0

(b) m < 0, θ obtuse, rise < 0

Figure 1.5.3

If m < 0, then we see that θ is obtuse and the rise is negative. Since the run is always

positive, our definition of tan θ from Section 1.4 means that tan θ = −rise
−run = rise

run = m (just imagine

in Figure 1.5.3(b) the entire line being shifted horizontally to go through the origin, so that θ

is unchanged and the point (−run,−rise) is on the terminal side of θ). Hence:

For a line y= mx+b with m 6= 0, the slope is given by m = tan θ , where θ is the angle formed

by the positive x-axis and the part of the line above the x-axis.

Now, in Figure 1.5.2(b) we see that if two lines y= m1x+b1 and y= m2x+b2 are perpendicular

then rotating one line counterclockwise by 90◦ around the point of intersection gives us the

second line. So if θ is the angle that the line y = m1x+ b1 makes with the positive x-axis,

then θ + 90◦ is the angle that the line y = m2x+ b2 makes with the positive x-axis. So by

what we just showed, m1 = tan θ and m2 = tan (θ+90◦). But by formula (1.6) we know that

tan (θ+90◦)=−cot θ. Hence, m2 =−cot θ =− 1
tan θ

=− 1
m1

. QED
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Rotating an angle θ by 90◦ in the clockwise direction results in the angle θ−90◦.

We could use another geometric argument to derive trigonometric relations involving

θ−90◦, but it is easier to use a simple trick: since formulas (1.4)−(1.6) hold for any

angle θ, just replace θ by θ−90◦ in each formula. Since (θ−90◦)+90◦ = θ, this gives us:

sin (θ−90◦) = −cos θ (1.7)

cos (θ−90◦) = sin θ (1.8)

tan (θ−90◦) = −cot θ (1.9)

We now consider rotating an angle θ by 180◦. Notice from Figure 1.5.4 that the

angles θ±180◦ have the same terminal side, and are in the quadrant opposite θ.

x

y

θ+180◦

θ−180◦

(x, y)

(−x,−y)

θ
180◦

−180◦

r

r

(a) QI and QIII

x

y

θ+180◦

θ−180◦ (x, y)

(−x,−y)

θ

180◦

−180◦
r

r

(b) QII and QIV

Figure 1.5.4 Rotation of θ by ±180◦

Since (−x,−y) is on the terminal side of θ±180◦ when (x, y) is on the terminal side of

θ, we get the following relations, which hold for all θ:

sin (θ±180◦) = −sin θ (1.10)

cos (θ±180◦) = −cos θ (1.11)

tan (θ±180◦) = tan θ (1.12)

x

y

cc
cc

Figure 1.5.5

A reflection is simply the mirror image of an object. For example,

in Figure 1.5.5 the original object is in QI, its reflection around the

y-axis is in QII, and its reflection around the x-axis is in QIV. Notice

that if we first reflect the object in QI around the y-axis and then fol-

low that with a reflection around the x-axis, we get an image in QIII.

That image is the reflection around the origin of the original object,

and it is equivalent to a rotation of 180◦ around the origin. Notice

also that a reflection around the y-axis is equivalent to a reflection

around the x-axis followed by a rotation of 180◦ around the origin.
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Applying this to angles, we see that the reflection of an angle θ around the x-axis is

the angle −θ, as in Figure 1.5.6.

x

y
(x, y)

(x,−y)

θ

−θ

r

r

(a) QI and QIV

x

y
(x, y)

(x,−y)

θ

−θ

r

r

(b) QII and QIII

Figure 1.5.6 Reflection of θ around the x-axis

So we see that reflecting a point (x, y) around the x-axis just replaces y by −y. Hence:

sin (−θ) = −sin θ (1.13)

cos (−θ) = cos θ (1.14)

tan (−θ) = −tan θ (1.15)

Notice that the cosine function does not change in formula (1.14) because it depends

on x, and not on y, for a point (x, y) on the terminal side of θ.

In general, a function f (x) is an even function if f (−x) = f (x) for all x, and it is

called an odd function if f (−x) = − f (x) for all x. Thus, the cosine function is even,

while the sine and tangent functions are odd.

Replacing θ by −θ in formulas (1.4)−(1.6), then using formulas (1.13)−(1.15), gives:

sin (90◦−θ) = cos θ (1.16)

cos (90◦−θ) = sin θ (1.17)

tan (90◦−θ) = cot θ (1.18)

Note that formulas (1.16)−(1.18) extend the Cofunction Theorem from Section 1.2 to

all θ, not just acute angles. Similarly, formulas (1.10)−(1.12) and (1.13)−(1.15) give:

sin (180◦−θ) = sin θ (1.19)

cos (180◦−θ) = −cos θ (1.20)

tan (180◦−θ) = −tan θ (1.21)
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Notice that reflection around the y-axis is equivalent to reflection around the x-axis

(θ 7→ −θ) followed by a rotation of 180◦ (−θ 7→ −θ+180◦ = 180◦−θ), as in Figure 1.5.7.

x

y

θ

−θ

r

r

(x, y)

(x,−y)

(−x, y) 180◦−θ
r

Figure 1.5.7 Reflection of θ around the y-axis = 180◦−θ

It may seem that these geometrical operations and formulas are not necessary for

evaluating the trigonometric functions, since we could just use a calculator. However,

there are two reasons for why they are useful. First, the formulas work for any angles,

so they are often used to prove general formulas in mathematics and other fields, as

we will see later in the text. Second, they can help in determining which angles have

a given trigonometric function value.

Example 1.27

Find all angles 0◦ ≤ θ < 360◦ such that sin θ =−0.682.

Solution: Using the
�
�

�
�sin−1 button on a calculator with −0.682 as the input, we get θ = −43◦,

which is not between 0◦ and 360◦.7 Since θ =−43◦ is in QIV, its reflection 180◦−θ around the

y-axis will be in QIII and have the same sine value. But 180◦ − θ = 180◦ − (−43◦) = 223◦ (see

Figure 1.5.8). Also, we know that −43◦ and −43◦ +360◦ = 317◦ have the same trigonometric

function values. So since angles in QI and QII have positive sine values, we see that the only

angles between 0◦ and 360◦ with a sine of −0.682 are θ = 223◦ and 317◦ .

x

y

θ =−43◦

r

(x, y)(−x, y)

180◦−θ = 223◦

r

Figure 1.5.8 Reflection around the y-axis: −43◦ and 223◦

7In Chapter 5 we will discuss why the
�
�

�
�sin−1 button returns that value.
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�



�
	Exercises

1. Let θ = 32◦. Find the angle between 0◦ and 360◦ which is the

(a) reflection of θ around the x-axis

(b) reflection of θ around the y-axis

(c) reflection of θ around the origin

2. Repeat Exercise 1 with θ = 248◦. 3. Repeat Exercise 1 with θ =−248◦.

4. We proved formulas (1.4)-(1.6) for any angle θ in QI. Mimic that proof to show that the

formulas hold for θ in QII.

5. Verify formulas (1.4)-(1.6) for θ on the coordinate axes, i.e. for θ = 0◦, 90◦, 180◦, 270◦.

6. In Example 1.26 we used the formulas involving θ+ 90◦ to prove that the slopes of per-

pendicular lines are negative reciprocals. Show that this result can also be proved using

the formulas involving θ−90◦. (Hint: Only the last paragraph in that example needs to be

modified.)

For Exercises 7 - 14, find all angles 0◦ ≤ θ < 360◦ which satisfy the given equation:

7. sin θ = 0.4226 8. sin θ = 0.1909 9. cos θ = 0.4226 10. sin θ = 0

11. tan θ = 0.7813 12. sin θ =−0.6294 13. cos θ =−0.9816 14. tan θ =−9.514

x

y

C (0,0) A (a,0)

B (0,b)
D

15. In our proof of the Pythagorean Theorem in Section 1.2,

we claimed that in a right triangle △ABC it was possible

to draw a line segment CD from the right angle vertex C to

a point D on the hypotenuse AB such that CD ⊥ AB. Use

the picture on the right to prove that claim. (Hint: Notice

how △ABC is placed on the xy-coordinate plane. What is the

slope of the hypotenuse? What would be the slope of a line

perpendicular to it?) Also, find the (x, y) coordinates of the point D in terms of a and b.

16. It can be proved without using trigonometric functions that the slopes of perpendicular

lines are negative reciprocals. Let y= m1x+b1 and y= m2x+b2 be perpendicular lines (with

nonzero slopes), as in the picture below. Use the picture to show that m2 =− 1
m1

.

(Hint: Think of similar triangles and the definition of slope.)

y

x

y= m1x+b1y= m2x+b2

(x1, y1)

(x2, y2) (x3, y2)

(x2, y1) (x3, y1)

17. Prove formulas (1.19)-(1.21) by using formulas (1.10)−(1.12) and (1.13)−(1.15).



2 General Triangles

In Section 1.3 we saw how to solve a right triangle: given two sides, or one side and

one acute angle, we could find the remaining sides and angles. In each case we were

actually given three pieces of information, since we already knew one angle was 90◦.

For a general triangle, which may or may not have a right angle, we will again need

three pieces of information. The four cases are:

Case 1: One side and two angles

Case 2: Two sides and one opposite angle

Case 3: Two sides and the angle between them

Case 4: Three sides

Note that if we were given all three angles we could not determine the sides uniquely;

by similarity an infinite number of triangles have the same angles.

In this chapter we will learn how to solve a general triangle in all four of the above

cases. Though the methods described will work for right triangles, they are mostly

used to solve oblique triangles, that is, triangles which do not have a right angle.

There are two types of oblique triangles: an acute triangle has all acute angles, and

an obtuse triangle has one obtuse angle.

As we will see, Cases 1 and 2 can be solved using the law of sines, Case 3 can be

solved using either the law of cosines or the law of tangents, and Case 4 can be solved

using the law of cosines.

2.1 The Law of Sines

Theorem 2.1. Law of Sines: If a triangle has sides of lengths a, b, and c opposite

the angles A, B, and C, respectively, then

a

sin A
=

b

sin B
=

c

sin C
. (2.1)

Note that by taking reciprocals, equation (2.1) can be written as

sin A

a
=

sin B

b
=

sin C

c
, (2.2)

and it can also be written as a collection of three equations:

a

b
=

sin A

sin B
,

a

c
=

sin A

sin C
,

b

c
=

sin B

sin C
(2.3)

38
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Another way of stating the Law of Sines is: The sides of a triangle are proportional

to the sines of their opposite angles.

To prove the Law of Sines, let △ABC be an oblique triangle. Then △ABC can be

acute, as in Figure 2.1.1(a), or it can be obtuse, as in Figure 2.1.1(b). In each case,

draw the altitude1 from the vertex at C to the side AB. In Figure 2.1.1(a) the altitude

lies inside the triangle, while in Figure 2.1.1(b) the altitude lies outside the triangle.

h
b a

cA B

C

(a) Acute triangle

h
b

a

cA B

C

180◦−B

(b) Obtuse triangle

Figure 2.1.1 Proof of the Law of Sines for an oblique triangle △ABC

Let h be the height of the altitude. For each triangle in Figure 2.1.1, we see that

h

b
= sin A (2.4)

and

h

a
= sin B (2.5)

(in Figure 2.1.1(b), h
a
= sin (180◦−B) = sin B by formula (1.19) in Section 1.5). Thus,

solving for h in equation (2.5) and substituting that into equation (2.4) gives

a sin B

b
= sin A , (2.6)

and so putting a and A on the left side and b and B on the right side, we get

a

sin A
=

b

sin B
. (2.7)

By a similar argument, drawing the altitude from A to BC gives

b

sin B
=

c

sin C
, (2.8)

so putting the last two equations together proves the theorem. QED

Note that we did not prove the Law of Sines for right triangles, since it turns out

(see Exercise 12) to be trivially true for that case.

1Recall from geometry that an altitude of a triangle is a perpendicular line segment from any vertex to

the line containing the side opposite the vertex.
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Example 2.1

b a = 10

cA = 41◦ B

C = 75◦Case 1: One side and two angles.

Solve the triangle △ABC given a = 10, A = 41◦, and C = 75◦.

Solution: We can find the third angle by subtracting the other two

angles from 180◦, then use the law of sines to find the two unknown

sides. In this example we need to find B, b, and c. First, we see that

B = 180◦ − A − C = 180◦ − 41◦ − 75◦ ⇒ B = 64◦ .

So by the Law of Sines we have

b

sin B
=

a

sin A
⇒ b =

a sin B

sin A
=

10 sin 64◦

sin 41◦ ⇒ b = 13.7 , and

c

sin C
=

a

sin A
⇒ c =

a sin C

sin A
=

10 sin 75◦

sin 41◦ ⇒ c = 14.7 .

Example 2.2

b = 30 a = 18

cA = 25◦ B

CCase 2: Two sides and one opposite angle.

Solve the triangle △ABC given a = 18, A = 25◦, and b = 30.

Solution: In this example we know the side a and its opposite angle

A, and we know the side b. We can use the Law of Sines to find the

other opposite angle B, then find the third angle C by subtracting A

and B from 180◦, then use the law of sines to find the third side c. By the Law of Sines, we

have
sin B

b
=

sin A

a
⇒ sin B =

b sin A

a
=

30 sin 25◦

18
⇒ sin B = 0.7044 .

Using the
�
�

�
�sin−1 button on a calculator gives B = 44.8◦. However, recall from Section 1.5 that

sin (180◦−B) = sin B. So there is a second possible solution for B, namely 180◦−44.8◦ = 135.2◦.
Thus, we have to solve twice for C and c : once for B = 44.8◦ and once for B = 135.2◦:

B = 44.8◦ B = 135.2◦

C = 180◦− A−B = 180◦−25◦−44.8◦ = 110.2◦ C = 180◦− A−B = 180◦−25◦−135.2◦ = 19.8◦

c

sin C
=

a

sin A
⇒ c =

a sin C

sin A
=

18 sin 110.2◦

sin 25◦
c

sin C
=

a

sin A
⇒ c =

a sin C

sin A
=

18 sin 19.8◦

sin 25◦

⇒ c = 40 ⇒ c = 14.4

Hence, B = 44.8◦, C = 110.2◦, c = 40 and B = 135.2◦, C = 19.8◦, c = 14.4 are the two possible sets

of solutions. This means that there are two possible triangles, as shown in Figure 2.1.2.

b = 30 a = 18

c = 40
A = 25◦ B = 44.8◦

C = 110.2◦

(a) B = 44.8◦

b = 30
a = 18

c = 14.4
A = 25◦ B = 135.2◦

C = 19.8◦

(b) B = 135.2◦

Figure 2.1.2 Two possible solutions
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In Example 2.2 we saw what is known as the ambiguous case. That is, there may

be more than one solution. It is also possible for there to be exactly one solution or no

solution at all.

Example 2.3

Case 2: Two sides and one opposite angle.

Solve the triangle △ABC given a = 5, A = 30◦, and b = 12.

Solution: By the Law of Sines, we have

sin B

b
=

sin A

a
⇒ sin B =

b sin A

a
=

12 sin 30◦

5
⇒ sin B = 1.2 ,

which is impossible since |sin B| ≤ 1 for any angle B. Thus, there is no solution .

There is a way to determine how many solutions a triangle has in Case 2. For a

triangle △ABC, suppose that we know the sides a and b and the angle A. Draw the

angle A and the side b, and imagine that the side a is attached at the vertex at C so

that it can “swing” freely, as indicated by the dashed arc in Figure 2.1.3 below.

h
b

a

A

C

B

(a) a < h: No solution

h
b

a

cA

C

B

(b) a = h: One solution

h
b a

a

A

C

BB

(c) h < a < b: Two solutions

b

b a

cA

C

B

(d) a ≥ b: One solution

Figure 2.1.3 The ambiguous case when A is acute

If A is acute, then the altitude from C to AB has height h = b sin A. As we can see

in Figure 2.1.3(a)-(c), there is no solution when a < h (this was the case in Example

2.3); there is exactly one solution - namely, a right triangle - when a = h; and there

are two solutions when h < a < b (as was the case in Example 2.2). When a ≥ b there is

only one solution, even though it appears from Figure 2.1.3(d) that there may be two

solutions, since the dashed arc intersects the horizontal line at two points. However,

the point of intersection to the left of A in Figure 2.1.3(d) can not be used to determine

B, since that would make A an obtuse angle, and we assumed that A was acute.

If A is not acute (i.e. A is obtuse or a right angle), then the situation is simpler:

there is no solution if a ≤ b, and there is exactly one solution if a > b (see Figure 2.1.4).
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b

a

A

C

B

(a) a ≤ b: No solution

b
a

A

C

B

(b) a > b: One solution

Figure 2.1.4 The ambiguous case when A ≥ 90◦

Table 2.1 summarizes the ambiguous case of solving △ABC when given a, A, and b.

Of course, the letters can be interchanged, e.g. replace a and A by c and C, etc.

Table 2.1 Summary of the ambiguous case

0◦ < A < 90◦ 90◦ ≤ A < 180◦

a < b sin A : No solution a ≤ b : No solution

a = b sin A : One solution a > b : One solution

b sin A < a < b : Two solutions

a ≥ b : One solution

There is an interesting geometric consequence of the Law of Sines. Recall from Sec-

tion 1.1 that in a right triangle the hypotenuse is the largest side. Since a right angle

is the largest angle in a right triangle, this means that the largest side is opposite the

largest angle. What the Law of Sines does is generalize this to any triangle:

In any triangle, the largest side is opposite the largest angle.

To prove this, let C be the largest angle in a triangle △ABC. If C = 90◦ then we

already know that its opposite side c is the largest side. So we just need to prove the

result for when C is acute and for when C is obtuse. In both cases, we have A ≤ C and

B ≤ C. We will first show that sin A ≤ sin C and sin B ≤ sin C.

y

x

r

r

(x1, y1)

(x2, y2)

A

C

Figure 2.1.5

If C is acute, then A and B are also acute. Since A ≤ C, imag-

ine that A is in standard position in the xy-coordinate plane

and that we rotate the terminal side of A counterclockwise to

the terminal side of the larger angle C, as in Figure 2.1.5. If

we pick points (x1, y1) and (x2, y2) on the terminal sides of A

and C, respectively, so that their distance to the origin is the

same number r, then we see from the picture that y1 ≤ y2, and

hence

sin A =
y1

r
≤

y2

r
= sin C .

By a similar argument, B ≤ C implies that sin B ≤ sin C. Thus, sin A ≤ sin C and

sin B ≤ sin C when C is acute. We will now show that these inequalities hold when C

is obtuse.
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If C is obtuse, then 180◦−C is acute, as are A and B. If A > 180◦−C then A+C > 180◦,

which is impossible. Thus, we must have A ≤ 180◦ −C. Likewise, B ≤ 180◦ −C. So

by what we showed above for acute angles, we know that sin A ≤ sin (180◦ −C) and

sin B ≤ sin (180◦−C). But we know from Section 1.5 that sin C = sin (180◦−C). Hence,

sin A ≤ sin C and sin B ≤ sin C when C is obtuse.

Thus, sin A ≤ sin C if C is acute or obtuse, so by the Law of Sines we have

a

c
=

sin A

sin C
≤

sin C

sin C
= 1 ⇒

a

c
≤ 1 ⇒ a ≤ c .

By a similar argument, b ≤ c. Thus, a ≤ c and b ≤ c, i.e. c is the largest side. QED

�



�
	Exercises

For Exercises 1-9, solve the triangle △ABC.

1. a = 10, A = 35◦, B = 25◦ 2. b = 40, B = 75◦, c = 35 3. A = 40◦, B = 45◦, c = 15

4. a = 5, A = 42◦, b = 7 5. a = 40, A = 25◦, c = 30 6. a = 5, A = 47◦, b = 9

7. a = 12, A = 94◦, b = 15 8. a = 15, A = 94◦, b = 12 9. a = 22, A = 50◦, c = 27

10. Draw a circle with a radius of 2 inches and inscribe a triangle inside the circle. Use a ruler

and a protractor to measure the sides a, b, c and the angles A, B, C of the triangle. The

Law of Sines says that the ratios a
sin A

, b
sin B

, c
sin C

are equal. Verify this for your triangle.

What relation does that common ratio have to the diameter of your circle?

11. An observer on the ground measures an angle of inclination of 30◦ to an approaching

airplane, and 10 seconds later measures an angle of inclination of 55◦. If the airplane is

flying at a constant speed and at a steady altitude of 6000 ft in a straight line directly over

the observer, find the speed of the airplane in miles per hour. (Note: 1 mile = 5280 ft)

��

6000 ft

30◦

55◦

10 seconds pass

12. Prove the Law of Sines for right triangles. (Hint: One of the angles is known.)

13. For a triangle △ABC, show that
a±b

c
=

sin A ± sin B

sin C
.

14. For a triangle △ABC, show that
a

c
=

sin (B+C)

sin C
.

15. One diagonal of a parallelogram is 17 cm long and makes angles of 36◦ and 15◦ with the

sides. Find the lengths of the sides.

16. Explain why in Case 1 (one side and two angles) there is always exactly one solution.
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2.2 The Law of Cosines

We will now discuss how to solve a triangle in Case 3: two sides and the angle between

them. First, let us see what happens when we try to use the Law of Sines for this case.

Example 2.4

b = 4 a

c = 5A = 30◦ B

CCase 3: Two sides and the angle between them.

Solve the triangle △ABC given A = 30◦, b = 4, and c = 5.

Solution: Using the Law of Sines, we have

a

sin 30◦ =
4

sin B
=

5

sin C
,

where each of the equations has two unknown parts, making the problem impossible to solve.

For example, to solve for a we could use the equation 4
sin B

= 5
sin C

to solve for sin B in terms

of sin C and substitute that into the equation a
sin 30◦ = 4

sin B
. But that would just result in the

equation a
sin 30◦ =

5
sin C

, which we already knew and which still has two unknowns!

Thus, this problem can not be solved using the Law of Sines.

To solve the triangle in the above example, we can use the Law of Cosines:

Theorem 2.2. Law of Cosines: If a triangle has sides of lengths a, b, and c opposite

the angles A, B, and C, respectively, then

a2 = b2 + c2 − 2bc cos A , (2.9)

b2 = c2 + a2 − 2ca cos B , (2.10)

c2 = a2 + b2 − 2ab cos C . (2.11)

To prove the Law of Cosines, let △ABC be an oblique triangle. Then △ABC can be

acute, as in Figure 2.2.1(a), or it can be obtuse, as in Figure 2.2.1(b). In each case,

draw the altitude from the vertex at C to the side AB. In Figure 2.2.1(a) the altitude

divides AB into two line segments with lengths x and c− x, while in Figure 2.2.1(b)

the altitude extends the side AB by a distance x. Let h be the height of the altitude.

h
b a

cA B

C

xc− x

(a) Acute triangle

h
b

a

cA B

C

180◦−B
x

(b) Obtuse triangle

Figure 2.2.1 Proof of the Law of Cosines for an oblique triangle △ABC
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For each triangle in Figure 2.2.1, we see by the Pythagorean Theorem that

h2 = a2 − x2 (2.12)

and likewise for the acute triangle in Figure 2.2.1(a) we see that

b2 = h2 + (c− x)2 . (2.13)

Thus, substituting the expression for h2 in equation (2.12) into equation (2.13) gives

b2 = a2 − x2 + (c− x)2

= a2 − x2 + c2 − 2cx + x2

= a2 + c2 − 2cx .

But we see from Figure 2.2.1(a) that x = a cos B, so

b2 = a2 + c2 − 2ca cos B . (2.14)

And for the obtuse triangle in Figure 2.2.1(b) we see that

b2 = h2 + (c+ x)2 . (2.15)

Thus, substituting the expression for h2 in equation (2.12) into equation (2.15) gives

b2 = a2 − x2 + (c+ x)2

= a2 − x2 + c2 + 2cx + x2

= a2 + c2 + 2cx .

But we see from Figure 2.2.1(a) that x = a cos (180◦−B), and we know from Section 1.5

that cos (180◦−B)=−cos B. Thus, x =−a cos B and so

b2 = a2 + c2 − 2ca cos B . (2.16)

So for both acute and obtuse triangles we have proved formula (2.10) in the Law of

Cosines. Notice that the proof was for B acute and obtuse. By similar arguments for

A and C we get the other two formulas. QED

Note that we did not prove the Law of Cosines for right triangles, since it turns

out (see Exercise 15) that all three formulas reduce to the Pythagorean Theorem for

that case. The Law of Cosines can be viewed as a generalization of the Pythagorean

Theorem.

Also, notice that it suffices to remember just one of the three formulas (2.9)-(2.11),

since the other two can be obtained by “cycling” through the letters a, b, and c. That

is, replace a by b, replace b by c, and replace c by a (likewise for the capital letters).

One cycle will give you the second formula, and another cycle will give you the third.
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The angle between two sides of a triangle is often called the included angle. Notice

in the Law of Cosines that if two sides and their included angle are known (e.g. b, c,

and A), then we have a formula for the square of the third side.

We will now solve the triangle from Example 2.4.

Example 2.5

b = 4 a

c = 5A = 30◦ B

CCase 3: Two sides and the angle between them.

Solve the triangle △ABC given A = 30◦, b = 4, and c = 5.

Solution: We will use the Law of Cosines to find a, use it again

to find B, then use C = 180◦− A−B. First, we have

a2 = b2 + c2 − 2bc cos A

= 42 + 52 − 2(4)(5) cos 30◦ = 6.36 ⇒ a = 2.52 .

Now we use the formula for b2 to find B:

b2 = c2 + a2 − 2ca cos B ⇒ cos B =
c2 + a2 − b2

2ca

⇒ cos B =
52 + (2.52)2 − 42

2(5)(2.52)
= 0.6091

⇒ B = 52.5◦

Thus, C = 180◦− A−B = 180◦−30◦−52.5◦ ⇒ C = 97.5◦ .

Notice in Example 2.5 that there was only one solution. For Case 3 this will always

be true: when given two sides and their included angle, the triangle will have exactly

one solution. The reason is simple: when joining two line segments at a common

vertex to form an angle, there is exactly one way to connect their free endpoints with

a third line segment, regardless of the size of the angle.

You may be wondering why we used the Law of Cosines a second time in Example

2.5, to find the angle B. Why not use the Law of Sines, which has a simpler formula?

The reason is that using the cosine function eliminates any ambiguity: if the cosine is

positive then the angle is acute, and if the cosine is negative then the angle is obtuse.

This is in contrast to using the sine function; as we saw in Section 2.1, both an acute

angle and its obtuse supplement have the same positive sine.

To see this, suppose that we had used the Law of Sines to find B in Example 2.5:

sin B =
b sin A

a
=

4 sin 30◦

2.52
= 0.7937 ⇒ B = 52.5◦ or 127.5◦

How would we know which answer is correct? We could not immediately rule out

B = 127.5◦ as too large, since it would make A +B = 157.5◦ < 180◦ and so C = 22.5◦,

which seems like it could be a valid solution. However, this solution is impossible.

Why? Because the largest side in the triangle is c = 5, which (as we learned in Section

2.1) means that C has to be the largest angle. But C = 22.5◦ would not be the largest

angle in this solution, and hence we have a contradiction.
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It remains to solve a triangle in Case 4, i.e. given three sides. We will now see how

to use the Law of Cosines for that case.

Example 2.6

b = 3 a = 2

c = 4A B

CCase 4: Three sides.

Solve the triangle △ABC given a = 2, b = 3, and c = 4.

Solution: We will use the Law of Cosines to find B and C, then use

A = 180◦−B−C. First, we use the formula for b2 to find B:

b2 = c2 + a2 − 2ca cos B ⇒ cos B =
c2 + a2 − b2

2ca

⇒ cos B =
42 + 22 − 32

2(4)(2)
= 0.6875

⇒ B = 46.6◦

Now we use the formula for c2 to find C:

c2 = a2 + b2 − 2ab cos C ⇒ cos C =
a2 + b2 − c2

2ab

⇒ cos C =
22 + 32 − 42

2(2)(3)
= −0.25

⇒ C = 104.5◦

Thus, A = 180◦−B−C = 180◦−46.6◦−104.5◦ ⇒ A = 28.9◦ .

It may seem that there is always a solution in Case 4 (given all three sides), but

that is not true, as the following example shows.

Example 2.7

b = 3 a = 2

c = 6
A B

CCase 4: Three sides.

Solve the triangle △ABC given a = 2, b = 3, and c = 6.

Solution: If we blindly try to use the Law of Cosines to find A, we get

a2 = b2 + c2 − 2bc cos A ⇒ cos A =
b2 + c2 − a2

2bc
=

32 + 62 − 22

2(3)(6)
= 1.139 ,

which is impossible since |cos A | ≤ 1. Thus, there is no solution .

b = 3

c = 6

a = 2
We could have saved ourselves some effort by recognizing that the

length of one of the sides (c = 6) is greater than the sums of the lengths

of the remaining sides (a = 2 and b = 3), which (as the picture on the

right shows) is impossible in a triangle.

The Law of Cosines can also be used to solve triangles in Case 2 (two sides and

one opposite angle), though it is less commonly used for that purpose than the Law of

Sines. The following example gives an idea of how to do this.
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Example 2.8

Case 2: Two sides and one opposite angle.

Solve the triangle △ABC given a = 18, A = 25◦, and b = 30.

Solution: In Example 2.2 from Section 2.1 we used the Law of Sines to show that there are

two sets of solutions for this triangle: B = 44.8◦, C = 110.2◦, c = 40 and B = 135.2◦, C = 19.8◦,
c = 14.4. To solve this using the Law of Cosines, first find c by using the formula for a2:

a2 = b2 + c2 − 2bc cos A ⇒ 182 = 302 + c2 − 2(30)c cos 25◦

⇒ c2 − 54.38 c + 576 = 0 ,

which is a quadratic equation in c, so we know that it can have either zero, one, or two real

roots (corresponding to the number of solutions in Case 2). By the quadratic formula, we have

c =
54.38 ±

√
(54.38)2 − 4(1)(576)

2(1)
= 40 or 14.4 .

Note that these are the same values for c that we found before. For c = 40 we get

cos B =
c2 + a2 − b2

2ca
=

402 + 182 − 302

2(40)(18)
= 0.7111 ⇒ B = 44.7◦ ⇒ C = 110.3◦ ,

which is close to what we found before (the small difference being due to different rounding).

The other solution set can be obtained similarly.

Like the Law of Sines, the Law of Cosines can be used to prove some geometric

facts, as in the following example.

Example 2.9

c

d

a

b

a

b
C

D

Figure 2.2.2

Use the Law of Cosines to prove that the sum of the squares

of the diagonals of any parallelogram equals the sum of the

squares of the sides.

Solution: Let a and b be the lengths of the sides, and let the

diagonals opposite the angles C and D have lengths c and d,

respectively, as in Figure 2.2.2. Then we need to show that

c2 + d2 = a2 + b2 + a2 + b2 = 2(a2 + b2) .

By the Law of Cosines, we know that

c2 = a2 + b2 − 2ab cos C , and

d2 = a2 + b2 − 2ab cos D .

By properties of parallelograms, we know that D = 180◦−C, so

d2 = a2 + b2 − 2ab cos (180◦−C)

= a2 + b2 + 2ab cos C ,

since cos (180◦−C)=−cos C. Thus,

c2 + d2 = a2 + b2 − 2ab cos C + a2 + b2 + 2ab cos C

= 2(a2 + b2) . QED
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	Exercises

For Exercises 1-6, solve the triangle △ABC.

1. A = 60◦, b = 8, c = 12 2. A = 30◦, b = 4, c = 6 3. a = 7, B = 60◦, c = 9

4. a = 7, b = 3, c = 9 5. a = 6, b = 4, c = 1 6. a = 11, b = 13, c = 16

7. The diagonals of a parallelogram intersect at a 42◦ angle and have lengths of 12 and 7 cm.

Find the lengths of the sides of the parallelogram. (Hint: The diagonals bisect each other.)

8. Two trains leave the same train station at the same time, moving along straight tracks

that form a 35◦ angle. If one train travels at an average speed of 100 mi/hr and the other

at an average speed of 90 mi/hr, how far apart are the trains after half an hour?

9. Three circles with radii of 4, 5, and 6 cm, respectively, are tangent to each other externally.

Find the angles of the triangle whose vertices are the centers of the circles.

10. Find the length x of the diagonal of the quadrilateral in Figure 2.2.3 below.

2

4 3.5

x

6

5.5

Figure 2.2.3 Exercise 10

5 3

60◦

Figure 2.2.4 Exercise 11

11. Two circles of radii 5 and 3 cm, respectively, intersect at two points. At either point of

intersection, the tangent lines to the circles form a 60◦ angle, as in Figure 2.2.4 above.

Find the distance between the centers of the circles.

12. Use the Law of Cosines to show that for any triangle △ABC, c2 < a2 + b2 if C is acute,

c2 > a2 +b2 if C is obtuse, and c2 = a2 +b2 if C is a right angle.

13. Show that for any triangle △ABC,

cos A

a
+

cos B

b
+

cos C

c
=

a2 +b2 + c2

2abc
.

14. Show that for any triangle △ABC,

cos A + cos B + cos C =
a2 (b+ c−a) + b2 (a+ c−b) + c2 (a+b− c)

2abc
.

What do the terms in parentheses represent geometrically? Use your answer to explain

why cos A + cos B + cos C > 0 for any triangle, even if one of the cosines is negative.2

15. Prove the Law of Cosines (i.e. formulas (2.9)-(2.11)) for right triangles.

16. Recall from elementary geometry that a median of a triangle is a line segment from any

vertex to the midpoint of the opposite side. Show that the sum of the squares of the three

medians of a triangle is 3/4 the sum of the squares of the sides.

2It turns out that 1< cos A + cos B + cos C ≤ 3/2 for any triangle, as we will see later.
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17. The Dutch astronomer and mathematician Willebrord Snell (1580-1626) wrote the Law

of Cosines as
2ab

c2 − (a−b)2
=

1

1 − cos C

in his trigonometry text Doctrina triangulorum (published a year after his death). Show

that this formula is equivalent to formula (2.11) in our statement of the Law of Cosines.

18. Suppose that a satellite in space, an earth station, and the center of the earth all lie in

the same plane. Let re be the radius of the earth, let rs be the distance from the center of

the earth to the satellite (called the orbital radius of the satellite), and let d be the distance

from the earth station to the satellite. Let E be the angle of elevation from the earth station

to the satellite, and let γ and ψ be the angles shown in Figure 2.2.5.

center

of earth

reearth station

d
rs

local horizontal

ψ

E I
☼

satellite

γ

Figure 2.2.5

Use the Law of Cosines to show that

d = rs

√

1 +
(

re

rs

)2

− 2

(
re

rs

)
cos γ ,

and then use E =ψ−90◦ and the Law of Sines to show that

cos E =
sin γ

√

1 +
(

re

rs

)2

− 2

(
re

rs

)
cos γ

.

Note: This formula allows the angle of elevation E to be calculated from the coordinates of

the earth station and the subsatellite point (where the line from the satellite to the center

of the earth crosses the surface of the earth).3

3See pp. 22-25 in T. PRATT AND C.W. BOSTIAN, Satellite Communications, New York: John Wiley &

Sons, 1986.
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2.3 The Law of Tangents

We have shown how to solve a triangle in all four cases discussed at the beginning

of this chapter. An alternative to the Law of Cosines for Case 3 (two sides and the

included angle) is the Law of Tangents:

Theorem 2.3. Law of Tangents: If a triangle has sides of lengths a, b, and c opposite

the angles A, B, and C, respectively, then

a−b

a+b
=

tan 1
2
(A−B)

tan 1
2
(A+B)

, (2.17)

b− c

b+ c
=

tan 1
2
(B−C)

tan 1
2
(B+C)

, (2.18)

c−a

c+a
=

tan 1
2
(C− A)

tan 1
2
(C+ A)

. (2.19)

Note that since tan (−θ) = −tan θ for any angle θ, we can switch the order of the

letters in each of the above formulas. For example, we can rewrite formula (2.17) as

b−a

b+a
=

tan 1
2
(B− A)

tan 1
2
(B+ A)

, (2.20)

and similarly for the other formulas. If a > b, then it is usually more convenient to use

formula (2.17), while formula (2.20) is more convenient when b > a.

Example 2.10

b = 3 a = 5

cA B

C = 96◦Case 3: Two sides and the included angle.

Solve the triangle △ABC given a = 5, b = 3, and C = 96◦.

Solution: A+B+C = 180◦, so A+B = 180◦−C = 180◦−96◦ = 84◦. Thus,

by the Law of Tangents,

a−b

a+b
=

tan 1
2
(A−B)

tan 1
2
(A+B)

⇒
5−3

5+3
=

tan 1
2
(A−B)

tan 1
2
(84◦)

⇒ tan 1
2
(A−B) = 2

8
tan 42◦ = 0.2251

⇒ 1
2
(A−B) = 12.7◦ ⇒ A−B = 25.4◦ .

We now have two equations involving A and B, which we can solve by adding the equations:

A−B = 25.4◦

A+B = 84◦

−−−−−−−−
2A = 109.4◦ ⇒ A = 54.7◦ ⇒ B = 84◦−54.7◦ ⇒ B = 29.3◦

We can find the remaining side c by using the Law of Sines:

c =
a sin C

sin A
=

5 sin 96◦

sin 54.7◦ ⇒ c = 6.09
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Note that in any triangle △ABC, if a = b then A = B (why?), and so both sides of

formula (2.17) would be 0 (since tan 0◦ = 0). This means that the Law of Tangents is of

no help in Case 3 when the two known sides are equal. For this reason, and perhaps

also because of the somewhat unusual way in which it is used, the Law of Tangents

seems to have fallen out of favor in trigonometry books lately. It does not seem to have

any advantages over the Law of Cosines, which works even when the sides are equal,

requires slightly fewer steps, and is perhaps more straightforward.4

Related to the Law of Tangents are Mollweide’s equations:5

Mollweide’s equations: For any triangle △ABC,

a−b

c
=

sin 1
2
(A−B)

cos 1
2
C

, and (2.21)

a+b

c
=

cos 1
2
(A−B)

sin 1
2
C

. (2.22)

Note that all six parts of a triangle appear in both of Mollweide’s equations. For

this reason, either equation can be used to check a solution of a triangle. If both sides

of the equation agree (more or less), then we know that the solution is correct.

Example 2.11

Use one of Mollweide’s equations to check the solution of the triangle from Example 2.10.

Solution: Recall that the full solution was a = 5, b = 3, c = 6.09, A = 54.7◦, B = 29.3◦, and

C = 96◦. We will check this with equation (2.21):

a−b

c
=

sin 1
2
(A−B)

cos 1
2

C

5−3

6.09
=

sin 1
2
(54.7◦−29.3◦)

cos 1
2
(96◦)

2

6.09
=

sin 12.7◦

cos 48◦

0.3284 = 0.3285 D
The small difference (≈ 0.0001) is due to rounding errors from the original solution, so we can

conclude that both sides of the equation agree, and hence the solution is correct.

4Before the advent of electronic calculators, the Law of Tangents was more popular than it is today

since it lent itself better than the Law of Cosines to what was known as logarithmic computation. In

those days, computations with large numbers were handled by taking logarithms and looking up values

in a logarithm table. Ratios (such as in the Law of Tangents and the Law of Sines) could be replaced by

differences of logarithms, making computation easier.
5Named after the German astronomer and mathematician Karl Mollweide (1774-1825).
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Example 2.12

Can a triangle have the parts a = 6, b = 7, c = 9, A = 55◦, B = 60◦, and C = 65◦ ?

Solution: Before using Mollweide’s equations, simpler checks are that the angles add up to

180◦ and that the smallest and largest sides are opposite the smallest and largest angles,

respectively. In this case all those conditions hold. So check with Mollweide’s equation (2.22):

a+b

c
=

cos 1
2
(A−B)

sin 1
2

C

6+7

9
=

cos 1
2
(55◦−60◦)

sin 1
2
(65◦)

13

9
=

cos (−2.5◦)

sin 32.5◦

1.44 = 1.86 %

Here the difference is far too large, so we conclude that there is no triangle with these parts.

We will prove the Law of Tangents and Mollweide’s equations in Chapter 3, where

we will be able to supply brief analytic proofs.6

�



�
	Exercises

For Exercises 1-3, use the Law of Tangents to solve the triangle △ABC.

1. a = 12, b = 8, C = 60◦ 2. A = 30◦, b = 4, c = 6 3. a = 7, B = 60◦, c = 9

For Exercises 4-6, check if it is possible for a triangle to have the given parts.

4. a = 5, b = 7, c = 10, A = 27.7◦, B = 40.5◦, C = 111.8◦

5. a = 3, b = 7, c = 9, A = 19.2◦, B = 68.2◦, C = 92.6◦

6. a = 6, b = 9, c = 9, A = 39◦, B = 70.5◦, C = 70.5◦

7. Let △ABC be a right triangle with C = 90◦. Show that tan 1
2
(A−B)= a−b

a+b
.

8. For any triangle △ABC, show that tan 1
2
(A−B)= a−b

a+b
cot 1

2
C .

9. For any triangle △ABC, show that tan A =
a sin B

c−a cos B
. (Hint: Draw the altitude from the

vertex C to AB.) Notice that this formula provides another way of solving a triangle in Case

3 (two sides and the included angle).

10. For any triangle △ABC, show that c = b cos A+a cos B . This is another check of a triangle.

11. If b cos A = a cos B , show that the triangle △ABC is isosceles.

12. Let ABCD be a quadrilateral which completely contains its two diagonals. The quadrilat-

eral has eight parts: four sides and four angles. What is the smallest number of parts that

you would need to know to solve the quadrilateral? Explain your answer.

6There are (complex) geometric proofs of the Law of Tangents and Mollweide’s equations. See pp. 96-98

in P.R. RIDER, Plane and Spherical Trigonometry, New York: The Macmillan Company, 1942.
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2.4 The Area of a Triangle

In elementary geometry you learned that the area of a triangle is one-half the base

times the height. We will now use that, combined with some trigonometry, to derive

more formulas for the area when given various parts of the triangle.

Case 1: Two sides and the included angle.

Suppose that we have a triangle △ABC, in which A can be either acute, a right angle,

or obtuse, as in Figure 2.4.1. Assume that A, b, and c are known.

h
b a

A

C

Bc

(a) A acute

b h
a

A

C

Bc

(b) A = 90◦

h
b

a

A

C

Bc

(c) A obtuse

Figure 2.4.1 Area of △ABC

In each case we draw an altitude of height h from the vertex at C to AB, so that

the area (which we will denote by the letter K) is given by K = 1
2

hc. But we see that

h = b sin A in each of the triangles (since h = b and sin A = sin 90◦ = 1 in Figure 2.4.1(b),

and h = b sin (180◦−A)= b sin A in Figure 2.4.1(c)). We thus get the following formula:

Area = K = 1
2

bc sin A (2.23)

The above formula for the area of △ABC is in terms of the known parts A, b, and c.

Similar arguments for the angles B and C give us:

Area = K = 1
2

ac sin B

Area = K = 1
2

ab sin C

(2.24)

(2.25)

Notice that the height h does not appear explicitly in these formulas, although it is

implicitly there. These formulas have the advantage of being in terms of parts of the

triangle, without having to find h separately.

Example 2.13

b = 5 a

c = 7A = 33◦ B

CFind the area of the triangle △ABC given

A = 33◦, b = 5, and c = 7.

Solution: Using formula (2.23), the area K is given by:

K = 1
2

bc sin A

= 1
2

(5)(7) sin 33◦

K = 9.53
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Case 2: Three angles and any side.

Suppose that we have a triangle △ABC in which one side, say, a, and all three angles

are known.7 By the Law of Sines we know that

c =
a sin C

sin A
,

so substituting this into formula (2.24) we get:

Area = K =
a2 sin B sin C

2 sin A
(2.26)

Similar arguments for the sides b and c give us:

Area = K =
b2 sin A sin C

2 sin B

Area = K =
c2 sin A sin B

2 sin C

(2.27)

(2.28)

Example 2.14

b

a = 12

A = 115◦

C = 40◦

B = 25◦c

Find the area of the triangle △ABC given

A = 115◦, B = 25◦, C = 40◦, and a = 12.

Solution: Using formula (2.26), the area K is given by:

K =
a2 sin B sin C

2 sin A

=
122 sin 25◦ sin 40◦

2 sin 115◦

K = 21.58

Case 3: Three sides.

Suppose that we have a triangle △ABC in which all three sides are known. Then

Heron’s formula8 gives us the area:

Heron’s formula: For a triangle △ABC with sides a, b, and c, let s = 1
2

(a+ b+ c)

(i.e. 2s = a+b+ c is the perimeter of the circle). Then the area K of the triangle is

Area = K =
√

s (s−a) (s−b) (s− c) . (2.29)

To prove this, first remember that the area K is one-half the base times the height.

Using c as the base and the altitude h as the height, as before in Figure 2.4.1, we have

K = 1
2

hc. Squaring both sides gives us

K2 = 1
4

h2c2 . (2.30)

7Note that this is equivalent to knowing just two angles and a side (why?).
8Due to the ancient Greek engineer and mathematician Heron of Alexandria (c. 10-70 A.D.).
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In Figure 2.4.2, let D be the point where the altitude touches AB (or its extension).

h
b a

A

C

Bc D

(a) A acute

h
b

a

A

C

BcD

(b) A obtuse

Figure 2.4.2 Proof of Heron’s formula

By the Pythagorean Theorem, we see that h2 = b2 − (AD)2. In Figure 2.4.2(a), we see

that AD = b cos A. And in Figure 2.4.2(b) we see that AD = b cos (180◦− A) =−bcos A.

Hence, in either case we have (AD)2 = b2 (cos A)2, and so

h2 = b2 −b2 (cos A)2 = b2 (1− (cos A)2) = b2 (1+cos A) (1−cos A) . (2.31)

(Note that the above equation also holds when A = 90◦ since cos 90◦ = 0 and h = b).

Thus, substituting equation (2.31) into equation (2.30), we have

K2 = 1
4

b2c2 (1+cos A) (1−cos A) . (2.32)

By the Law of Cosines we know that

1+cos A = 1+
b2 + c2 −a2

2bc
=

2bc+b2 + c2 −a2

2bc
=

(b+ c)2 −a2

2bc
=

((b+ c)+a) ((b+ c)−a)

2bc

=
(a+b+ c) (b+ c−a)

2bc
,

and similarly

1−cos A = 1−
b2 + c2 −a2

2bc
=

2bc−b2 − c2 +a2

2bc
=

a2 − (b− c)2

2bc
=

(a− (b− c)) (a+ (b− c))

2bc

=
(a−b+ c) (a+b− c)

2bc
.

Thus, substituting these expressions into equation (2.32), we have

K2 = 1
4

b2c2 (a+b+ c) (b+ c−a)

2bc
·

(a−b+ c) (a+b− c)

2bc

=
a+b+ c

2
·

b+ c−a

2
·

a−b+ c

2
·

a+b− c

2
,

and since we defined s = 1
2

(a+b+ c), we see that

K2 = s (s−a) (s−b) (s− c) ,

so upon taking square roots we get

K =
√

s (s−a) (s−b) (s− c) . QED
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Example 2.15

b = 4 a = 5

c = 7A B

CFind the area of the triangle △ABC given a = 5, b = 4, and c = 7.

Solution: Using Heron’s formula with s = 1
2

(a+ b+ c) = 1
2

(5+4+7) = 8,

the area K is given by:

K =
√

s (s−a) (s−b) (s− c)

=
√

8(8−5)(8−4)(8−7) =
p

96 ⇒ K = 4
p

6 ≈ 9.8 .

Heron’s formula is useful for theoretical purposes (e.g. in deriving other formulas).

However, it is not well-suited for calculator use, exhibiting what is called numerical

instability for “extreme” triangles, as in the following example.

Example 2.16

Find the area of the triangle △ABC given a = 1000000, b = 999999.9999979, and c = 0.0000029.

Solution: To use Heron’s formula, we need to calculate s = 1
2

(a+b+ c). Notice that the actual

value of a+b+c is 2000000.0000008, which has 14 digits. Most calculators can store 12-14 digits

internally (even if they display less), and hence may round off that value of a+b+c to 2000000.

When we then divide that rounded value for a+ b+ c by 2 to get s, some calculators (e.g. the

TI-83 Plus) will give a rounded down value of 1000000.

This is a problem because a = 1000000, and so we would get s−a = 0, causing Heron’s formula

to give us an area of 0 for the triangle! And this is indeed the incorrect answer that the

TI-83 Plus returns. Other calculators may give some other inaccurate answer, depending

on how they store values internally. The actual area - accurate to 15 decimal places - is

K = 0.99999999999895, i.e. it is basically 1.

The above example shows how problematic floating-point arithmetic can be.9 Luck-

ily there is a better formula10 for the area of a triangle when the three sides are

known:

For a triangle △ABC with sides a ≥ b ≥ c, the area is:

Area = K = 1
4

√
(a+ (b+ c)) (c− (a−b)) (c+ (a−b)) (a+ (b− c)) (2.33)

To use this formula, sort the names of the sides so that a ≥ b ≥ c. Then perform

the operations inside the square root in the exact order in which they appear in the

formula, including the use of parentheses. Then take the square root and divide by 4.

For the triangle in Example 2.16, the above formula gives an answer of exactly K = 1

on the same TI-83 Plus calculator that failed with Heron’s formula. What is amazing

about this formula is that it is just Heron’s formula rewritten! The use of parentheses

is what forces the correct order of operations for numerical stability.

9This is an issue even on modern computers. There is an excellent overview of this important subject in

the article What Every Computer Scientist Should Know About Floating-Point Arithmetic by D. Goldberg,

available at http://docs.sun.com/source/806-3568/ncg_goldberg.html
10Due to W. Kahan: http://www.eecs.berkeley.edu/~wkahan/Triangle.pdf

http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://www.eecs.berkeley.edu/~wkahan/Triangle.pdf
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Another formula11 for the area of a triangle given its three sides is given below:

For a triangle △ABC with sides a ≥ b ≥ c, the area is:

Area = K = 1
2

√
a2c2 −

(
a2+c2−b2

2

)2
(2.34)

For the triangle in Example 2.16, the above formula gives an answer of exactly K = 1

on the same TI-83 Plus calculator that failed with Heron’s formula.

�



�
	Exercises

For Exercises 1-6, find the area of the triangle △ABC.

1. A = 70◦, b = 4, c = 12 2. a = 10, B = 95◦, c = 35

3. A = 10◦, B = 48◦, C = 122◦, c = 11 4. A = 171◦, B = 1◦, C = 8◦, b = 2

5. a = 2, b = 3, c = 4 6. a = 5, b = 6, c = 5

7. Find the area of the quadrilateral in Figure 2.4.3 below.

2

4 3.5

6

5.5

Figure 2.4.3 Exercise 7

A

B

C

D
θ

Figure 2.4.4 Exercise 8

8. Let ABCD be a quadrilateral which completely contains its two diagonals, as in Figure

2.4.4 above. Show that the area K of ABCD is equal to half the product of its diagonals and

the sine of the angle they form, i.e. K = 1
2

AC · BD sin θ .

9. From formula (2.26) derive the following formula for the area of a triangle △ABC:

Area = K =
a2 sin B sin C

2 sin (B+C)

10. Show that the triangle area formula

Area = K = 1
4

√
(a+ (b+ c)) (c− (a−b)) (c+ (a−b)) (a+ (b− c))

is equivalent to Heron’s formula. (Hint: In Heron’s formula replace s by 1
2
(a+b+ c).)

11. Show that the triangle area formula (2.34) is equivalent to Heron’s formula. (Hint: Factor

the expression inside the square root.)

12. Find the angle A in Example 2.16, then use formula (2.23) to find the area. Did it work?

11Due to the Chinese mathematician Qiu Jiushao (ca. 1202-1261).
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2.5 Circumscribed and Inscribed Circles

Recall from the Law of Sines that any triangle △ABC has a common ratio of sides to

sines of opposite angles, namely

a

sin A
=

b

sin B
=

c

sin C
.

This common ratio has a geometric meaning: it is the diameter (i.e. twice the radius)

of the unique circle in which △ABC can be inscribed, called the circumscribed cir-

cle of the triangle. Before proving this, we need to review some elementary geometry.

A central angle of a circle is an angle whose vertex is the center O of the circle

and whose sides (called radii) are line segments from O to two points on the circle. In

Figure 2.5.1(a), ∠O is a central angle and we say that it intercepts the arc �BC.

O

B
C

(a) Central angle ∠O

A

B
C

(b) Inscribed angle ∠A

O

B
C

A

D

(c) ∠A =∠D = 1
2
∠O

Figure 2.5.1 Types of angles in a circle

An inscribed angle of a circle is an angle whose vertex is a point A on the circle

and whose sides are line segments (called chords) from A to two other points on the

circle. In Figure 2.5.1(b), ∠A is an inscribed angle that intercepts the arc �BC. We

state here without proof12 a useful relation between inscribed and central angles:

Theorem 2.4. If an inscribed angle ∠A and a central angle ∠O intercept the same

arc, then ∠A = 1
2
∠O . Thus, inscribed angles which intercept the same arc are equal.

Figure 2.5.1(c) shows two inscribed angles, ∠A and ∠D, which intercept the same

arc �BC as the central angle ∠O, and hence ∠A =∠D = 1
2
∠O (so ∠O = 2∠A = 2∠D ).

We will now prove our assertion about the common ratio in the Law of Sines:

Theorem 2.5. For any triangle △ABC, the radius R of its circumscribed circle is

given by:

2R =
a

sin A
=

b

sin B
=

c

sin C
(2.35)

(Note: For a circle of diameter 1, this means a = sin A, b = sin B, and c = sin C.)

12For a proof, see pp. 210-211 in R.A. AVERY, Plane Geometry, Boston: Allyn & Bacon, 1950.
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To prove this, let O be the center of the circumscribed circle for a triangle △ABC.

Then O can be either inside, outside, or on the triangle, as in Figure 2.5.2 below. In

the first two cases, draw a perpendicular line segment from O to AB at the point D.

D

Ob

C

a

BA c
2

c
2

R R

(a) O inside △ABC

D

O

b

C

a

BA

c
2

c
2

R R

(b) O outside △ABC

O

b

C

a

BA
c

R R

(c) O on △ABC

Figure 2.5.2 Circumscribed circle for △ABC

The radii OA and OB have the same length R, so △AOB is an isosceles triangle.

Thus, from elementary geometry we know that OD bisects both the angle ∠AOB and

the side AB. So ∠AOD = 1
2
∠AOB and AD = c

2
. But since the inscribed angle ∠ACB

and the central angle ∠AOB intercept the same arc �AB, we know from Theorem 2.4

that ∠ACB = 1
2
∠AOB. Hence, ∠ACB =∠AOD. So since C =∠ACB, we have

sin C = sin ∠AOD =
AD

OA
=

c
2

R
=

c

2R
⇒ 2R =

c

sin C
,

so by the Law of Sines the result follows if O is inside or outside △ABC.

Now suppose that O is on △ABC, say, on the side AB, as in Figure 2.5.2(c). Then

AB is a diameter of the circle, so C = 90◦ by Thales’ Theorem. Hence, sin C = 1, and so

2R = AB = c = c
1
= c

sin C
, and the result again follows by the Law of Sines. QED

Example 2.17

4

5

3O

A

B

C

Figure 2.5.3

Find the radius R of the circumscribed circle for the triangle △ABC

whose sides are a = 3, b = 4, and c = 5.

Solution: We know that △ABC is a right triangle. So as we see from

Figure 2.5.3, sin A = 3/5. Thus,

2R =
a

sin A
=

3
3
5

= 5 ⇒ R = 2.5 .

Note that since R = 2.5, the diameter of the circle is 5, which is the same

as AB. Thus, AB must be a diameter of the circle, and so the center O of

the circle is the midpoint of AB.

Corollary 2.6. For any right triangle, the hypotenuse is a diameter of the circum-

scribed circle, i.e. the center of the circle is the midpoint of the hypotenuse.
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For the right triangle in the above example, the circumscribed circle is simple to

draw; its center can be found by measuring a distance of 2.5 units from A along AB.

We need a different procedure for acute and obtuse triangles, since for an acute

triangle the center of the circumscribed circle will be inside the triangle, and it will be

outside for an obtuse triangle. Notice from the proof of Theorem 2.5 that the center O

was on the perpendicular bisector of one of the sides (AB). Similar arguments for the

other sides would show that O is on the perpendicular bisectors for those sides:

Corollary 2.7. For any triangle, the center of its circumscribed circle is the intersec-

tion of the perpendicular bisectors of the sides.

A B

d d

Figure 2.5.4

Recall from geometry how to create the perpendicular bi-

sector of a line segment: at each endpoint use a compass

to draw an arc with the same radius. Pick the radius large

enough so that the arcs intersect at two points, as in Figure

2.5.4. The line through those two points is the perpendicular

bisector of the line segment. For the circumscribed circle of

a triangle, you need the perpendicular bisectors of only two

of the sides; their intersection will be the center of the circle.

Example 2.18

Find the radius R of the circumscribed circle for the triangle △ABC from Example 2.6 in

Section 2.2: a = 2, b = 3, and c = 4. Then draw the triangle and the circle.

Solution: In Example 2.6 we found A = 28.9◦, so 2R = a
sin A

= 2
sin 28.9◦ = 4.14, so R = 2.07 .

In Figure 2.5.5(a) we show how to draw △ABC: use a ruler to draw the longest side AB

of length c = 4, then use a compass to draw arcs of radius 3 and 2 centered at A and B,

respectively. The intersection of the arcs is the vertex C.

c = 4
A B

C

3
2

(a) Drawing △ABC

O

A

C

B

(b) Circumscribed circle

Figure 2.5.5

In Figure 2.5.5(b) we show how to draw the circumscribed circle: draw the perpendicular

bisectors of AB and AC; their intersection is the center O of the circle. Use a compass to draw

the circle centered at O which passes through A.
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Theorem 2.5 can be used to derive another formula for the area of a triangle:

Theorem 2.8. For a triangle △ABC, let K be its area and let R be the radius of its

circumscribed circle. Then

K =
abc

4R
(and hence R =

abc

4K
) . (2.36)

To prove this, note that by Theorem 2.5 we have

2R =
a

sin A
=

b

sin B
=

c

sin C
⇒ sin A =

a

2R
, sin B =

b

2R
, sin C =

c

2R
.

Substitute those expressions into formula (2.26) from Section 2.4 for the area K :

K =
a2 sin B sin C

2 sin A
=

a2 · b
2R

· c
2R

2 · a
2R

=
abc

4R
QED

Combining Theorem 2.8 with Heron’s formula for the area of a triangle, we get:

Corollary 2.9. For a triangle △ABC, let s = 1
2
(a+ b + c). Then the radius R of its

circumscribed circle is

R =
abc

4
p

s (s−a) (s−b) (s− c)
. (2.37)

In addition to a circumscribed circle, every triangle has an inscribed circle, i.e. a

circle to which the sides of the triangle are tangent, as in Figure 2.5.6.

b
a

c
A B

C

O

D

r

E

F

Figure 2.5.6 Inscribed circle for △ABC

Let r be the radius of the inscribed circle, and let D, E, and F be the points on AB,

BC, and AC, respectively, at which the circle is tangent. Then OD ⊥ AB, OE ⊥ BC,

and OF ⊥ AC. Thus, △OAD and △OAF are equivalent triangles, since they are right

triangles with the same hypotenuse OA and with corresponding legs OD and OF of

the same length r. Hence, ∠OAD =∠OAF, which means that OA bisects the angle A.

Similarly, OB bisects B and OC bisects C. We have thus shown:

For any triangle, the center of its inscribed circle is the intersection of the bisectors

of the angles.
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We will use Figure 2.5.6 to find the radius r of the inscribed circle. Since OA bisects

A, we see that tan 1
2

A = r
AD

, and so r = AD · tan 1
2

A. Now, △OAD and △OAF are

equivalent triangles, so AD = AF. Similarly, DB = EB and FC = CE. Thus, if we let

s = 1
2
(a+b+ c), we see that

2 s = a + b + c = (AD+DB) + (CE+EB) + (AF +FC)

= AD + EB + CE + EB + AD + CE = 2(AD+EB+CE)

s = AD + EB + CE = AD + a

AD = s−a .

Hence, r = (s−a) tan 1
2

A. Similar arguments for the angles B and C give us:

Theorem 2.10. For any triangle △ABC, let s = 1
2
(a+ b+ c). Then the radius r of its

inscribed circle is

r = (s−a) tan 1
2

A = (s−b) tan 1
2
B = (s− c) tan 1

2
C . (2.38)

We also see from Figure 2.5.6 that the area of the triangle △AOB is

Area(△AOB) = 1
2

base×height = 1
2

c r .

Similarly, Area(△BOC)= 1
2

a r and Area(△AOC)= 1
2

b r. Thus, the area K of △ABC is

K = Area(△AOB) + Area(△BOC) + Area(△AOC) = 1
2

c r + 1
2

a r + 1
2

b r

= 1
2

(a+b+ c) r = sr , so by Heron’s formula we get

r =
K

s
=

p
s (s−a) (s−b) (s− c)

s
=

√
s (s−a) (s−b) (s− c)

s2
=

√
(s−a) (s−b) (s− c)

s
.

We have thus proved the following theorem:

Theorem 2.11. For any triangle △ABC, let s = 1
2
(a+ b+ c). Then the radius r of its

inscribed circle is

r =
K

s
=

√
(s−a) (s−b) (s− c)

s
. (2.39)

A

d

d

Figure 2.5.7

Recall from geometry how to bisect an angle: use a compass

centered at the vertex to draw an arc that intersects the sides

of the angle at two points. At those two points use a compass to

draw an arc with the same radius, large enough so that the two

arcs intersect at a point, as in Figure 2.5.7. The line through

that point and the vertex is the bisector of the angle. For the

inscribed circle of a triangle, you need only two angle bisectors;

their intersection will be the center of the circle.
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Example 2.19

Find the radius r of the inscribed circle for the triangle △ABC from Example 2.6 in Section

2.2: a = 2, b = 3, and c = 4. Draw the circle.

O

A B

C

Figure 2.5.8

Solution: Using Theorem 2.11 with

s = 1
2
(a+b+ c)= 1

2
(2+3+4)= 9

2
, we have

r =

√
(s−a) (s−b) (s− c)

s
=

√√√√
(

9
2
−2

) (
9
2
−3

) (
9
2
−4

)

9
2

=
√

5

12
.

Figure 2.5.8 shows how to draw the inscribed circle: draw

the bisectors of A and B, then at their intersection use a

compass to draw a circle of radius r =
p

5/12≈ 0.645.

�
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	Exercises

For Exercises 1-6, find the radii R and r of the circumscribed and inscribed circles, respectively,

of the triangle △ABC.

1. a = 2, b = 4, c = 5 2. a = 6, b = 8, c = 8 3. a = 5, b = 7, C = 40◦

4. A = 170◦, b = 100, c = 300 5. a = 10, b = 11, c = 20.5 6. a = 5, b = 12, c = 13

For Exercises 7 and 8, draw the triangle △ABC and its circumscribed and inscribed circles

accurately, using a ruler and compass (or computer software).

7. a = 2 in, b = 4 in, c = 5 in 8. a = 5 in, b = 6 in, c = 7 in

9. For any triangle △ABC, let s = 1
2
(a+b+ c). Show that

tan 1
2

A =

√
(s−b) (s− c)

s (s−a)
, tan 1

2
B =

√
(s−a) (s− c)

s (s−b)
, tan 1

2
C =

√
(s−a) (s−b)

s (s− c)
.

10. Show that for any triangle △ABC, the radius R of its circumscribed circle is

R =
abc

p
(a+b+ c) (b+ c−a) (a−b+ c) (a+b− c)

.

11. Show that for any triangle △ABC, the radius R of its circumscribed circle and the radius

r of its inscribed circle satisfy the relation

rR =
abc

2(a+b+ c)
.

12. Let △ABC be an equilateral triangle whose sides are of length a.

(a) Find the exact value of the radius R of the circumscribed circle of △ABC.

(b) Find the exact value of the radius r of the inscribed circle of △ABC.

(c) How much larger is R than r?

(d) Show that the circumscribed and inscribed circles of △ABC have the same center.

13. Let △ABC be a right triangle with C = 90◦. Show that tan 1
2

A =
√

c−b
c+b

.



3 Identities

3.1 Basic Trigonometric Identities

So far we know a few relations between the trigonometric functions. For example, we

know the reciprocal relations:

1. csc θ =
1

sin θ
when sin θ 6= 0

2. sec θ =
1

cos θ
when cos θ 6= 0

3. cot θ =
1

tan θ
when tan θ is defined and not 0

4. sin θ =
1

csc θ
when csc θ is defined and not 0

5. cos θ =
1

sec θ
when sec θ is defined and not 0

6. tan θ =
1

cot θ
when cot θ is defined and not 0

Notice that each of these equations is true for all angles θ for which both sides of

the equation are defined. Such equations are called identities, and in this section we

will discuss several trigonometric identities, i.e. identities involving the trigonometric

functions. These identities are often used to simplify complicated expressions or equa-

tions. For example, one of the most useful trigonometric identities is the following:

tan θ =
sin θ

cos θ
when cos θ 6= 0 (3.1)

To prove this identity, pick a point (x, y) on the terminal side of θ a distance r > 0

from the origin, and suppose that cos θ 6= 0. Then x 6= 0 (since cos θ = x
r
), so by definition

sin θ

cos θ
=

y

r
x

r

=
y

x
= tan θ .

65
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Note how we proved the identity by expanding one of its sides ( sin θ
cos θ

) until we got an

expression that was equal to the other side (tan θ). This is probably the most common

technique for proving identities. Taking reciprocals in the above identity gives:

cot θ =
cos θ

sin θ
when sin θ 6= 0 (3.2)

x

y

0

θ

|y|

|x|

r

(x, y)

Figure 3.1.1

We will now derive one of the most important trigono-

metric identities. Let θ be any angle with a point (x, y) on

its terminal side a distance r > 0 from the origin. By the

Pythagorean Theorem, r2 = x2 + y2 (and hence r =
√

x2 + y2).

For example, if θ is in QIII as in Figure 3.1.1, then the legs

of the right triangle formed by the reference angle have

lengths |x| and |y| (we use absolute values because x and

y are negative in QIII). The same argument holds if θ is in

the other quadrants or on either axis. Thus,

r2 = |x|2 + |y|2 = x2 + y2 ,

so dividing both sides of the equation by r2 (which we can do since r > 0) gives

r2

r2
=

x2 + y2

r2
=

x2

r2
+

y2

r2
=

( x

r

)2
+

( y

r

)2
.

Since r2

r2 = 1, x
r
= cos θ, and

y

r
= sin θ, we can rewrite this as:

cos2 θ + sin2 θ = 1 (3.3)

You can think of this as sort of a trigonometric variant of the Pythagorean Theorem.

Note that we use the notation sin2 θ to mean (sin θ)2, likewise for cosine and the other

trigonometric functions. We will use the same notation for other powers besides 2.

From the above identity we can derive more identities. For example:

sin2 θ = 1 − cos2 θ (3.4)

cos2 θ = 1 − sin2 θ (3.5)

from which we get (after taking square roots):

sin θ = ±
√

1 − cos2 θ (3.6)

cos θ = ±
√

1 − sin2 θ (3.7)
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Also, from the inequalities 0 ≤ sin2 θ = 1 − cos2 θ ≤ 1 and 0 ≤ cos2 θ = 1 − sin2 θ ≤ 1,

taking square roots gives us the following bounds on sine and cosine:

−1 ≤ sin θ ≤ 1 (3.8)

−1 ≤ cos θ ≤ 1 (3.9)

The above inequalities are not identities (since they are not equations), but they

provide useful checks on calculations. Recall that we derived those inequalities from

the definitions of sine and cosine in Section 1.4.

In formula (3.3), dividing both sides of the identity by cos2 θ gives

cos2 θ

cos2 θ
+

sin2 θ

cos2 θ
=

1

cos2 θ
,

so since tan θ = sin θ
cos θ

and sec θ = 1
cos θ

, we get:

1 + tan2 θ = sec2 θ (3.10)

Likewise, dividing both sides of formula (3.3) by sin2 θ gives

cos2 θ

sin2 θ
+

sin2 θ

sin2 θ
=

1

sin2 θ
,

so since cot θ = cos θ
sin θ

and csc θ = 1
sin θ

, we get:

cot2 θ + 1 = csc2 θ (3.11)

Example 3.1

Simplify cos2 θ tan2 θ .

Solution: We can use formula (3.1) to simplify:

cos2 θ tan2 θ = cos2 θ ·
sin2 θ

cos2 θ

= sin2 θ

Example 3.2

Simplify 5sin2 θ + 4cos2 θ .

Solution: We can use formula (3.5) to simplify:

5sin2 θ + 4cos2 θ = 5sin2 θ + 4
(
1 − sin2 θ

)

= 5sin2 θ + 4 − 4sin2 θ

= sin2 θ + 4
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Example 3.3

Prove that tan θ + cot θ = sec θ csc θ .

Solution: We will expand the left side and show that it equals the right side:

tan θ+cot θ =
sin θ

cos θ
+

cos θ

sin θ
(by (3.1) and (3.2))

=
sin θ

cos θ
·

sin θ

sin θ
+

cos θ

sin θ
·

cos θ

cos θ
(multiply both fractions by 1)

=
sin2 θ + cos2 θ

cos θ sin θ
(after getting a common denominator)

=
1

cos θ sin θ
(by (3.3))

=
1

cos θ
·

1

sin θ

= sec θ csc θ

In the above example, how did we know to expand the left side instead of the right

side? In general, though this technique does not always work, the more complicated

side of the identity is likely to be easier to expand. The reason is that, by its complex-

ity, there will be more things that you can do with that expression. For example, if

you were asked to prove that

sec θ − sin θ tan θ = cos θ ,

there would not be much that you could do with the right side of that identity; it

consists of a single term (cos θ) that offers no obvious means of expansion.

Example 3.4

Prove that
1 + cot2 θ

sec θ
= csc θ cot θ .

Solution: Of the two sides, the left side looks more complicated, so we will expand that:

1 + cot2 θ

sec θ
=

csc2 θ

sec θ
(by (3.11))

=
csc θ ·

1

sin θ
1

cos θ

= csc θ ·
cos θ

sin θ

= csc θ cot θ (by (3.2))
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Example 3.5

Prove that
tan2 θ + 2

1 + tan2 θ
= 1 + cos2 θ .

Solution: Expand the left side:

tan2 θ + 2

1 + tan2 θ
=

(
tan2 θ + 1

)
+ 1

1 + tan2 θ

=
sec2 θ + 1

sec2 θ
(by (3.10))

=
sec2 θ

sec2 θ
+

1

sec2 θ

= 1 + cos2 θ

When trying to prove an identity where at least one side is a ratio of expressions,

cross-multiplying can be an effective technique:

a

b
=

c

d
if and only if ad = bc

Example 3.6

Prove that
1 + sin θ

cos θ
=

cos θ

1 − sin θ
.

Solution: Cross-multiply and reduce both sides until it is clear that they are equal:

(1 + sin θ)(1 − sin θ) = cos θ · cos θ

1 − sin2 θ = cos2 θ

By (3.5) both sides of the last equation are indeed equal. Thus, the original identity holds.

Example 3.7

Suppose that a cos θ = b and c sin θ = d for some angle θ and some constants a, b, c, and d.

Show that a2c2 = b2c2 +a2d2.

Solution: Multiply both sides of the first equation by c and the second equation by a:

ac cos θ = bc

ac sin θ = ad

Now square each of the above equations then add them together to get:

(ac cos θ)2 + (ac sin θ)2 = (bc)2 + (ad)2

(ac)2
(
cos2 θ + sin2 θ

)
= b2c2 + a2d2

a2c2 = b2c2 + a2d2 (by (3.3))

Notice how θ does not appear in our final result. The trick was to get a common coefficient

(ac) for cos θ and sin θ so that we could use cos2 θ+sin2 θ = 1. This is a common technique for

eliminating trigonometric functions from systems of equations.
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	Exercises

1. We showed that sin θ = ±
p

1 − cos2 θ for all θ. Give an example of an angle θ such that

sin θ = −
p

1 − cos2 θ .

2. We showed that cos θ = ±
√

1 − sin2 θ for all θ. Give an example of an angle θ such that

cos θ = −
√

1 − sin2 θ .

3. Suppose that you are given a system of two equations of the following form:1

A cos φ = Bν1 − Bν2 cos θ

A sin φ = Bν2 sin θ .

Show that A2 = B2
(
ν2

1
+ ν2

2
− 2ν1ν2 cosθ

)
.

For Exercises 4-16, prove the given identity.

4. cos θ tan θ = sin θ 5. sin θ cot θ = cos θ

6.
tan θ

cot θ
= tan2 θ 7.

csc θ

sin θ
= csc2 θ

8.
cos2 θ

1 + sin θ
= 1 − sin θ 9.

1 − 2 cos2 θ

sin θ cos θ
= tan θ − cot θ

10. sin4 θ − cos4 θ = sin2 θ − cos2 θ 11. cos4 θ − sin4 θ = 1 − 2 sin2 θ

12.
1 − tan θ

1 + tan θ
=

cot θ − 1

cot θ + 1
13.

tan θ + tan φ

cot θ + cot φ
= tan θ tan φ

14.
sin2 θ

1 − sin2 θ
= tan2 θ 15.

1 − tan2 θ

1 − cot2 θ
= 1 − sec2 θ

16. sin θ = ±
tan θ

√
1 + tan2 θ

(Hint: Solve for sin2θ in Exercise 14.)

x

y

0

θ

(1, y)

1

y

Figure 3.1.2

17. Sometimes identities can be proved by geometrical methods. For

example, to prove the identity in Exercise 16, draw an acute angle

θ in QI and pick the point (1, y) on its terminal side, as in Figure

3.1.2. What must y equal? Use that to prove the identity for acute

θ. Explain the adjustment(s) you would need to make in Figure

3.1.2 to prove the identity for θ in the other quadrants. Does the

identity hold if θ is on either axis?

18. Similar to Exercise 16 , find an expression for cos θ solely in terms of tan θ.

19. Find an expression for tan θ solely in terms of sin θ, and one solely in terms of cos θ.

20. Suppose that a point with coordinates (x, y)= (a (cos ψ − ǫ),a
p

1−ǫ2 sin ψ) is a distance r > 0

from the origin, where a > 0 and 0< ǫ< 1. Use r2 = x2 + y2 to show that r = a (1 − ǫ cos ψ) .

(Note: These coordinates arise in the study of elliptical orbits of planets.)

21. Show that each trigonometric function can be put in terms of the sine function.

1These types of equations arise in physics, e.g. in the study of photon-electron collisions. See pp. 95-97

in W. RINDLER, Special Relativity, Edinburgh: Oliver and Boyd, LTD., 1960.
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3.2 Sum and Difference Formulas

We will now derive identities for the trigonometric functions of the sum and difference

of two angles. For the sum of any two angles A and B, we have the addition formulas:

sin (A+B) = sin A cos B + cos A sin B (3.12)

cos (A+B) = cos A cos B − sin A sin B (3.13)

To prove these, first assume that A and B are acute angles. Then A +B is either

acute or obtuse, as in Figure 3.2.1. Note in both cases that ∠QPR = A, since

∠QPR = ∠QPO−∠OPM = (90◦−B)− (90◦− (A+B)) = A in Figure 3.2.1(a), and

∠QPR = ∠QPO+∠OPM = (90◦−B)+ (90◦− (180◦− (A+B))) = A in Figure 3.2.1(b).

B

O

Q

N

P

M

R

A

A

A+B

(a) A+B acute

B

O

Q

N

P

M

R

A

A

A+B

(b) A+B obtuse

Figure 3.2.1 sin (A+B) and cos (A+B) for acute A and B

Thus,

sin (A+B) =
MP

OP
=

MR+RP

OP
=

NQ+RP

OP
=

NQ

OP
+

RP

OP

=
NQ

OQ
·

OQ

OP
+

RP

PQ
·

PQ

OP

= sin A cos B + cos A sin B , (3.14)
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and

cos (A+B) =
OM

OP
=

ON −MN

OP
=

ON −RQ

OP
=

ON

OP
−

RQ

OP

=
ON

OQ
·

OQ

OP
+

RQ

PQ
·

PQ

OP

= cos A cos B − sin A sin B . (3.15)

So we have proved the identities for acute angles A and B. It is simple to verify that

they hold in the special case of A = B = 0◦. For general angles, we will need to use the

relations we derived in Section 1.5 which involve adding or subtracting 90◦:

sin (θ+90◦) = cos θ sin (θ−90◦) = −cos θ

cos (θ+90◦) = −sin θ cos (θ−90◦) = sin θ

These will be useful because any angle can be written as the sum of an acute angle

(or 0◦) and integer multiples of ±90◦. For example, 155◦ = 65◦+90◦, 222◦ = 42◦+2(90◦),

−77◦ = 13◦−90◦, etc. So if we can prove that the identities hold when adding or sub-

tracting 90◦ to or from either A or B, respectively, where A and B are acute or 0◦, then

the identities will also hold when repeatedly adding or subtracting 90◦, and hence will

hold for all angles. Replacing A by A+90◦ and using the relations for adding 90◦ gives

sin ((A+90◦)+B) = sin ((A+B)+90◦) = cos (A+B) ,

= cos A cos B − sin A sin B (by equation (3.15))

= sin (A+90◦) cos B + cos (A+90◦) sin B ,

so the identity holds for A+90◦ and B (and, similarly, for A and B+90◦). Likewise,

sin ((A−90◦)+B) = sin ((A+B)−90◦) = −cos (A+B) ,

= −(cos A cos B − sin A sin B)

= (−cos A) cos B + sin A sin B

= sin (A−90◦) cos B + cos (A−90◦) sin B ,

so the identity holds for A −90◦ and B (and, similarly, for A and B+90◦). Thus, the

addition formula (3.12) for sine holds for all A and B. A similar argument shows that

the addition formula (3.13) for cosine is true for all A and B. QED

Replacing B by −B in the addition formulas and using the relations sin (−θ)=−sin θ

and cos (−θ)= cos θ from Section 1.5 gives us the subtraction formulas:

sin (A−B) = sin A cos B − cos A sin B (3.16)

cos (A−B) = cos A cos B + sin A sin B (3.17)
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Using the identity tan θ = sin θ
cos θ

, and the addition formulas for sine and cosine, we

can derive the addition formula for tangent:

tan (A+B) =
sin (A+B)

cos (A+B)

=
sin A cos B + cos A sin B

cos A cos B − sin A sin B

=

sin A cos B

cos A cos B
+

cos A sin B

cos A cos B
cos A cos B

cos A cos B
−

sin A sin B

cos A cos B

(divide top and bottom by cos A cos B)

=

sin A

cos A
·
�
�
�cos B

cos B
+

�
�
��cos A

cos A
·

sin B

cos B

1 −
sin A

cos A
·

sin B

cos B

=
tan A + tan B

1 − tan A tan B

This, combined with replacing B by −B and using the relation tan (−θ) =−tan θ, gives

us the addition and subtraction formulas for tangent:

tan (A+B) =
tan A + tan B

1 − tan A tan B
(3.18)

tan (A−B) =
tan A − tan B

1 + tan A tan B
(3.19)

Example 3.8

Given angles A and B such that sin A = 4
5
, cos A = 3

5
, sin B = 12

13
, and cos B = 5

13
, find the exact

values of sin (A+B), cos (A+B), and tan (A+B).

Solution: Using the addition formula for sine, we get:

sin (A+B) = sin A cos B + cos A sin B

=
4

5
·

5

13
+

3

5
·

12

13
⇒ sin (A+B) =

56

65

Using the addition formula for cosine, we get:

cos (A+B) = cos A cos B − sin A sin B

=
3

5
·

5

13
−

4

5
·

12

13
⇒ cos (A+B) = −

33

65

Instead of using the addition formula for tangent, we can use the results above:

tan (A+B) =
sin (A+B)

cos (A+B)
=

56
65

− 33
65

⇒ tan (A+B) = −
56

33
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Example 3.9

Prove the following identity:

sin (A+B+C) = sin A cos B cos C + cos A sin B cos C + cos A cos B sin C − sin A sin B sin C

Solution: Treat A+B+C as (A+B)+C and use the addition formulas three times:

sin (A+B+C) = sin ((A+B)+C)

= sin (A+B) cos C + cos (A+B) sin C

= (sin A cos B + cos A sin B) cos C + (cos A cos B − sin A sin B) sin C

= sin A cos B cos C + cos A sin B cos C + cos A cos B sin C − sin A sin B sin C

Example 3.10

For any triangle △ABC, show that tan A+ tan B+ tan C = tan A tan B tan C.

Solution: Note that this is not an identity which holds for all angles; since A, B, and C are the

angles of a triangle, it holds when A, B, C > 0◦ and A+B+C = 180◦. So using C = 180◦− (A+B)

and the relation tan (180◦−θ)=−tan θ from Section 1.5, we get:

tan A + tan B + tan C = tan A + tan B + tan (180◦− (A+B))

= tan A + tan B − tan (A+B)

= tan A + tan B −
tan A+ tan B

1− tan A tan B

= (tan A + tan B)

(
1 −

1

1− tan A tan B

)

= (tan A + tan B)

(
1− tan A tan B

1− tan A tan B
−

1

1− tan A tan B

)

= (tan A + tan B) ·
( −tan A tan B

1− tan A tan B

)

= tan A tan B ·
(
−

tan A + tan B

1− tan A tan B

)

= tan A tan B · (−tan (A+B))

= tan A tan B · (tan (180◦− (A+B)))

= tan A tan B tan C

Example 3.11

Let A, B, C, and D be positive angles such that A+B+C+D = 180◦. Show that2

sin A sin B + sin C sin D = sin (A+C) sin (B+C) .

Solution: It may be tempting to expand the right side, since it appears more complicated.

However, notice that the right side has no D term. So instead, we will expand the left side,

since we can eliminate the D term on that side by using D = 180◦− (A+B+C) and the relation

2This is the “trigonometric form” of Ptolemy’s Theorem, which says that a quadrilateral can be inscribed

in a circle if and only if the sum of the products of its opposite sides equals the product of its diagonals.
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sin (180◦− (A+B+C))= sin (A+B+C). So since sin D = sin (A+B+C), we get

sin A sin B + sin C sin D = sin A sin B + sin C sin (A+B+C) , so by Example 3.9 we get

= sin A sin B + sin C (sin A cos B cos C + cos A sin B cos C

+ cos A cos B sin C − sin A sin B sin C)

= sin A sin B + sin C sin A cos B cos C + sin C cos A sin B cos C

+ sin C cos A cos B sin C − sin C sin A sin B sin C .

It may not be immediately obvious where to go from here, but it is not completely guesswork.

We need to end up with sin (A +C) sin (B+C), and we know that sin (B+C) = sin B cos C +
cos B sin C. There are two terms involving cos B sin C, so group them together to get

sin A sin B + sin C sin D = sin A sin B − sin C sin A sin B sin C + sin C cos A sin B cos C

+ cos B sin C (sin A cos C + cos A sin C)

= sin A sin B (1−sin2 C) + sin C cos A sin B cos C

+ cos B sin C sin (A+C)

= sin A sin B cos2 C + sin C cos A sin B cos C

+ cos B sin C sin (A+C) .

We now have two terms involving sin B cos C, which we can factor out:

sin A sin B + sin C sin D = sin B cos C (sin A cos C+cos A sin C )

+ cos B sin C sin (A+C)

= sin B cos C sin (A+C) + cos B sin C sin (A+C)

= sin (A+C) (sin B cos C+cos B sin C)

= sin (A+C) sin (B+C)

Example 3.12

In the study of the propagation of electromagnetic waves, Snell’s law gives the relation

n1 sin θ1 = n2 sin θ2 , (3.20)

where θ1 is the angle of incidence at which a wave strikes the planar boundary between two

mediums, θ2 is the angle of transmission of the wave through the new medium, and n1 and n2

are the indexes of refraction of the two mediums. The quantity

r1 2 s =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
(3.21)

is called the Fresnel coefficient for normal incidence reflection of the wave for s-polarization.

Show that this can be written as:

r1 2 s =
sin (θ2 −θ1)

sin (θ2 +θ1)
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Solution: Multiply the top and bottom of r1 2 s by sin θ1 sin θ2 to get:

r1 2 s =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
·

sin θ1 sin θ2

sin θ1 sin θ2

=
(n1 sin θ1) sin θ2 cos θ1 − (n2 sin θ2) cos θ2 sin θ1

(n1 sin θ1) sin θ2 cos θ1 + (n2 sin θ2) cos θ2 sin θ1

=
(n1 sin θ1) sin θ2 cos θ1 − (n1 sin θ1) cos θ2 sin θ1

(n1 sin θ1) sin θ2 cos θ1 + (n1 sin θ1) cos θ2 sin θ1
(by Snell’s law)

=
sin θ2 cos θ1 − cos θ2 sin θ1

sin θ2 cos θ1 + cos θ2 sin θ1

=
sin (θ2 −θ1)

sin (θ2 +θ1)

The last two examples demonstrate an important aspect of how identities are used

in practice: recognizing terms which are part of known identities, so that they can be

factored out. This is a common technique.

�
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	Exercises

1. Verify the addition formulas (3.12) and (3.13) for A = B = 0◦.

For Exercises 2 and 3, find the exact values of sin (A+B), cos (A+B), and tan (A+B).

2. sin A = 8
17

, cos A = 15
17

, sin B = 24
25

, cos B = 7
25

3. sin A = 40
41

, cos A = 9
41

, sin B = 20
29

, cos B = 21
29

4. Use 75◦ = 45◦+30◦ to find the exact value of sin 75◦.

5. Use 15◦ = 45◦−30◦ to find the exact value of tan 15◦.

6. Prove the identity sin θ+cos θ =
p

2 sin (θ+45◦) . Explain why this shows that

−
p

2 ≤ sin θ + cos θ ≤
p

2

for all angles θ. For which θ between 0◦ and 360◦ would sin θ + cos θ be the largest?

For Exercises 7-14, prove the given identity.

7. cos (A+B+C) = cos A cos B cos C − cos A sin B sin C − sin A cos B sin C − sin A sin B cos C

8. tan (A+B+C) =
tan A + tan B + tan C − tan A tan B tan C

1 − tan B tan C − tan A tan C − tan A tan B

9. cot (A+B) =
cot A cot B − 1

cot A + cot B
10. cot (A−B) =

cot A cot B + 1

cot B − cot A
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11. tan (θ+45◦) =
1 + tan θ

1 − tan θ
12.

cos (A+B)

sin A cos B
= cot A − tan B

13. cot A + cot B =
sin (A+B)

sin A sin B
14.

sin (A−B)

sin (A+B)
=

cot B − cot A

cot B + cot A

15. Generalize Exercise 6: For any a and b, −
p

a2 +b2 ≤ a sin θ + b cos θ ≤
p

a2 +b2 for all θ.

16. Continuing Example 3.12, use Snell’s law to show that the s-polarization transmission

Fresnel coefficient

t1 2 s =
2 n1 cos θ1

n1 cos θ1 + n2 cos θ2
(3.22)

can be written as:

t1 2 s =
2 cos θ1 sin θ2

sin (θ2 +θ1)

x

y

0

θ

y= m1x+b1

y= m2x+b2

17. Suppose that two lines with slopes m1 and m2, respec-

tively, intersect at an angle θ and are not perpendicular

(i.e. θ 6= 90◦), as in the figure on the right. Show that

tan θ =
∣∣∣∣

m1 − m2

1 + m1 m2

∣∣∣∣ .

(Hint: Use Example 1.26 from Section 1.5.)

18. Use Exercise 17 to find the angle between the lines y= 2x+3 and y=−5x−4.

19. For any triangle △ABC, show that cot A cot B + cot B cot C + cot C cot A = 1.

(Hint: Use Exercise 9 and C = 180◦− (A+B).)

20. For any positive angles A, B, and C such that A+B+C = 90◦, show that

tan A tan B + tan B tan C + tan C tan A = 1 .

21. Prove the identity sin (A+B) cos B − cos (A+B) sin B = sin A.

Note that the right side depends only on A, while the left side depends on both A and B.

22. A line segment of length r > 0 from the origin to the point (x, y) makes an angle α with

the positive x-axis, so that (x, y) = (r cos α, r sin α), as in the figure below. What are the

endpoint’s new coordinates (x′, y′) after a counterclockwise rotation by an angle β ? Your

answer should be in terms of r, α, and β.

x

y

0

α

β

r

r

(x, y)= (r cos α, r sin α)

(x′, y′)
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3.3 Double-Angle and Half-Angle Formulas

A special case of the addition formulas is when the two angles being added are equal,

resulting in the double-angle formulas:

sin 2θ = 2 sin θ cos θ (3.23)

cos 2θ = cos2 θ − sin2 θ (3.24)

tan 2θ =
2 tan θ

1 − tan2 θ
(3.25)

To derive the sine double-angle formula, we see that

sin 2θ = sin (θ+θ) = sin θ cos θ + cos θ sin θ = 2 sin θ cos θ .

Likewise, for the cosine double-angle formula, we have

cos 2θ = cos (θ+θ) = cos θ cos θ − sin θ sin θ = cos2 θ − sin2 θ ,

and for the tangent we get

tan 2θ = tan (θ+θ) =
tan θ + tan θ

1 − tan θ tan θ
=

2 tan θ

1 − tan2 θ

Using the identities sin2 θ = 1− cos2 θ and cos2 θ = 1− sin2 θ, we get the following

useful alternate forms for the cosine double-angle formula:

cos 2θ = 2 cos2 θ − 1 (3.26)

= 1 − 2 sin2 θ (3.27)

Example 3.13

Prove that sin 3θ = 3 sin θ − 4 sin3 θ .

Solution: Using 3θ = 2θ+ θ, the addition formula for sine, and the double-angle formulas

(3.23) and (3.27), we get:

sin 3θ = sin (2θ+θ)

= sin 2θ cos θ + cos 2θ sin θ

= (2 sin θ cos θ) cos θ + (1−2 sin2 θ) sin θ

= 2 sin θ cos2 θ + sin θ − 2 sin3 θ

= 2 sin θ (1−sin2 θ) + sin θ − 2 sin3 θ

= 3 sin θ − 4 sin3 θ
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Example 3.14

Prove that sin 4z =
4 tan z (1− tan2 z)

(1+ tan2 z)2
.

Solution: Expand the right side and use 1+ tan2 z = sec2 z :

4 tan z (1− tan2 z)

(1+ tan2 z)2
=

4 ·
sin z

cos z
·
(

cos2 z

cos2 z
−

sin2 z

cos2 z

)

(sec2 z)2

=
4 ·

sin z

cos z
·

cos 2z

cos2 z(
1

cos2 z

)2
(by formula (3.24))

= (4 sin z cos 2z) cos z

= 2 (2 sin z cos z) cos 2z

= 2 sin 2z cos 2z (by formula (3.23))

= sin 4z (by formula (3.23) with θ replaced by 2z)

Note: Perhaps surprisingly, this seemingly obscure identity has found a use in physics, in the

derivation of a solution of the sine-Gordon equation in the theory of nonlinear waves.3

Closely related to the double-angle formulas are the half-angle formulas:

sin2 1
2
θ =

1 − cos θ

2
(3.28)

cos2 1
2
θ =

1 + cos θ

2
(3.29)

tan2 1
2
θ =

1 − cos θ

1 + cos θ
(3.30)

These formulas are just the double-angle formulas rewritten with θ replaced by 1
2
θ:

cos 2θ = 1 − 2 sin2 θ ⇒ sin2 θ =
1 − cos 2θ

2
⇒ sin2 1

2
θ =

1 − cos 2(1
2
θ)

2
=

1 − cos θ

2

cos 2θ = 2 cos2 θ − 1 ⇒ cos2 θ =
1 + cos 2θ

2
⇒ cos2 1

2
θ =

1 + cos 2(1
2
θ)

2
=

1 + cos θ

2

The tangent half-angle formula then follows easily:

tan2 1
2
θ =

(
sin 1

2
θ

cos 1
2
θ

)2

=
sin2 1

2
θ

cos2 1
2
θ

=
1− cos θ

2

1+ cos θ
2

=
1 − cos θ

1 + cos θ

The half-angle formulas are often used (e.g. in calculus) to replace a squared trigono-

metric function by a nonsquared function, especially when 2θ is used instead of θ.

3See p.331 in L.A. OSTROVSKY AND A.I.POTAPOV, Modulated Waves: Theory and Applications, Balti-

more: The Johns Hopkins University Press, 1999.
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By taking square roots, we can write the above formulas in an alternate form:

sin 1
2
θ = ±

√
1 − cos θ

2
(3.31)

cos 1
2
θ = ±

√
1 + cos θ

2
(3.32)

tan 1
2
θ = ±

√
1 − cos θ

1 + cos θ
(3.33)

In the above form, the sign in front of the square root is determined by the quadrant

in which the angle 1
2
θ is located. For example, if θ = 300◦ then 1

2
θ = 150◦ is in QII. So

in this case cos 1
2
θ < 0 and hence we would have cos 1

2
θ =−

√
1+ cos θ

2
.

In formula (3.33), multiplying the numerator and denominator inside the square

root by (1−cos θ) gives

tan 1
2
θ = ±

√
1−cos θ

1+cos θ
·

1−cos θ

1−cos θ
= ±

√
(1−cos θ)2

1−cos2 θ
= ±

√
(1−cos θ)2

sin2 θ
= ±

1−cos θ

sin θ
.

But 1− cos θ ≥ 0, and it turns out (see Exercise 10) that tan 1
2
θ and sin θ always have

the same sign. Thus, the minus sign in front of the last expression is not possible

(since that would switch the signs of tan 1
2
θ and sin θ), so we have:

tan 1
2
θ =

1 − cos θ

sin θ
(3.34)

Multiplying the numerator and denominator in formula (3.34) by 1+cos θ gives

tan 1
2
θ =

1 − cos θ

sin θ
·

1 + cos θ

1 + cos θ
=

1 − cos2 θ

sin θ (1 + cos θ)
=

sin2 θ

sin θ (1 + cos θ)
,

so we also get:

tan 1
2
θ =

sin θ

1 + cos θ
(3.35)

Taking reciprocals in formulas (3.34) and (3.35) gives:

cot 1
2
θ =

sin θ

1 − cos θ
=

1 + cos θ

sin θ
(3.36)



Double-Angle and Half-Angle Formulas • Section 3.3 81

Example 3.15

Prove the identity sec2 1
2
θ =

2 sec θ

sec θ + 1
.

Solution: Since secant is the reciprocal of cosine, taking the reciprocal of formula (3.29) for

cos2 1
2
θ gives us

sec2 1
2
θ =

2

1 + cos θ
=

2

1 + cos θ
·

sec θ

sec θ
=

2 sec θ

sec θ + 1
.

�
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	Exercises

For Exercises 1-8, prove the given identity.

1. cos 3θ = 4 cos3 θ − 3 cos θ 2. tan 1
2
θ = csc θ − cot θ

3.
sin 2θ

sin θ
−

cos 2θ

cos θ
= sec θ 4.

sin 3θ

sin θ
−

cos 3θ

cos θ
= 2

5. tan 2θ =
2

cot θ − tan θ
6. tan 3θ =

3 tan θ − tan3 θ

1 − 3 tan2 θ

7. tan2 1
2
θ =

tan θ − sin θ

tan θ + sin θ
8.

cos2 ψ

cos2 θ
=

1 + cos 2ψ

1 + cos 2θ

9. Some trigonometry textbooks used to claim incorrectly that sin θ + cos θ =
p

1 + sin 2θ

was an identity. Give an example of a specific angle θ that would make that equation false.

Is sin θ + cos θ = ±
p

1 + sin 2θ an identity? Justify your answer.

10. Fill out the rest of the table below for the angles 0◦ < θ < 720◦ in increments of 90◦, showing

θ, 1
2
θ, and the signs (+ or −) of sin θ and tan 1

2
θ.

θ 1
2
θ sin θ tan 1

2
θ

0◦−90◦ 0◦−45◦ + +
90◦−180◦ 45◦−90◦

180◦−270◦ 90◦−135◦

270◦−360◦ 135◦−180◦

θ 1
2
θ sin θ tan 1

2
θ

360◦−450◦ 180◦−225◦

450◦−540◦ 225◦−270◦

540◦−630◦ 270◦−315◦

630◦−720◦ 315◦−360◦

11. In general, what is the largest value that sin θ cos θ can take? Justify your answer.

For Exercises 12-17, prove the given identity for any right triangle △ABC with C = 90◦.

12. sin (A−B) = cos 2B 13. cos (A−B) = sin 2A

14. sin 2A =
2 ab

c2 15. cos 2A =
b2 −a2

c2

16. tan 2A =
2 ab

b2 −a2
17. tan 1

2
A =

c−b

a
=

a

c+b

18. Continuing Exercise 20 from Section 3.1, it can be shown that

r (1 − cos θ) = a (1 + ǫ) (1 − cos ψ) , and

r (1 + cos θ) = a (1 − ǫ) (1 + cos ψ) ,

where θ and ψ are always in the same quadrant. Show that tan 1
2
θ =

√
1+ ǫ
1− ǫ

tan 1
2
ψ .
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3.4 Other Identities

Though the identities in this section fall under the category of “other”, they are per-

haps (along with cos2 θ+ sin2 θ = 1) the most widely used identities in practice. It is

very common to encounter terms such as sin A+sin B or sin A cos B in calculations,

so we will now derive identities for those expressions. First, we have what are often

called the product-to-sum formulas:

sin A cos B = 1
2

(sin (A+B) + sin (A−B)) (3.37)

cos A sin B = 1
2

(sin (A+B) − sin (A−B)) (3.38)

cos A cos B = 1
2

(cos (A+B) + cos (A−B)) (3.39)

sin A sin B = −1
2

(cos (A+B) − cos (A−B)) (3.40)

We will prove the first formula; the proofs of the others are similar (see Exercises

1-3). We see that

sin (A+B) + sin (A−B) = (sin A cos B + ((((((
cos A sin B) + (sin A cos B − ((((((

cos A sin B)

= 2 sin A cos B ,

so formula (3.37) follows upon dividing both sides by 2. Notice how in each of the

above identities a product (e.g. sin A cos B) of trigonometric functions is shown to be

equivalent to a sum (e.g. 1
2

(sin (A+B) + sin (A−B))) of such functions. We can go in

the opposite direction, with the sum-to-product formulas:

sin A + sin B = 2 sin 1
2
(A+B) cos 1

2
(A−B) (3.41)

sin A − sin B = 2 cos 1
2
(A+B) sin 1

2
(A−B) (3.42)

cos A + cos B = 2 cos 1
2
(A+B) cos 1

2
(A−B) (3.43)

cos A − cos B = −2 sin 1
2
(A+B) sin 1

2
(A−B) (3.44)

These formulas are just the product-to-sum formulas rewritten by using some clever

substitutions: let x = 1
2
(A+B) and y= 1

2
(A−B). Then x+y= A and x−y= B. For example,

to derive formula (3.43), make the above substitutions in formula (3.39) to get

cos A + cos B = cos (x+ y) + cos (x− y)

= 2 · 1
2
(cos (x+ y) + cos (x− y))

= 2 cos x cos y (by formula (3.39))

= 2 cos 1
2
(A+B) cos 1

2
(A−B) .

The proofs of the other sum-to-product formulas are similar (see Exercises 4-6).
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Example 3.16

We are now in a position to prove Mollweide’s equations, which we introduced in Section 2.3:

For any triangle △ABC,

a−b

c
=

sin 1
2
(A−B)

cos 1
2

C
and

a+b

c
=

cos 1
2
(A−B)

sin 1
2

C
.

First, since C = 2 · 1
2

C, by the double-angle formula we have sin C = 2 sin 1
2

C cos 1
2

C. Thus,

a−b

c
=

a

c
−

b

c
=

sin A

sin C
−

sin B

sin C
(by the Law of Sines)

=
sin A − sin B

sin C
=

sin A − sin B

2 sin 1
2

C cos 1
2

C

=
2 cos 1

2
(A+B) sin 1

2
(A−B)

2 sin 1
2

C cos 1
2

C
(by formula (3.42))

=
cos 1

2
(180◦−C) sin 1

2
(A−B)

sin 1
2

C cos 1
2

C
(since A+B = 180◦−C)

= ������
cos (90◦− 1

2
C) sin 1

2
(A−B)

����
sin 1

2
C cos 1

2
C

=
sin 1

2
(A−B)

cos 1
2

C
(since cos (90◦− 1

2
C)= sin 1

2
C) .

This proves the first equation. The proof of the other equation is similar (see Exercise 7).

Example 3.17

Using Mollweide’s equations, we can prove the Law of Tangents: For any triangle △ABC,

a−b

a+b
=

tan 1
2
(A−B)

tan 1
2
(A+B)

,
b− c

b+ c
=

tan 1
2
(B−C)

tan 1
2
(B+C)

,
c−a

c+a
=

tan 1
2
(C− A)

tan 1
2
(C+ A)

.

We need only prove the first equation; the other two are obtained by cycling through the

letters. We see that

a−b

a+b
=

a−b

c
a+b

c

=

sin 1
2
(A−B)

cos 1
2

C

cos 1
2
(A−B)

sin 1
2

C

(by Mollweide’s equations)

=
sin 1

2
(A−B)

cos 1
2
(A−B)

·
sin 1

2
C

cos 1
2

C

= tan 1
2
(A−B) · tan 1

2
C = tan 1

2
(A−B) · tan (90◦− 1

2
(A+B)) (since C = 180◦− (A+B))

= tan 1
2
(A−B) · cot 1

2
(A+B) (since tan (90◦− 1

2
(A+B))= cot 1

2
(A+B), see Section 1.5)

=
tan 1

2
(A−B)

tan 1
2
(A+B)

. QED
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Example 3.18

For any triangle △ABC, show that

cos A + cos B + cos C = 1 + 4 sin 1
2

A sin 1
2

B sin 1
2

C .

Solution: Since cos (A+B+C)= cos 180◦ =−1, we can rewrite the left side as

cos A + cos B + cos C = 1 + (cos (A+B+C) + cos C) + (cos A + cos B) , so by formula (3.43)

= 1 + 2 cos 1
2
(A+B+2C) cos 1

2
(A+B) + 2 cos 1

2
(A+B) cos 1

2
(A−B)

= 1 + 2 cos 1
2
(A+B)

(
cos 1

2
(A+B+2C) + cos 1

2
(A−B)

)
, so

= 1 + 2 cos 1
2
(A+B) · 2 cos 1

2
(A+C) cos 1

2
(B+C) by formula (3.43),

since 1
2

(
1
2
(A+B+2C)+ 1

2
(A−B)

)
= 1

2
(A+C) and 1

2

(
1
2
(A+B+2C)− 1

2
(A−B)

)
= 1

2
(B+C). Thus,

cos A + cos B + cos C = 1 + 4 cos (90◦− 1
2

C) cos (90◦− 1
2

B) cos (90◦− 1
2

A)

= 1 + 4 sin 1
2

C sin 1
2

B sin 1
2

A , so rearranging the order gives

= 1 + 4 sin 1
2

A sin 1
2

B sin 1
2

C .

Example 3.19

For any triangle △ABC, show that sin 1
2

A sin 1
2

B sin 1
2

C ≤ 1
8

.

Solution: Let u = sin 1
2

A sin 1
2

B sin 1
2

C. Apply formula (3.40) to the first two terms in u to get

u = − 1
2

(cos 1
2
(A+B) − cos 1

2
(A−B)) sin 1

2
C = 1

2
(cos 1

2
(A−B) − cos 1

2
(A+B)) cos 1

2
(A+B) ,

since sin 1
2

C = cos 1
2
(A+B), as we saw in Example 3.18. Multiply both sides by 2 to get

cos2 1
2
(A+B) − cos 1

2
(A−B) cos 1

2
(A+B) + 2u = 0 ,

after rearranging the terms. Notice that the expression above is a quadratic equation in the

term cos 1
2
(A+B). So by the quadratic formula,

cos 1
2
(A+B) =

cos 1
2
(A−B) ±

√
cos2 1

2
(A−B)−4(1)(2u)

2
,

which has a real solution only if the quantity inside the square root is nonnegative. But we

know that cos 1
2
(A+B) is a real number (and, hence, a solution exists), so we must have

cos2 1
2
(A−B) − 8u ≥ 0 ⇒ u ≤ 1

8
cos2 1

2
(A−B) ≤ 1

8
⇒ sin 1

2
A sin 1

2
B sin 1

2
C ≤ 1

8
.

Example 3.20

For any triangle △ABC, show that 1 < cos A+cos B+cos C ≤ 3
2

.

Solution: Since 0◦ < A, B, C < 180◦, the sines of 1
2

A, 1
2

B, and 1
2

C are all positive, so

cos A + cos B + cos C = 1 + 4 sin 1
2

A sin 1
2

B sin 1
2

C > 1

by Example 3.18. Also, by Examples 3.18 and 3.19 we have

cos A + cos B + cos C = 1 + 4 sin 1
2

A sin 1
2

B sin 1
2

C ≤ 1 + 4 · 1
8

= 3
2

.

Hence, 1 < cos A+cos B+cos C ≤ 3
2

.
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Example 3.21

Recall Snell’s law from Example 3.12 in Section 3.2: n1 sin θ1 = n2 sin θ2. Use it to show that

the p-polarization transmission Fresnel coefficient defined by

t1 2 p =
2 n1 cos θ1

n2 cos θ1 + n1 cos θ2
(3.45)

can be written as:

t1 2 p =
2 cos θ1 sin θ2

sin (θ1 +θ2) cos (θ1 −θ2)
.

Solution: Multiply the top and bottom of t1 2 p by sin θ1 sin θ2 to get:

t1 2 p =
2 n1 cos θ1

n2 cos θ1 + n1 cos θ2
·

sin θ1 sin θ2

sin θ1 sin θ2

=
2 (n1 sin θ1) cos θ1 sin θ2

(n2 sin θ2) sin θ1 cos θ1 + (n1 sin θ1) sin θ2 cos θ2

=
2 cos θ1 sin θ2

sin θ1 cos θ1 + sin θ2 cos θ2
(by Snell’s law)

=
2 cos θ1 sin θ2

1
2

(sin 2θ1 + sin 2θ2)
(by the double-angle formula)

=
2 cos θ1 sin θ2

1
2

(2 sin 1
2
(2θ1 +2θ2) cos 1

2
(2θ1 −2θ2))

(by formula (3.41))

=
2 cos θ1 sin θ2

sin (θ1 +θ2) cos (θ1 −θ2)

Example 3.22

In an AC electrical circuit, the instantaneous power p(t) delivered to the entire circuit in the

sinusoidal steady state at time t is given by

p(t) = v(t) i(t) ,

where the voltage v(t) and current i(t) are given by

v(t) = Vm cos ωt ,

i(t) = Im cos (ωt+φ) ,

for some constants Vm, Im, ω, and φ. Show that the instantaneous power can be written as

p(t) = 1
2

Vm Im cos φ + 1
2

Vm Im cos (2ωt+φ) .

Solution: By definition of p(t), we have

p(t) = Vm Im cos ωt cos (ωt+φ)

= Vm Im · 1
2
(cos (2ωt+φ) + cos (−φ)) (by formula (3.43))

= 1
2

Vm Im cos φ + 1
2

Vm Im cos (2ωt+φ) (since cos (−φ)= cos φ) .
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�
	Exercises

1. Prove formula (3.38). 2. Prove formula (3.39). 3. Prove formula (3.40).

4. Prove formula (3.41). 5. Prove formula (3.42). 6. Prove formula (3.44).

7. Prove Mollweide’s second equation: For any triangle △ABC,
a+b

c
=

cos 1
2
(A−B)

sin 1
2

C
.

8. Continuing Example 3.21, use Snell’s law to show that the p-polarization reflection Fresnel

coefficient

r1 2 p =
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
(3.46)

can be written as:

r1 2 p =
tan (θ1 −θ2)

tan (θ1 +θ2)

9. There is a more general form for the instantaneous power p(t) = v(t) i(t) in an electrical

circuit than the one in Example 3.22. The voltage v(t) and current i(t) can be given by

v(t) = Vm cos (ωt+θ) ,

i(t) = Im cos (ωt+φ) ,

where θ is called the phase angle.4 Show that p(t) can be written as

p(t) = 1
2

Vm Im cos (θ−φ) + 1
2

Vm Im cos (2ωt+θ+φ) .

For Exercises 10-15, prove the given identity or inequality for any triangle △ABC.

10. sin A + sin B + sin C = 4 cos 1
2

A cos 1
2

B cos 1
2

C

(Hint: Mimic Example 3.18 using (sin A + sin B) + (sin C − sin (A+B+C)).)

11. cos A + cos (B−C) = 2 sin B sin C

12. sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C

(Hints: Group sin 2B and sin 2C together, use the double-angle formula for sin 2A, use

Exercise 11.)

13.
a−b

a+b
=

sin A − sin B

sin A + sin B

14. cos 1
2

A =
√

s (s−a)

bc
and sin 1

2
A =

√
(s−b) (s− c)

bc
, where s = 1

2
(a+b+ c)

(Hint: Use the Law of Cosines to show that 2bc (1+cos A) = 2s (s−a).)

15. 1
2

(sin A + sin B) ≤ sin 1
2
(A+B)

(Hint: Show that sin 1
2
(A+B) − 1

2
(sin A + sin B) ≥ 0.)

16. In Example 3.20, which angles A, B, C give the maximum value of cos A + cos B + cos C ?

4Though it does not matter for this exercise, none of the angles in these formulas are measured in

degrees. We will discuss their unit of measurement in Chapter 4.



4 Radian Measure

4.1 Radians and Degrees

So far we have been using degrees as our unit of measurement for angles. However,

there is another way of measuring angles that is often more convenient. The idea is

simple: associate a central angle of a circle with the arc that it intercepts.

Consider a circle of radius r > 0, as in Figure 4.1.1. In geometry you learned that

the circumference C of the circle is C = 2π r, where π= 3.14159265....

O
A

B

�AB = 1
4

C = π
2

r

90◦

(a) θ = 90◦

O
AB

�AB = 1
2

C =π r

180◦

(b) θ = 180◦

O

A

B

�AB = C = 2π r

360◦

(c) θ = 360◦

Figure 4.1.1 Angle θ and intercepted arc �AB on circle of circumference C = 2πr

In Figure 4.1.1 we see that a central angle of 90◦ cuts off an arc of length π
2

r, a

central angle of 180◦ cuts off an arc of length π r, and a central angle of 360◦ cuts off an

arc of length 2π r, which is the same as the circumference of the circle. So associating

the central angle with its intercepted arc, we could say, for example, that

360◦ “equals” 2π r (or 2π ‘radiuses’).

The radius r was arbitrary, but the 2π in front of it stays the same. So instead of using

the awkward “radiuses” or “radii”, we use the term radians:

360◦ = 2π radians (4.1)

The above relation gives us any easy way to convert between degrees and radians:

Degrees to radians: x degrees =
( π

180
· x

)
radians (4.2)

Radians to degrees: x radians =
(

180

π
· x

)
degrees (4.3)

87
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Formula (4.2) follows by dividing both sides of equation (4.1) by 360, so that 1◦ =
2π
360

= π
180

radians, then multiplying both sides by x. Formula (4.3) is similarly derived

by dividing both sides of equation (4.1) by 2π then multiplying both sides by x.

The statement θ = 2π radians is usually abbreviated as θ = 2π rad, or just θ = 2π

when it is clear that we are using radians. When an angle is given as some multiple

of π, you can assume that the units being used are radians.

Example 4.1

Convert 18◦ to radians.

Solution: Using the conversion formula (4.2) for degrees to radians, we get

18◦ =
π

180
· 18 =

π

10
rad .

Example 4.2

Convert π
9

radians to degrees.

Solution: Using the conversion formula (4.3) for radians to degrees, we get

π

9
rad =

180

π
·
π

9
= 20◦ .

Table 4.1 Commonly used angles in radians

Degrees Radians Degrees Radians Degrees Radians Degrees Radians

0◦ 0 90◦ π

2
180◦ π 270◦ 3π

2

30◦ π

6
120◦ 2π

3
210◦ 7π

6
300◦ 5π

3

45◦ π

4
135◦ 3π

4
225◦ 5π

4
315◦ 7π

4

60◦ π

3
150◦ 5π

6
240◦ 4π

3
330◦ 11π

6

O r

r

θ

θ = 1 radian

Figure 4.1.2

Table 4.1 shows the conversion between degrees and radians for

some common angles. Using the conversion formula (4.3) for radians

to degrees, we see that

1 radian =
180

π
degrees ≈ 57.3◦ .

Formally, a radian is defined as the central angle in a circle of

radius r which intercepts an arc of length r, as in Figure 4.1.2. This

definition does not depend on the choice of r (imagine resizing Figure 4.1.2).
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One reason why radians are used is that the scale is smaller than for degrees. One

revolution in radians is 2π≈ 6.283185307, which is much smaller than 360, the number

of degrees in one revolution. The smaller scale makes the graphs of trigonometric

functions (which we will discuss in Chapter 5) have similar scales for the horizontal

and vertical axes. Another reason is that often in physical applications the variables

being used are in terms of arc length, which makes radians a natural choice.

The default mode in most scientific calculators is to use degrees for entering angles.

On many calculators there is a button labeled
�
�

�
�DRG for switching between degree

mode (D), radian mode (R), and gradian mode (G).1 On some graphing calculators,

such as the the TI-83, there is a
�
�

�
�MODE button for changing between degrees and

radians. Make sure that your calculator is in the correct angle mode before entering

angles, or your answers will likely be way off. For example,

sin 4◦ = 0.0698 ,

sin (4 rad) = −0.7568 ,

so the values are not only off in magnitude, but do not even have the same sign. Using

your calculator’s
�
�

�
�sin−1 ,
�
�

�
�cos−1 , and

�
�

�
�tan−1 buttons in radian mode will of course give you

the angle as a decimal, not an expression in terms of π.

You should also be aware that the math functions in many computer programming

languages use radians, so you would have to write your own angle conversions.2

�



�
	Exercises

For Exercises 1-5, convert the given angle to radians.

1. 4◦ 2. 15◦ 3. 130◦ 4. 275◦ 5. −108◦

For Exercises 6-10, convert the given angle to degrees.

6. 4 rad 7.
π

5
rad 8.

11π

9
rad 9.

29π

30
rad 10. 35 rad

11. Put your calculator in radian mode and take the cosine of 0. Whatever the answer is,

take its cosine. Then take the cosine of the new answer. Keep repeating this. On most

calculators after about 50-60 iterations you should start to see the same answer repeating.

What is that number? Try starting with a number different from 0. Do you get the same

answer repeating after roughly the same number of iterations as before? Try the same

procedure in degree mode, starting with 0◦. Does the same thing happen? If so, does it

take fewer iterations for the answer to start repeating than in radian mode, or more?

1A gradian is defined as 1
400 of a circle, i.e. there are 400 gradians in one revolution. Compared to

the more common 360◦ in one revolution, gradians appear to be easier to work with, since a right angle

is 100 gradians (thus making integer multiples of a right angle easier to remember). Outside of a few

specialized areas (e.g. artillery calculations), gradians are nevertheless not widely used today.
2One exception is Octave, which has functions cosd(), sind(), tand() that take angles in degrees as

parameters, in addition to the usual cos(), sin(), tan() functions which use radians.
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4.2 Arc Length

In Section 4.1 we saw that one revolution has a radian measure of 2π rad. Note that

2π is the ratio of the circumference (i.e. total arc length) C of a circle to its radius r:

Radian measure of 1 revolution = 2π =
2π r

r
=

C

r
=

total arc length

radius

Clearly, that ratio is independent of r. In general, the radian measure of an angle is

the ratio of the arc length cut off by the corresponding central angle in a circle to the

radius of the circle, independent of the radius.

To see this, recall our formal definition of a radian: the central angle in a circle of

radius r which intercepts an arc of length r. So suppose that we have a circle of radius

r and we place a central angle with radian measure 1 on top of another central angle

with radian measure 1, as in Figure 4.2.1(a). Clearly, the combined central angle of

the two angles has radian measure 1+1= 2, and the combined arc length is r+ r = 2r.

r

r

1
1

2

r

(a) 2 radians

r/2

r/2

1/2

1

r

(b) 1
2

radian

Figure 4.2.1 Radian measure and arc length

Now suppose that we cut the angle with radian measure 1 in half, as in Figure

4.2.1(b). Clearly, this cuts the arc length r in half as well. Thus, we see that

Angle = 1 radian ⇒ arc length = r ,

Angle = 2 radians ⇒ arc length = 2 r ,

Angle = 1
2

radian ⇒ arc length = 1
2

r ,

and in general, for any θ ≥ 0,

Angle = θ radians ⇒ arc length = θ r ,

so that

θ =
arc length

radius
.
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Intuitively, it is obvious that shrinking or magnifying a circle preserves the measure

of a central angle even as the radius changes. The above discussion says more, namely

that the ratio of the length s of an intercepted arc to the radius r is preserved, precisely

because that ratio is the measure of the central angle in radians (see Figure 4.2.2).

O r

s = rθ

θ

(a) Angle θ, radius r

O r′

s = r′θ

θ

(b) Angle θ, radius r′

Figure 4.2.2 Circles with the same central angle, different radii

We thus get a simple formula for the length of an arc:

In a circle of radius r, let s be the length of an arc intercepted by a central angle

with radian measure θ ≥ 0. Then the arc length s is:

s = rθ (4.4)

Example 4.3

In a circle of radius r = 2 cm, what is the length s of the arc intercepted by a central angle of

measure θ = 1.2 rad ?

Solution: Using formula (4.4), we get:

s = rθ = (2)(1.2) = 2.4 cm

Example 4.4

In a circle of radius r = 10 ft, what is the length s of the arc intercepted by a central angle of

measure θ = 41◦ ?

Solution: Using formula (4.4) blindly with θ = 41◦, we would get s = rθ = (10)(41)= 410 ft. But

this impossible, since a circle of radius 10 ft has a circumference of only 2π (10)≈ 62.83 ft! Our

error was in using the angle θ measured in degrees, not radians. So first convert θ = 41◦ to

radians, then use s = rθ:

θ = 41◦ =
π

180
· 41 = 0.716 rad ⇒ s = rθ = (10)(0.716) = 7.16 ft

Note that since the arc length s and radius r are usually given in the same units,

radian measure is really unitless, since you can think of the units canceling in the

ratio s
r
, which is just θ. This is another reason why radians are so widely used.
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Example 4.5

A central angle in a circle of radius 5 m cuts off an arc of length 2 m. What is the measure of

the angle in radians? What is the measure in degrees?

Solution: Letting r = 5 and s = 2 in formula (4.4), we get:

θ =
s

r
=

2

5
= 0.4 rad

In degrees, the angle is:

θ = 0.4 rad =
180

π
· 0.4 = 22.92◦

For central angles θ > 2π rad, i.e. θ > 360◦, it may not be clear what is meant by

the intercepted arc, since the angle is larger than one revolution and hence “wraps

around” the circle more than once. We will take the approach that such an arc consists

of the full circumference plus any additional arc length determined by the angle. In

other words, formula (4.4) is still valid for angles θ > 2π rad.

What about negative angles? In this case using s = rθ would mean that the arc

length is negative, which violates the usual concept of length. So we will adopt the

convention of only using nonnegative central angles when discussing arc length.

Example 4.6

2

A

B

D C
E3

4

4

θ

Figure 4.2.3

A rope is fastened to a wall in two places 8 ft apart at the same height.

A cylindrical container with a radius of 2 ft is pushed away from the

wall as far as it can go while being held in by the rope, as in Figure

4.2.3 which shows the top view. If the center of the container is 3 feet

away from the point on the wall midway between the ends of the rope,

what is the length L of the rope?

Solution: We see that, by symmetry, the total length of the rope

is L = 2 (AB + �BC). Also, notice that △ADE is a right triangle, so

the hypotenuse has length AE =
p

DE2 +DA2 =
p

32 +42 = 5 ft, by the

Pythagorean Theorem. Now since AB is tangent to the circular con-

tainer, we know that ∠ABE is a right angle. So by the Pythagorean

Theorem we have

AB =
√

AE2 −BE2 =
√

52 −22 =
p

21 ft.

By formula (4.4) the arc �BC has length BE ·θ, where θ =∠BEC is the

supplement of ∠AED+∠AEB. So since

tan ∠AED =
4

3
⇒ ∠AED = 53.1◦ and cos ∠AEB =

BE

AE
=

2

5
⇒ ∠AEB = 66.4◦ ,

we have

θ = ∠BEC = 180◦ − (∠AED+∠AEB) = 180◦ − (53.1◦+66.4◦) = 60.5◦ .

Converting to radians, we get θ = π
180

· 60.5= 1.06 rad. Thus,

L = 2(AB + ·�BC) = 2(
p

21 + BE ·θ) = 2(
p

21 + (2)(1.06)) = 13.4 ft .
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Example 4.7

The centers of two belt pulleys, with radii of 5 cm and 8 cm, respectively, are 15 cm apart. Find

the total length L of the belt around the pulleys.

Solution: In Figure 4.2.4 we see that, by symmetry, L = 2 (�DE+EF + �FG).

D G

3

5

C

F

5

A B

E

15

Figure 4.2.4 Belt pulleys with radii 5 cm and 8 cm

First, at the center B of the pulley with radius 8, draw a circle of radius 3, which is the

difference in the radii of the two pulleys. Let C be the point where this circle intersects BF.

Then we know that the tangent line AC to this smaller circle is perpendicular to the line

segment BF. Thus, ∠ACB is a right angle, and so the length of AC is

AC =
√

AB2 −BC2 =
√

152 −32 =
p

216 = 6
p

6

by the Pythagorean Theorem. Now since AE ⊥ EF and EF ⊥ CF and CF ⊥ AC, the quadrilat-

eral AEFC must be a rectangle. In particular, EF = AC, so EF = 6
p

6.

By formula (4.4) we know that �DE = EA ·∠DAE and �FG = BF ·∠GBF, where the angles

are measured in radians. So thinking of angles in radians (using π rad = 180◦), we see from

Figure 4.2.4 that

∠DAE = π − ∠EAC − ∠BAC = π −
π

2
− ∠BAC =

π

2
− ∠BAC ,

where

sin ∠BAC =
BC

AB
=

3

15
= 0.2 ⇒ ∠BAC = 0.201 rad.

Thus, ∠DAE = π
2
− 0.201 = 1.37 rad. So since AE and BF are parallel, we have ∠ABC =

∠DAE = 1.37 rad. Thus, ∠GBF =π − ∠ABC =π − 1.37= 1.77 rad. Hence,

L = 2 (�DE + EF + �FG) = 2 (5 (1.37) + 6
p

6 + 8 (1.77)) = 71.41 cm .
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�
	Exercises

For Exercises 1-4, find the length of the arc cut off by the given central angle θ in a circle of

radius r.

1. θ = 0.8 rad, r = 12 cm 2. θ = 171◦, r = 8 m 3. θ =π rad, r = 11 in

4. A central angle in a circle of radius 2 cm cuts off an arc of length 4.6 cm. What is the

measure of the angle in radians? What is the measure of the angle in degrees?

5. The centers of two belt pulleys, with radii of 3 inches and 6 inches, respectively, are 13

inches apart. Find the total length L of the belt around the pulleys.

6. In Figure 4.2.5 one end of a 4 ft iron rod is attached to the center of a pulley with radius

0.5 ft. The other end is attached at a 40◦ angle to a wall, at a spot 6 ft above the lower end

of a steel wire supporting a box. The other end of the wire comes out of the wall straight

across from the top of the pulley. Find the length L of the wire from the wall to the box.

4

40◦

6

Figure 4.2.5 Exercise 6

4

40◦2

6

Figure 4.2.6 Exercise 7

7. Figure 4.2.6 shows the same setup as in Exercise 6 but now the wire comes out of the wall

2 ft above where the rod is attached. Find the length L of the wire from the wall to the box.

2 2

A B
10

Figure 4.2.7

8. Find the total length L of the figure eight

shape in Figure 4.2.7. (Hint: Draw a cir-

cle of radius 4 centered at A, then draw a

tangent line to that circle from B.)

9. Repeat Exercise 8 but with the circle at A

having a radius of 3 instead of 2.

10. Suppose that in Figure 4.2.7 the lines do not criss-cross but instead go straight across, as

in a belt pulley system. Find the total length L of the resulting shape.

11. Find the lengths of the two arcs cut off by a chord of length 3 in a circle of radius 2.

12. Find the perimeter of a regular dodecagon (i.e. a 12-sided polygon with sides of equal

length) inscribed inside a circle of radius 1
2
. Compare it to the circumference of the circle.
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4.3 Area of a Sector

r

θ

Figure 4.3.1

In geometry you learned that the area of a circle of radius r is πr2.

We will now learn how to find the area of a sector of a circle. A sector

is the region bounded by a central angle and its intercepted arc, such

as the shaded region in Figure 4.3.1.

Let θ be a central angle in a circle of radius r and let A be the area

of its sector. Similar to arc length, the ratio of A to the area of the

entire circle is the same as the ratio of θ to one revolution. In other

words, again using radian measure,

area of sector

area of entire circle
=

sector angle

one revolution
⇒

A

π r2
=

θ

2π
.

Solving for A in the above equation, we get the following formula:

In a circle of radius r, the area A of the sector inside a central angle θ is

A = 1
2

r2 θ , (4.5)

where θ is measured in radians.

Example 4.8

Find the area of a sector whose angle is π
5

rad in a circle of radius 4 cm.

Solution: Using θ = π
5

and r = 4 in formula (4.5), the area A of the sector is

A = 1
2

r2 θ = 1
2

(4)2 · π
5

= 8π
5

cm2 .

Example 4.9

Find the area of a sector whose angle is 117◦ in a circle of radius 3.5 m.

Solution: As with arc length, we have to make sure that the angle is measured in radians or

else the answer will be way off. So converting θ = 117◦ to radians and using r = 3.5 in formula

(4.5) for the area A of the sector, we get

θ = 117◦ =
π

180
· 117 = 2.042 rad ⇒ A = 1

2
r2 θ = 1

2
(3.5)2 (2.042) = 12.51 m2 .

For a sector whose angle is θ in a circle of radius r, the length of the arc cut off by

that angle is s = rθ. Thus, by formula (4.5) the area A of the sector can be written as:3

A = 1
2

rs (4.6)

Note: The central angle θ that intercepts an arc is sometimes called the angle sub-

tended by the arc.

3In some texts this formula is taken as a result from elementary geometry and then used to prove

formula (4.5).
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Example 4.10

Find the area of a sector whose arc is 6 cm in a circle of radius 9 cm.

Solution: Using s = 6 and r = 9 in formula (4.6) for the area A, we get

A = 1
2

rs = = 1
2

(9)(6) = 27 cm2 .

Note that the angle subtended by the arc is θ = s
r
= 2

3
rad.

Example 4.11

Find the area K inside the belt pulley system from Example 4.7 in Section 4.2.

Solution: Recall that the belt pulleys have radii of 5 cm and 8 cm, and their centers are 15

cm apart. We showed in Example 4.7 that EF = AC = 6
p

6, ∠DAE = 1.37 rad, and ∠GBF = 1.77

rad. We see from Figure 4.3.2 that, by symmetry, the total area K enclosed by the belt is twice

the area above the line DG, that is,

K = 2((Area of sector DAE) + (Area of rectangle AEFC)

+ (Area of triangle △ABC) + (Area of sector GBF)) .

1.776
p

6

D G

3

5

C

F

5

A B

E

15

6
p

6

1.37

Figure 4.3.2 Belt pulleys with radii 5 cm and 8 cm

Since AEFC is a rectangle with sides 5 and 6
p

6, its area is 30
p

6. And since △ABC is a

right triangle whose legs have lengths 3 and 6
p

6, its area is 1
2

(3)(6
p

6) = 9
p

6. Thus, using

formula (4.5) for the areas of sectors DAE and GBF, we have

K = 2
(
(Area of sector DAE) + 30

p
6 + 9

p
6 + (Area of sector GBF)

)

= 2
(

1
2

(5)2 (1.37) + 30
p

6 + 9
p

6 + 1
2

(8)2 (1.77)
)

= 338.59 cm2 .
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a

b

r

Figure 4.3.3

So far we have dealt with the area cut off by a central angle.

How would you find the area of a region cut off by an inscribed an-

gle, such as the shaded region in Figure 4.3.3? In this picture, the

center of the circle is inside the inscribed angle, and the lengths a

and b of the two chords are given, as is the radius r of the circle.

Drawing line segments from the center of the circle to the end-

points of the chords indicates how to solve this problem: add up

the areas of the two triangles and the sector formed by the central

angle. The areas and angles of the two triangles can be determined (since all three

sides are known) using methods from Chapter 2. Also, recall (Theorem 2.4 in Section

2.5) that a central angle has twice the measure of any inscribed angle which intercepts

the same arc. In the exercises you will be asked to solve problems like this (including

the cases where the center of the circle is outside or on the inscribed angle).

r

r

θ

O

A

B

Figure 4.3.4

Another type of region we can consider is a segment of a

circle, which is the region between a chord and the arc it cuts

off. In Figure 4.3.4 the segment formed by the chord AB is the

shaded region between the arc �AB and the triangle △OAB. By

formula (2.23) in Section 2.4 for the area of a triangle given

two sides and their included angle, we know that

area of △OAB = 1
2

(r) (r) sin θ = 1
2

r2 sin θ .

Thus, since the area K of the segment is the area of the sec-

tor AOB minus the area of the triangle △OAB, we have

area K of segment AB = 1
2

r2 θ − 1
2

r2 sin θ = 1
2

r2 (θ−sin θ) . (4.7)

Note that as a consequence of formula (4.7) we must have θ > sin θ for 0 < θ ≤ π

(measured in radians), since the area of a segment is positive for those angles.

Example 4.12

32

2

θ

Figure 4.3.5

Find the area of the segment formed by a chord of length 3 in a circle of

radius 2.

Solution: Figure 4.3.5 shows the segment formed by a chord of length

3 in a circle of radius r = 2. We can use the Law of Cosines to find the

subtended central angle θ:

cos θ =
22 +22 −32

2(2)(2)
= −0.125 ⇒ θ = 1.696 rad

Thus, by formula (4.7) the area K of the segment is:

K = 1
2

r2 (θ−sin θ) = 1
2

(2)2 (1.696−sin 1.696) = 1.408
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Example 4.13

The centers of two circles are 7 cm apart, with one circle having a radius of 5 cm and the other

a radius of 3 cm. Find the area K of their intersection.

Solution: In Figure 4.3.6(a), we see that the intersection of the two circles is the union of the

segments formed by the chord CD in each circle. Thus, once we determine the angles ∠CAD

and ∠CBD we can calculate the area of each segment and add those areas together to get K .

C

D

5 4

A B
7

(a) ∠BAC = 1
2
∠CAD, ∠ABC = 1

2
∠CBD

5

C

4

7
A B

α β

(b) Triangle △ABC

Figure 4.3.6

By symmetry, we see that ∠BAC = 1
2
∠CAD and ∠ABC = 1

2
∠CBD. So let α = ∠BAC and

β=∠ABC, as in Figure 4.3.6(b). By the Law of Cosines, we have

cos α =
72 +52 −42

2(7)(5)
= 0.8286 ⇒ α = 0.594 rad ⇒ ∠CAD = 2(0.594)= 1.188 rad

cos β =
72 +42 −52

2(7)(4)
= 0.7143 ⇒ β = 0.775 rad ⇒ ∠CBD = 2(0.775)= 1.550 rad

Thus, the area K is

K = (Area of segment CD in circle at A) + (Area of segment CD in circle at B)

= 1
2

(5)2 (1.188−sin 1.188) + 1
2

(4)2 (1.550−sin 1.550)

= 7.656 cm2 .

�



�
	Exercises

For Exercises 1-3, find the area of the sector for the given angle θ and radius r.

1. θ = 2.1 rad, r = 1.2 cm 2. θ = 3π
7

rad, r = 3.5 ft 3. θ = 78◦, r = 6 m

4. The centers of two belt pulleys, with radii of 3 cm and 6 cm, respectively, are 13 cm apart.

Find the total area K enclosed by the belt.

5. In Exercise 4 suppose that both belt pulleys have the same radius of 6 cm. Find the total

area K enclosed by the belt.
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6. Find the area enclosed by the figure eight in Exercise 8 from Section 4.2.

For Exercises 7-9, find the area of the sector for the given radius r and arc length s.

7. r = 5 cm, s = 2 cm 8. r = a, s = a 9. r = 1 cm, s =π cm

For Exercises 10-12, find the area of the segment formed by a chord of length a in a circle of

radius r.

10. a = 4 cm, r = 4 cm 11. a = 1 cm, r = 5 cm 12. a = 2 cm, r = 5 cm

13. Find the area of the shaded region in Figure 4.3.7.

4

5

3

Figure 4.3.7 Exercise 13

7

9
5

Figure 4.3.8 Exercise 14

8

66

Figure 4.3.9 Exercise 15

14. Find the area of the shaded region in Figure 4.3.8. (Hint: Draw two central angles.)

15. Find the area of the shaded region in Figure 4.3.9.

16. The centers of two circles are 4 cm apart, with one circle having a radius of 3 cm and the

other a radius of 2 cm. Find the area of their intersection.

17. Three circles with radii of 4 m, 2 m, and 1 m are externally tangent to each other. Find

the area of the curved region between the circles, as in Figure 4.3.10. (Hint: Connect the

centers of the circles.)

4 2

1

Figure 4.3.10 Exercise 17

r r

r

Figure 4.3.11 Exercise 18

18. Show that the total area enclosed by the loop around the three circles of radius r in Figure

4.3.11 is (π+6+
p

3) r2.

19. For a fixed central angle θ, how much does the area of its sector increase when the radius

of the circle is doubled? How much does the length of its intercepted arc increase?
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4.4 Circular Motion: Linear and Angular Speed

distance s

r

θ

time t = 0

time t > 0

Figure 4.4.1

Radian measure and arc length can be applied to the

study of circular motion. In physics the average speed

of an object is defined as:

average speed =
distance traveled

time elapsed

So suppose that an object moves along a circle of ra-

dius r, traveling a distance s over a period of time t,

as in Figure 4.4.1. Then it makes sense to define the

(average) linear speed ν of the object as:

ν =
s

t
(4.8)

Let θ be the angle swept out by the object in that period of time. Then we define the

(average) angular speed ω of the object as:

ω =
θ

t
(4.9)

Angular speed gives the rate at which the central angle swept out by the object

changes as the object moves around the circle, and it is thus measured in radians per

unit time. Linear speed is measured in distance units per unit time (e.g. feet per

second). The word linear is used because straightening out the arc traveled by the

object along the circle results in a line of the same length, so that the usual definition

of speed as distance over time can be used. We will usually omit the word average

when discussing linear and angular speed here.4

Since the length s of the arc cut off by a central angle θ in a circle of radius r is

s = rθ, we see that

ν =
s

t
=

rθ

t
=

θ

t
· r ,

so that we get the following relation between linear and angular speed:

ν = ω r (4.10)

4Many trigonometry texts assume uniform motion, i.e. constant speeds. We do not make that assump-

tion. Also, many texts use the word velocity instead of speed. Technically they are not the same; velocity

has a direction and a magnitude, whereas speed is just a magnitude.
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Example 4.14

An object sweeps out a central angle of π
3

radians in 0.5 seconds as it moves along a circle of

radius 3 m. Find its linear and angular speed over that time period.

Solution: Here we have t = 0.5 sec, r = 3 m, and θ = π
3

rad. So the angular speed ω is

ω =
θ

t
=

π

3
rad

0.5 sec
⇒ ω =

2π

3
rad/sec ,

and thus the linear speed ν is

ν = ω r =
(

2π

3
rad/sec

)
(3 m) ⇒ ν = 2π m/sec .

Note that the units for ω are rad/sec and the units of ν are m/sec. Recall that radians are

actually unitless, which is why in the formula ν=ω r the radian units disappear.

Example 4.15

An object travels a distance of 35 ft in 2.7 seconds as it moves along a circle of radius 2 ft. Find

its linear and angular speed over that time period.

Solution: Here we have t = 2.7 sec, r = 2 ft, and s = 35 ft. So the linear speed ν is

ν =
s

t
=

35 feet

2.7 sec
⇒ ν = 12.96 ft/sec ,

and thus the angular speed ω is given by

ν = ω r ⇒ 12.96 ft/sec = ω (2 ft) ⇒ ω = 6.48 rad/sec .

Example 4.16

An object moves at a constant linear speed of 10 m/sec around a circle of radius 4 m. How

large of a central angle does it sweep out in 3.1 seconds?

Solution: Here we have t = 3.1 sec, ν= 10 m/sec, and r = 4 m. Thus, the angle θ is given by

s = rθ ⇒ θ =
s

r
=

ν t

r
=

(10 m/sec) (3.1 sec)

4 m
= 7.75 rad .

In many physical applications angular speed is given in revolutions per minute,

abbreviated as rpm. To convert from rpm to, say, radians per second, notice that since

there are 2π radians in one revolution and 60 seconds in one minute, we can convert

N rpm to radians per second by “canceling the units” as follows:

N rpm = N
��rev

���min
·

2π rad

1 ��rev
·

1 ���min

60 sec
=

N ·2π
60

rad/sec

This works because all we did was multiply by 1 twice. Converting to other units

for angular speed works in a similar way. Going in the opposite direction, say, from

rad/sec to rpm, gives:

N rad/sec =
N ·60

2π
rpm
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Example 4.17

A gear with an outer radius of r1 = 5 cm moves in the clockwise direction, causing an inter-

locking gear with an outer radius of r2 = 4 cm to move in the counterclockwise direction at an

angular speed of ω2 = 25 rpm. What is the angular speed ω1 of the larger gear?

r1 = 5 cm

r2 = 4 cm
ω2 = 25 rpm

Figure 4.4.2

Solution: Imagine a particle on the outer radius of each

gear. After the gears have rotated for a period of time

t > 0, the circular displacement of each particle will be

the same. In other words, s1 = s2, where s1 and s2 are

the distances traveled by the particles on the gears with

radii r1 and r2, respectively.

But s1 = ν1 t and s2 = ν2 t, where ν1 and ν2 are the lin-

ear speeds of the gears with radii r1 and r2, respectively.

Thus,

ν1 t = ν2 t ⇒ ν1 = ν2 ,

so by formula (4.10) we get the fundamental relation be-

tween the two gears:

ω1 r1 = ω2 r2 (4.11)

Note that this holds for any two gears. So in our case, we have

ω1 (5) = (25)(4) ⇒ ω1 = 20 rpm .

�



�
	Exercises

For Exercises 1-6, assume that a particle moves along a circle of radius r for a period of time

t. Given either the arc length s or the central angle θ swept out by the particle, find the linear

and angular speed of the particle.

1. r = 4 m, t = 2 sec, θ = 3 rad 2. r = 8 m, t = 2 sec, θ = 3 rad 3. r = 7 m, t = 3.2 sec, θ = 172◦

4. r = 1 m, t = 1.6 sec, s = 3 m 5. r = 2 m, t = 1.6 sec, s = 6 m 6. r = 1.5 ft, t = 0.3 sec, s = 4 in

7. An object moves at a constant linear speed of 6 m/sec around a circle of radius 3.2 m. How

large of a central angle does it sweep out in 1.8 seconds?

8. Two interlocking gears have outer radii of 6 cm and 9 cm, respectively. If the smaller gear

rotates at 40 rpm, how fast does the larger gear rotate?

9. Three interlocking gears have outer radii of 2 cm, 3 cm, and 4 cm, respectively. If the

largest gear rotates at 16 rpm, how fast do the other gears rotate?

10. In Example 4.17, does equation (4.11) still hold if the radii r1 and r2 are replaced by the

number of teeth N1 and N2, respectively, of the two gears as shown in Figure 4.4.2?

11. A 78 rpm music record has a diameter of 10 inches. What is the linear speed of a speck of

dust on the outer edge of the record in inches per second?

12. The centripetal acceleration α of an object moving along a circle of radius r with a linear

speed ν is defined as α= ν2

r
. Show that α=ω2 r, where ω is the angular speed.



5 Graphing and Inverse Functions

The trigonometric functions can be graphed just like any other function, as we will

now show. In the graphs we will always use radians for the angle measure.

5.1 Graphing the Trigonometric Functions

x

y

s = rθ = θ1

θ

10

(x, y)= (cos θ,sin θ)
x2 + y2 = 1

Figure 5.1.1

The first function we will graph is the sine func-

tion. We will describe a geometrical way to create

the graph, using the unit circle. This is the circle

of radius 1 in the xy-plane consisting of all points

(x, y) which satisfy the equation x2 + y2 = 1.

We see in Figure 5.1.1 that any point on the unit

circle has coordinates (x, y) = (cos θ,sin θ), where θ

is the angle that the line segment from the origin

to (x, y) makes with the positive x-axis (by defini-

tion of sine and cosine). So as the point (x, y) goes

around the circle, its y-coordinate is sin θ.

We thus get a correspondence between the y-coordinates of points on the unit circle

and the values f (θ)= sin θ, as shown by the horizontal lines from the unit circle to the

graph of f (θ)= sin θ in Figure 5.1.2 for the angles θ = 0, π
6
, π

3
, π

2
.

θ

f (θ)

0

1

π
6

π
3

π
2

2π
3

5π
6

π

f (θ)= sin θ

π
6

π
3

π
2

0
1

1

x2 + y2 = 1

θ

Figure 5.1.2 Graph of sine function based on y-coordinate of points on unit circle

We can extend the above picture to include angles from 0 to 2π radians, as in Figure

5.1.3. This illustrates what is sometimes called the unit circle definition of the sine

function.

103
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θ

f (θ)

0

−1

1

π
6

π
3

π
2

2π
3

5π
6

π 5π
4

3π
2

7π
4

2π

f (θ)= sin θ

x

y

1

x2 + y2 = 1

θ

Figure 5.1.3 Unit circle definition of the sine function

Since the trigonometric functions repeat every 2π radians (360◦), we get, for exam-

ple, the following graph of the function y= sin x for x in the interval [−2π,2π]:

x

y

0

−1

1

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π−π
4

−π
2− 3π

4
−π− 5π

4
− 3π

2
− 7π

4
−2π

y= sin x

Figure 5.1.4 Graph of y= sin x

To graph the cosine function, we could again use the unit circle idea (using the x-

coordinate of a point that moves around the circle), but there is an easier way. Recall

from Section 1.5 that cos x = sin (x+ 90◦) for all x. So cos 0◦ has the same value as

sin 90◦, cos 90◦ has the same value as sin 180◦, cos 180◦ has the same value as sin 270◦,

and so on. In other words, the graph of the cosine function is just the graph of the sine

function shifted to the left by 90◦ =π/2 radians, as in Figure 5.1.5:

x

y

0

−1

1

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π−π
4

−π
2− 3π

4
−π− 5π

4
− 3π

2
− 7π

4
−2π

y= cos x

Figure 5.1.5 Graph of y= cos x

To graph the tangent function, use tan x = sin x
cos x

to get the following graph:
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x

y

0

−8

−6

−4

−2

2

4

6

8

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π−π
4

−π
2− 3π

4
−π− 5π

4
− 3π

2
− 7π

4
−2π

y= tan x

Figure 5.1.6 Graph of y= tan x

Recall that the tangent is positive for angles in QI and QIII, and is negative in QII

and QIV, and that is indeed what the graph in Figure 5.1.6 shows. We know that tan x

is not defined when cos x = 0, i.e. at odd multiples of π
2
: x =± π

2
, ± 3π

2
, ± 5π

2
, etc. We can

figure out what happens near those angles by looking at the sine and cosine functions.

For example, for x in QI near π
2
, sin x and cos x are both positive, with sin x very close

to 1 and cos x very close to 0, so the quotient tan x = sin x
cos x

is a positive number that is

very large. And the closer x gets to π
2
, the larger tan x gets. Thus, x = π

2
is a vertical

asymptote of the graph of y= tan x.

Likewise, for x in QII very close to π
2
, sin x is very close to 1 and cos x is negative and

very close to 0, so the quotient tan x = sin x
cos x

is a negative number that is very large, and

it gets larger in the negative direction the closer x gets to π
2
. The graph shows this.

Similarly, we get vertical asymptotes at x =−π
2
, x = 3π

2
, and x =−3π

2
, as in Figure 5.1.6.

Notice that the graph of the tangent function repeats every π radians, i.e. two times

faster than the graphs of sine and cosine repeat.

The graphs of the remaining trigonometric functions can be determined by looking

at the graphs of their reciprocal functions. For example, using csc x = 1
sin x

we can just

look at the graph of y = sin x and invert the values. We will get vertical asymptotes

when sin x = 0, namely at multiples of π: x = 0, ±π, ±2π, etc. Figure 5.1.7 shows the

graph of y= csc x, with the graph of y= sin x (the dashed curve) for reference.
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x

y

0

−4

−3

−2

−1

1

2

3

4

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π−π
4

−π
2− 3π

4
−π− 5π

4
− 3π

2
− 7π

4
−2π

y= csc x

Figure 5.1.7 Graph of y= csc x

Likewise, Figure 5.1.8 shows the graph of y = sec x, with the graph of y = cos x (the

dashed curve) for reference. Note the vertical asymptotes at x = ± π
2
, ± 3π

2
. Notice

also that the graph is just the graph of the cosecant function shifted to the left by π
2

radians.

x

y

0

−4

−3

−2

−1

1

2

3

4

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π−π
4

−π
2− 3π

4
−π− 5π

4
− 3π

2
− 7π

4
−2π

y= sec x

Figure 5.1.8 Graph of y= sec x
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The graph of y = cot x can also be determined by using cot x = 1
cot x

. Alternatively,

we can use the relation cot x =−tan (x+90◦) from Section 1.5, so that the graph of the

cotangent function is just the graph of the tangent function shifted to the left by π
2

radians and then reflected about the x-axis, as in Figure 5.1.9:

x

y

0

−8

−6

−4

−2

2

4

6

8

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π−π
4

−π
2− 3π

4
−π− 5π

4
− 3π

2
− 7π

4
−2π

y= cot x

Figure 5.1.9 Graph of y= cot x

Example 5.1

Draw the graph of y=−sin x for 0≤ x ≤ 2π.

Solution: Multiplying a function by −1 just reflects its graph around the x-axis. So reflecting

the graph of y= sin x around the x-axis gives us the graph of y=−sin x:

x

y

0

−1

1

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

y=−sin x

Note that this graph is the same as the graphs of y= sin (x±π) and y= cos (x+ π
2

).
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It is worthwhile to remember the general shapes of the graphs of the six trigono-

metric functions, especially for sine, cosine, and tangent. In particular, the graphs

of the sine and cosine functions are called sinusoidal curves. Many phenomena in

nature exhibit sinusoidal behavior, so recognizing the general shape is important.

Example 5.2

Draw the graph of y= 1+cos x for 0≤ x ≤ 2π.

Solution: Adding a constant to a function just moves its graph up or down by that amount,

depending on whether the constant is positive or negative, respectively. So adding 1 to cos x

moves the graph of y= cos x upward by 1, giving us the graph of y= 1+cos x:

x

y

0

1

2

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

y= 1+cos x

�
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	Exercises

For Exercises 1-12, draw the graph of the given function for 0≤ x ≤ 2π.

1. y=−cos x 2. y= 1+sin x 3. y= 2−cos x 4. y= 2−sin x

5. y=−tan x 6. y=−cot x 7. y= 1+sec x 8. y=−1−csc x

9. y= 2sin x 10. y=−3cos x 11. y=−2tan x 12. y=−2sec x

x

y

O M

N

P

Q

R S

1

θ

Figure 5.1.10

13. We can extend the unit circle definition of the sine and co-

sine functions to all six trigonometric functions. Let P be a

point in QI on the unit circle, so that the line segment OP

in Figure 5.1.10 has length 1 and makes an acute angle θ

with the positive x-axis. Identify each of the six trigonomet-

ric functions of θ with exactly one of the line segments in

Figure 5.1.10, keeping in mind that the radius of the circle is

1. To get you started, we have sin θ = MP (why?).

14. For Exercise 13, how would you draw the line segments in

Figure 5.1.10 if θ was in QII? Recall that some of the trigono-

metric functions are negative in QII, so you will have to come

up with a convention for how to treat some of the line seg-

ment lengths as negative.

15. For any point (x, y) on the unit circle and any angle α, show that the point Rα(x, y) defined

by Rα(x, y)= (x cos α− y sin α, x sin α+ y cos α) is also on the unit circle. What is the geometric

interpretation of Rα(x, y)? Also, show that R−α(Rα(x, y))= (x, y) and Rβ(Rα(x, y))= Rα+β(x, y).
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5.2 Properties of Graphs of Trigonometric Functions

We saw in Section 5.1 how the graphs of the trigonometric functions repeat every 2π

radians. In this section we will discuss this and other properties of graphs, especially

for the sinusoidal functions (sine and cosine).

First, recall that the domain of a function f (x) is the set of all numbers x for which

the function is defined. For example, the domain of f (x) = sin x is the set of all real

numbers, whereas the domain of f (x) = tan x is the set of all real numbers except

x = ± π
2
, ± 3π

2
, ± 5π

2
, .... The range of a function f (x) is the set of all values that f (x)

can take over its domain. For example, the range of f (x) = sin x is the set of all real

numbers between −1 and 1 (i.e. the interval [−1,1]), whereas the range of f (x) = tan x

is the set of all real numbers, as we can see from their graphs.

A function f (x) is periodic if there exists a number p > 0 such that x+ p is in the

domain of f (x) whenever x is, and if the following relation holds:

f (x+ p) = f (x) for all x (5.1)

There could be many numbers p that satisfy the above requirements. If there is a

smallest such number p, then we call that number the period of the function f (x).

Example 5.3

The functions sin x, cos x, csc x, and sec x all have the same period: 2π radians. We saw in

Section 5.1 that the graphs of y = tan x and y = cot x repeat every 2π radians but they also

repeat every π radians. Thus, the functions tan x and cot x have a period of π radians.

Example 5.4

What is the period of f (x)= sin 2x?

Solution: The graph of y = sin 2x is shown in Figure 5.2.1, along with the graph of y = sin x

for comparison, over the interval [0,2π]. Note that sin 2x “goes twice as fast” as sin x.

x

y

0

−1

1

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

y= sin 2x

y= sin x

Figure 5.2.1 Graph of y= sin 2x

For example, for x from 0 to π
2
, sin x goes from 0 to 1, but sin 2x is able to go from 0 to 1

quicker, just over the interval [0, π
4

]. While sin x takes a full 2π radians to go through an entire

cycle (the largest part of the graph that does not repeat), sin 2x goes through an entire cycle

in just π radians. So the period of sin 2x is π radians.
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The above example made use of the graph of sin 2x, but the period can be found

analytically. Since sin x has period 2π,1 we know that sin (x+2π)= sin x for all x. Since

2x is a number for all x, this means in particular that sin (2x+2π) = sin 2x for all x.

Now define f (x)= sin 2x. Then

f (x+π) = sin 2(x+π)

= sin (2x+2π)

= sin 2x (as we showed above)

= f (x)

for all x, so the period p of sin 2x is at most π, by our definition of period. We have to

show that p > 0 can not be smaller than π. To do this, we will use a proof by contradic-

tion. That is, assume that 0 < p < π, then show that this leads to some contradiction,

and hence can not be true. So suppose 0< p <π. Then 0< 2p < 2π, and hence

sin 2x = f (x)

= f (x+ p) (since p is the period of f (x))

= sin 2(x+ p)

= sin (2x+2p)

for all x. Since any number u can be written as 2x for some x (i.e u = 2(u/2)), this means

that sin u = sin (u+2p) for all real numbers u, and hence the period of sin x is as most

2p. This is a contradiction. Why? Because the period of sin x is 2π > 2p. Hence, the

period p of sin 2x can not be less than π, so the period must equal π.

The above may seem like a lot of work to prove something that was visually obvious

from the graph (and intuitively obvious by the “twice as fast” idea). Luckily, we do not

need to go through all that work for each function, since a similar argument works

when sin 2x is replaced by sin ωx for any positive real number ω: instead of dividing 2π

by 2 to get the period, divide by ω. And the argument works for the other trigonometric

functions as well. Thus, we get:

For any number ω> 0:

sin ωx has period
2π

ω
csc ωx has period

2π

ω

cos ωx has period
2π

ω
sec ωx has period

2π

ω

tan ωx has period
π

ω
cot ωx has period

π

ω

If ω< 0, then use sin (−A)=−sin A and cos (−A)= cos A (e.g. sin (−3x)=−sin 3x).

1We will usually leave out the “radians” part when discussing periods from now on.
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Example 5.5

The period of y = cos 3x is 2π
3

and the period of y = cos 1
2

x is 4π. The graphs of both functions

are shown in Figure 5.2.2:
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6
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23π
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4π

y= cos 1
2

x

y= cos 3x

Figure 5.2.2 Graph of y= cos 3x and y= cos 1
2

x

We know that −1≤ sin x ≤ 1 and −1≤ cos x ≤ 1 for all x. Thus, for a constant A 6= 0,

−|A | ≤ A sin x ≤ |A | and −|A | ≤ A cos x ≤ |A |

for all x. In this case, we call |A | the amplitude of the functions y = A sin x and

y = A cos x. In general, the amplitude of a periodic curve f (x) is half the difference of

the largest and smallest values that f (x) can take:

Amplitude of f (x) =
(maximum of f (x)) − (minimum of f (x))

2

In other words, the amplitude is the distance from either the top or bottom of the

curve to the horizontal line that divides the curve in half, as in Figure 5.2.3.

x

y

0

|A |

−|A |

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

2 |A |

|A |

|A |

Figure 5.2.3 Amplitude = max−min
2

= |A |−(−|A |)
2

= |A |

Not all periodic curves have an amplitude. For example, tan x has neither a maxi-

mum nor a minimum, so its amplitude is undefined. Likewise, cot x, csc x, and sec x

do not have an amplitude. Since the amplitude involves vertical distances, it has no

effect on the period of a function, and vice versa.
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Example 5.6

Find the amplitude and period of y= 3 cos 2x.

Solution: The amplitude is |3| = 3 and the period is 2π
2

= π. The graph is shown in Figure

5.2.4:
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Figure 5.2.4 y= 3 cos 2x

Example 5.7

Find the amplitude and period of y= 2−3 sin 2π
3

x.

Solution: The amplitude of −3 sin 2π
3

x is |−3| = 3. Adding 2 to that function to get the function

y= 2−3 sin 2π
3

x does not change the amplitude, even though it does change the maximum and

minimum. It just shifts the entire graph upward by 2. So in this case, we have

Amplitude =
max − min

2
=

5 − (−1)

2
=

6

2
= 3 .

The period is
2π
2π
3

= 3. The graph is shown in Figure 5.2.5:
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Figure 5.2.5 y= 2−3 sin 2π
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Example 5.8

Find the amplitude and period of y= 2 sin (x2).

Solution: This is not a periodic function, since the angle that we are taking the sine of, x2, is

not a linear function of x, i.e. is not of the form ax+ b for some constants a and b. Recall how

we argued that sin 2x was “twice as fast” as sin x, so that its period was π instead of 2π. Can

we say that sin (x2) is some constant times as fast as sin x? No. In fact, we see that the “speed”

of the curve keeps increasing as x gets larger, since x2 grows at a variable rate, not a constant

rate. This can be seen in the graph of y= 2 sin (x2), shown in Figure 5.2.6:2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

0 π/2 π 3π/2 2π

y

x

Figure 5.2.6 y= 2 sin (x2)

Notice how the curve “speeds up” as x gets larger, making the “waves” narrower and nar-

rower. Thus, y = 2 sin (x2) has no period. Despite this, it appears that the function does have

an amplitude, namely 2. To see why, note that since |sin θ | ≤ 1 for all θ, we have

|2 sin (x2)| = |2| · |sin (x2)| ≤ 2 · 1 = 2 .

In the exercises you will be asked to find values of x such that 2 sin (x2) reaches the maximum

value 2 and the minimum value −2. Thus, the amplitude is indeed 2.

Note: This curve is still sinusoidal despite not being periodic, since the general shape is still

that of a “sine wave”, albeit one with variable cycles.

So far in our examples we have been able to determine the amplitudes of sinusoidal

curves fairly easily. This will not always be the case.

2This graph was created using Gnuplot, an open-source graphing program which is freely available at

http://gnuplot.info. See Appendix B for a brief tutorial on how to use Gnuplot.

http://gnuplot.info
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Example 5.9

Find the amplitude and period of y= 3 sin x+4 cos x.

Solution: This is sometimes called a combination sinusoidal curve, since it is the sum of two

such curves. The period is still simple to determine: since sin x and cos x each repeat every 2π

radians, then so does the combination 3 sin x+4 cos x. Thus, y = 3 sin x+4 cos x has period 2π.

We can see this in the graph, shown in Figure 5.2.7:
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-3

-2

-1

 0

 1

 2

 3

 4

 5

0 π/2 π 3π/2 2π 5π/2 3π 7π/2 4π

y

x

Figure 5.2.7 y= 3 sin x+4 cos x

The graph suggests that the amplitude is 5, which may not be immediately obvious just by

looking at how the function is defined. In fact, the definition y= 3 sin x+4 cos x may tempt you

to think that the amplitude is 7, since the largest that 3 sin x could be is 3 and the largest that

4 cos x could be is 4, so that the largest their sum could be is 3+4 = 7. However, 3 sin x can

never equal 3 for the same x that makes 4 cos x equal to 4 (why?).

3

4
5

θ

Figure 5.2.8

There is a useful technique (which we will discuss further in Chapter 6) for

showing that the amplitude of y= 3 sin x+4 cos x is 5. Let θ be the angle shown

in the right triangle in Figure 5.2.8. Then cos θ = 3
5

and sin θ = 4
5
. We can use

this as follows:

y = 3 sin x + 4 cos x

= 5
(

3
5

sin x + 4
5

cos x
)

= 5(cos θ sin x + sin θ cos x)

= 5 sin (x+θ) (by the sine addition formula)

Thus, |y| = |5 sin (x+θ)| = |5| · |sin (x+θ)| ≤ (5)(1)= 5, so the amplitude of y= 3 sin x+4 cos x is 5.
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In general, a combination of sines and cosines will have a period equal to the lowest

common multiple of the periods of the sines and cosines being added. In Example 5.9,

sin x and cos x each have period 2π, so the lowest common multiple (which is always

an integer multiple) is 1 · 2π= 2π.

Example 5.10

Find the period of y= cos 6x+sin 4x.

Solution: The period of cos 6x is 2π
6
= π

3
, and the period of sin 4x is 2π

4
= π

2
. The lowest common

multiple of π
3

and π
2

is π:

1 · π
3

= π
3

1 · π
2
= π

2

2 · π
3

= 2π
3

2 · π
2
= π

3 · π
3

= π

Thus, the period of y= cos 6x+sin 4x is π. We can see this from its graph in Figure 5.2.9:
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Figure 5.2.9 y= cos 6x+sin 4x

What about the amplitude? Unfortunately we can not use the technique from Example 5.9,

since we are not taking the cosine and sine of the same angle; we are taking the cosine of 6x

but the sine of 4x. In this case, it appears from the graph that the maximum is close to 2 and

the minimum is close to −2. In Chapter 6, we will describe how to use a numerical computa-

tion program to show that the maximum and minimum are ±1.90596111871578, respectively

(accurate to within ≈ 2.2204×10−16). Hence, the amplitude is 1.90596111871578.
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Generalizing Example 5.9, an expression of the form a sin ωx + b cos ωx is equivalent

to
p

a2 +b2 sin (x+θ), where θ is an angle such that cos θ = ap
a2+b2

and sin θ = bp
a2+b2

. So

y= a sin ωx + b cos ωx will have amplitude
p

a2 +b2. Note that this method only works

when the angle ωx is the same in both the sine and cosine terms.

We have seen how adding a constant to a function shifts the entire graph vertically.

We will now see how to shift the entire graph of a periodic curve horizontally.

x

y

0

A

−A

π
ω

2π
ω

period = 2π
ω

Figure 5.2.10 y= A sin ωx

Consider a function of the form y = A sin ωx, where

A and ω are nonzero constants. For simplicity we will

assume that A > 0 and ω> 0 (in general either one could

be negative). Then the amplitude is A and the period

is 2π
ω

. The graph is shown in Figure 5.2.10.

Now consider the function y = A sin (ωx−φ), where

φ is some constant. The amplitude is still A, and the

period is still 2π
ω

, since ωx−φ is a linear function of x.

Also, we know that the sine function goes through an

entire cycle when its angle goes from 0 to 2π. Here, we

are taking the sine of the angle ωx−φ. So as ωx−φ goes from 0 to 2π, an entire cycle

of the function y= A sin (ωx−φ) will be traced out. That cycle starts when

ωx−φ = 0 ⇒ x =
φ

ω

and ends when

ωx−φ = 2π ⇒ x =
2π

ω
+

φ

ω
.

Thus, the graph of y= A sin (ωx−φ) is just the graph of y= A sin ωx shifted horizontally

by
φ
ω

, as in Figure 5.2.11. The graph is shifted to the right when φ> 0, and to the left

when φ< 0. The amount
φ
ω

of the shift is called the phase shift of the graph.
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−A

2π
ω
+ φ

ω
φ
ω

period = 2π
ω

phase shift

(a) φ> 0: right shift

x

y

0

A

−A

2π
ω
+ φ

ω
φ
ω

period = 2π
ω

phase shift

(b) φ< 0: left shift

Figure 5.2.11 Phase shift for y= A sin (ωx−φ)
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The phase shift is defined similarly for the other trigonometric functions.

Example 5.11

Find the amplitude, period, and phase shift of y= 3 cos (2x−π).

Solution: The amplitude is 3, the period is 2π
2

= π, and the phase shift is π
2
. The graph is

shown in Figure 5.2.12:
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Figure 5.2.12 y= 3 cos (2x−π)

Notice that the graph is the same as the graph of y = 3 cos 2x shifted to the right by π
2
, the

amount of the phase shift.

Example 5.12

Find the amplitude, period, and phase shift of y=−2 sin
(
3x+ π

2

)
.

Solution: The amplitude is 2, the period is 2π
3

, and the phase shift is
− π

2

3
= −π

6
. Notice the

negative sign in the phase shift, since 3x+π = 3x− (−π) is in the form ωx−φ. The graph is

shown in Figure 5.2.13:
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In engineering two periodic functions with the same period are said to be out of

phase if their phase shifts differ. For example, sin
(
x− π

6

)
and sin x would be π

6
radians

(or 30◦) out of phase, and sin x would be said to lag sin
(
x− π

6

)
by π

6
radians, while

sin
(
x− π

6

)
leads sin x by π

6
radians. Periodic functions with the same period and the

same phase shift are in phase.

The following is a summary of the properties of trigonometric graphs:

For any constants A 6= 0, ω 6= 0, and φ:

y= A sin (ωx−φ) has amplitude |A |, period 2π
ω

, and phase shift
φ
ω

y= A cos (ωx−φ) has amplitude |A |, period 2π
ω

, and phase shift
φ
ω

y= A tan (ωx−φ) has undefined amplitude, period π
ω

, and phase shift
φ
ω

y= A csc (ωx−φ) has undefined amplitude, period 2π
ω

, and phase shift
φ
ω

y= A sec (ωx−φ) has undefined amplitude, period 2π
ω

, and phase shift
φ
ω

y= A cot (ωx−φ) has undefined amplitude, period π
ω

, and phase shift
φ
ω

�



�
	Exercises

For Exercises 1-12, find the amplitude, period, and phase shift of the given function. Then

graph one cycle of the function, either by hand or by using Gnuplot (see Appendix B).

1. y= 3 cos πx 2. y= sin (2πx−π) 3. y=−sin (5x+3) 4. y= 1+8 cos (6x−π)

5. y= 2+cos (5x+π) 6. y= 1−sin (3π−2x) 7. y= 1−cos (3π−2x) 8. y= 2 tan (x−1)

9. y= 1− tan (3π−2x) 10. y= sec (2x+1) 11. y= 2csc (2x−1) 12. y= 2+4 cot (1− x)

13. For the function y= 2 sin (x2) in Example 5.8, for which values of x does the function reach

its maximum value 2, and for which values of x does it reach its minimum value −2?

14. For the function y= 3 sin x+4 cos x in Example 5.9, for which values of x does the function

reach its maximum value 5, and for which values of x does it reach its minimum value −5?

You can restrict your answers to be between 0 and 2π.

15. Graph the function y = sin2 x from x = 0 to x = 2π, either by hand or by using Gnuplot.

What are the amplitude and period of this function?

16. The current i(t) in an AC electrical circuit at time t ≥ 0 is given by i(t)= Im sin ωt, and the

voltage v(t) is given by v(t) = Vm sin ωt, where Vm > Im > 0 and ω > 0 are constants. Sketch

one cycle of both i(t) and v(t) together on the same graph (i.e. on the same set of axes). Are

the current and voltage in phase or out of phase?

17. Repeat Exercise 16 with i(t) the same as before but with v(t)=Vm sin
(
ωt+ π

4

)
.

18. Repeat Exercise 16 with i(t)=−Im cos
(
ωt− π

3

)
and v(t)=Vm sin

(
ωt− 5π

6

)
.

For Exercises 19-21, find the amplitude and period of the given function. Then graph one cycle

of the function, either by hand or by using Gnuplot.
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19. y= 3 sin πx − 5 cos πx 20. y=−5 sin 3x + 12 cos 3x 21. y= 2 cos x + 2 sin x

22. Find the amplitude of the function y= 2 sin (x2) + cos (x2).

For Exercises 23-25, find the period of the given function. Graph one cycle using Gnuplot.

23. y= sin 3x − cos 5x 24. y= sin x
3
+ 2 cos 3x

4
25. y= 2 sin πx + 3 cos π

3
x

26. Let y= 0.5 sin x sin 12x . Its graph for x from 0 to 4π is shown in Figure 5.2.14:
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 0

 0.5
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0 π 2π 3π 4π

y

x

0.5*sin(x)*sin(12*x)
0.5*sin(x)

-0.5*sin(x)

Figure 5.2.14 Modulated wave y= 0.5 sin x sin 12x

You can think of this function as sin 12x with a sinusoidally varying “amplitude”of 0.5 sin x.

What is the period of this function? From the graph it looks like the amplitude may be 0.5.

Without finding the exact amplitude, explain why the amplitude is in fact less than 0.5.

The function above is known as a modulated wave, and the functions ±0.5 sin x form an

amplitude envelope for the wave (i.e. they enclose the wave). Use an identity from Section

3.4 to write this function as a sum of sinusoidal curves.

27. Use Gnuplot to graph the function y = x2 sin 10x from x = −2π to x = 2π. What functions

form its amplitude envelope? (Note: Use set samples 500 in Gnuplot.)

28. Use Gnuplot to graph the function y= 1
x2 sin 80x from x = 0.2 to x =π. What functions form

its amplitude envelope? (Note: Use set samples 500 in Gnuplot.)

29. Does the function y= sin πx + cos x have a period? Explain your answer.

30. Use Gnuplot to graph the function y= sin x
x

from x =−4π to x = 4π. What happens at x = 0?
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5.3 Inverse Trigonometric Functions

We have briefly mentioned the inverse trigonometric functions before, for example

in Section 1.3 when we discussed how to use the
�
�

�
�sin−1 ,
�
�

�
�cos−1 , and

�
�

�
�tan−1 buttons on a

calculator to find an angle that has a certain trigonometric function value. We will

now define those inverse functions and determine their graphs.

x

Domain

y

Range

f

y= f (x)

Figure 5.3.1

Recall that a function is a rule that assigns a single

object y from one set (the range) to each object x from

another set (the domain). We can write that rule as y =
f (x), where f is the function (see Figure 5.3.1). There

is a simple vertical rule for determining whether a rule

y = f (x) is a function: f is a function if and only if every

vertical line intersects the graph of y = f (x) in the xy-coordinate plane at most once

(see Figure 5.3.2).

y

x

y= f (x)

(a) f is a function

y

x

y= f (x)

(b) f is not a function

Figure 5.3.2 Vertical rule for functions

Recall that a function f is one-to-one (often written as 1−1) if it assigns distinct

values of y to distinct values of x. In other words, if x1 6= x2 then f (x1) 6= f (x2). Equiva-

lently, f is one-to-one if f (x1) = f (x2) implies x1 = x2. There is a simple horizontal rule

for determining whether a function y = f (x) is one-to-one: f is one-to-one if and only

if every horizontal line intersects the graph of y = f (x) in the xy-coordinate plane at

most once (see Figure 5.3.3).

y

x

y= f (x)

(a) f is one-to-one

y

x

y= f (x)

(b) f is not one-to-one

Figure 5.3.3 Horizontal rule for one-to-one functions

If a function f is one-to-one on its domain, then f has an inverse function, denoted

by f −1, such that y= f (x) if and only if f −1(y)= x. The domain of f −1 is the range of f .
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The basic idea is that f −1 “undoes” what f does, and vice versa. In other words,

f −1( f (x)) = x for all x in the domain of f , and

f ( f −1(y)) = y for all y in the range of f .

We know from their graphs that none of the trigonometric functions are one-to-

one over their entire domains. However, we can restrict those functions to subsets of

their domains where they are one-to-one. For example, y= sin x is one-to-one over the

interval
[
−π

2
, π

2

]
, as we see in the graph below:

x

y

0

−1

1

π
2

π−π
2

−π

y= sin x

Figure 5.3.4 y= sin x with x restricted to
[
−π

2
, π

2

]

For −π
2
≤ x ≤ π

2
we have −1 ≤ sin x ≤ 1, so we can define the inverse sine function

y = sin−1 x (sometimes called the arc sine and denoted by y = arcsin x) whose domain

is the interval [−1,1] and whose range is the interval
[
−π

2
, π

2

]
. In other words:

sin−1(sin y) = y for −π
2
≤ y≤ π

2
(5.2)

sin (sin−1 x) = x for −1≤ x ≤ 1 (5.3)

Example 5.13

Find sin−1
(
sin π

4

)
.

Solution: Since −π
2
≤ π

4
≤ π

2
, we know that sin−1

(
sin π

4

)
=

π

4
, by formula (5.2).

Example 5.14

Find sin−1
(
sin 5π

4

)
.

Solution: Since 5π
4

> π
2
, we can not use formula (5.2). But we know that sin 5π

4
= − 1p

2
. Thus,

sin−1
(
sin 5π

4

)
= sin−1

(
− 1p

2

)
is, by definition, the angle y such that −π

2
≤ y ≤ π

2
and sin y = − 1p

2
.

That angle is y=−π
4
, since

sin
(
−π

4

)
= −sin

(
π
4

)
= − 1p

2
.

Thus, sin−1
(
sin 5π

4

)
= −π

4
.
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Example 5.14 illustrates an important point: sin−1 x should always be a number

between −π
2

and π
2
. If you get a number outside that range, then you made a mistake

somewhere. This why in Example 1.27 in Section 1.5 we got sin−1(−0.682)=−43◦ when

using the
�
�

�
�sin−1 button on a calculator. Instead of an angle between 0◦ and 360◦ (i.e. 0

to 2π radians) we got an angle between −90◦ and 90◦ (i.e. −π
2

to π
2

radians).

In general, the graph of an inverse function f −1 is the reflection of the graph of f

around the line y = x. The graph of y = sin−1 x is shown in Figure 5.3.5. Notice the

symmetry about the line y= x with the graph of y= sin x.
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1

−π
2
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2

1−π
2
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y= sin−1 x

y= sin x

y= x

Figure 5.3.5 Graph of y= sin−1 x

The inverse cosine function y = cos−1 x (sometimes called the arc cosine and de-

noted by y= arccos x) can be determined in a similar fashion. The function y= cos x is

one-to-one over the interval [0,π], as we see in the graph below:

x

y

0

−1

1

π
2

π−π
2

3π
2

y= cos x

Figure 5.3.6 y= cos x with x restricted to [0,π]

Thus, y = cos−1 x is a function whose domain is the interval [−1,1] and whose range

is the interval [0,π]. In other words:
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cos−1(cos y) = y for 0≤ y≤π (5.4)

cos (cos−1 x) = x for −1≤ x ≤ 1 (5.5)

The graph of y = cos−1 x is shown below in Figure 5.3.7. Notice the symmetry about

the line y= x with the graph of y= cos x.

x

y

0

−1

1

π

π
2

1 π−π
2

−1

y= cos−1 x

y= cos x

y= x

Figure 5.3.7 Graph of y= cos−1 x

Example 5.15

Find cos−1
(
cos π

3

)
.

Solution: Since 0≤ π
3
≤π, we know that cos−1

(
cos π

3

)
=

π

3
, by formula (5.4).

Example 5.16

Find cos−1
(
cos 4π

3

)
.

Solution: Since 4π
3

> π, we can not use formula (5.4). But we know that cos 4π
3

= − 1
2
. Thus,

cos−1
(
cos 4π

3

)
= cos−1

(
− 1

2

)
is, by definition, the angle y such that 0 ≤ y ≤ π and cos y =− 1

2
. That

angle is y= 2π
3

(i.e. 120◦). Thus, cos−1
(
cos 4π

3

)
= 2π

3
.

Examples 5.14 and 5.16 may be confusing, since they seem to violate the general

rule for inverse functions that f −1( f (x)) = x for all x in the domain of f . But that

rule only applies when the function f is one-to-one over its entire domain. We had to

restrict the sine and cosine functions to very small subsets of their entire domains in

order for those functions to be one-to-one. That general rule, therefore, only holds for

x in those small subsets in the case of the inverse sine and inverse cosine.
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The inverse tangent function y = tan−1 x (sometimes called the arc tangent and

denoted by y = arctan x) can be determined similarly. The function y = tan x is one-to-

one over the interval
(
−π

2
, π

2

)
, as we see in Figure 5.3.8:

x

y

0

−3

−2

−1

1

2

3

π
4

π
2

−π
4

−π
2

y= tan x

Figure 5.3.8 y= tan x with x restricted to
(
−π

2
, π

2

)

The graph of y = tan−1 x is shown below in Figure 5.3.9. Notice that the vertical

asymptotes for y = tan x become horizontal asymptotes for y = tan−1 x. Note also the

symmetry about the line y= x with the graph of y= tan x.

x

y

0

−3

−2

−1

1

2

3

π
2

−π
2

π
4

π
2

−π
4

−π
2

y= tan x

y= tan−1 x

y= x

Figure 5.3.9 Graph of y= tan−1 x
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Thus, y= tan−1 x is a function whose domain is the set of all real numbers and whose

range is the interval
(
−π

2
, π

2

)
. In other words:

tan−1(tan y) = y for −π
2
< y< π

2
(5.6)

tan (tan−1 x) = x for all real x (5.7)

Example 5.17

Find tan−1
(
tan π

4

)
.

Solution: Since −π
2
≤ π

4
≤ π

2
, we know that tan−1

(
tan π

4

)
=

π

4
, by formula (5.6).

Example 5.18

Find tan−1 (tan π).

Solution: Since π > π
2
, we can not use formula (5.6). But we know that tan π = 0. Thus,

tan−1 (tan π) = tan−1 0 is, by definition, the angle y such that −π
2
≤ y ≤ π

2
and tan y = 0. That

angle is y= 0. Thus, tan−1 (tan π)= 0 .

Example 5.19

Find the exact value of cos
(
sin−1

(
− 1

4

))
.

Solution: Let θ = sin−1
(
− 1

4

)
. We know that −π

2
≤ θ ≤ π

2
, so since sin θ = − 1

4
< 0, θ must be in

QIV. Hence cos θ > 0. Thus,

cos2 θ = 1 − sin2 θ = 1 −
(
−

1

4

)2

=
15

16
⇒ cos θ =

p
15

4
.

Note that we took the positive square root above since cos θ > 0. Thus, cos
(
sin−1

(
− 1

4

))
=

p
15

4
.

Example 5.20

Show that tan (sin−1 x)=
x

1− x2
for −1< x < 1.

p
1− x2

x
1

θ

Figure 5.3.10

Solution: When x = 0, the formula holds trivially, since

tan (sin−1 0) = tan 0 = 0 =
0

1−02
.

Now suppose that 0 < x < 1. Let θ = sin−1 x. Then θ is in QI and sin θ = x.

Draw a right triangle with an angle θ such that the opposite leg has length

x and the hypotenuse has length 1, as in Figure 5.3.10 (note that this is

possible since 0 < x < 1). Then sin θ = x
1
= x. By the Pythagorean Theorem,

the adjacent leg has length
p

1− x2. Thus, tan θ = x
1−x2 .

If −1< x < 0 then θ = sin−1 x is in QIV. So we can draw the same triangle except that it would

be “upside down” and we would again have tan θ = x
1−x2 , since the tangent and sine have the

same sign (negative) in QIV. Thus, tan (sin−1 x)=
x

1− x2
for −1< x < 1.
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The inverse functions for cotangent, cosecant, and secant can be determined by

looking at their graphs. For example, the function y= cot x is one-to-one in the interval

(0,π), where it has a range equal to the set of all real numbers. Thus, the inverse

cotangent y = cot−1 x is a function whose domain is the set of all real numbers and

whose range is the interval (0,π). In other words:

cot−1(cot y) = y for 0< y<π (5.8)

cot (cot−1 x) = x for all real x (5.9)

The graph of y= cot−1 x is shown below in Figure 5.3.11.

x

y

0

π
2

π

π
4

π
2

3π
4

− 3π
4

−π
4

−π
2

y= cot−1 x

Figure 5.3.11 Graph of y= cot−1 x

Similarly, it can be shown that the inverse cosecant y= csc−1 x is a function whose

domain is |x| ≥ 1 and whose range is −π
2
≤ y ≤ π

2
, y 6= 0. Likewise, the inverse secant

y= sec−1 x is a function whose domain is |x| ≥ 1 and whose range is 0≤ y≤π, y 6= π
2
.

csc−1(csc y) = y for −
π

2
≤ y≤

π

2
, y 6= 0 (5.10)

csc (csc−1 x) = x for |x| ≥ 1 (5.11)

sec−1(sec y) = y for 0≤ y≤π, y 6=
π

2
(5.12)

sec (sec−1 x) = x for |x| ≥ 1 (5.13)

It is also common to call cot−1 x, csc−1 x, and sec−1 x the arc cotangent, arc cose-

cant, and arc secant, respectively, of x. The graphs of y = csc−1 x and y = sec−1 x are

shown in Figure 5.3.12:
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x

y

0

π
2

−π
2

1−1

y= csc−1 x

(a) Graph of y= csc−1 x

x

y

0

π
2

π

1−1

y= sec−1 x

(b) Graph of y= sec−1 x

Figure 5.3.12

Example 5.21

Prove the identity tan−1 x + cot−1 x = π
2
.

Solution: Let θ = cot−1 x. Using relations from Section 1.5, we have

tan
(
π
2
−θ

)
= −tan

(
θ− π

2

)
= cot θ = cot (cot−1 x) = x ,

by formula (5.9). So since tan (tan−1 x) = x for all x, this means that tan (tan−1 x) = tan
(
π
2
−θ

)
.

Thus, tan (tan−1 x) = tan
(
π
2
−cot−1 x

)
. Now, we know that 0 < cot−1 x < π, so −π

2
< π

2
− cot−1 x < π

2
,

i.e. π
2
− cot−1 x is in the restricted subset on which the tangent function is one-to-one. Hence,

tan (tan−1 x)= tan
(
π
2
−cot−1 x

)
implies that tan−1 x = π

2
−cot−1 x, which proves the identity.

Example 5.22

Is tan−1 a + tan−1 b = tan−1

(
a+b

1−ab

)
an identity?

Solution: In the tangent addition formula tan (A +B) =
tan A + tan B

1 − tan A tan B
, let A = tan−1 a and

B = tan−1 b. Then

tan (tan−1 a + tan−1 b) =
tan (tan−1 a) + tan (tan−1 b)

1 − tan (tan−1 a) tan (tan−1 b)

=
a+b

1−ab
by formula (5.7), so it seems that we have

tan−1 a + tan−1 b = tan−1

(
a+b

1−ab

)

by definition of the inverse tangent. However, recall that −π
2
< tan−1 x < π

2
for all real numbers

x. So in particular, we must have −π
2
< tan−1

(
a+b

1−ab

)
< π

2
. But it is possible that tan−1 a + tan−1 b

is not in the interval
(
−π

2
, π

2

)
. For example,

tan−1 1 + tan−1 2 = 1.892547 > π
2
≈ 1.570796 .

And we see that tan−1
(

1+2
1−(1)(2)

)
= tan−1(−3) = −1.249045 6= tan−1 1 + tan−1 2. So the formula is

only true when −π
2
< tan−1 a + tan−1 b < π

2
.
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�



�
	Exercises

For Exercises 1-25, find the exact value of the given expression in radians.

1. tan−1 1 2. tan−1 (−1) 3. tan−1 0 4. cos−1 1 5. cos−1 (−1)

6. cos−1 0 7. sin−1 1 8. sin−1 (−1) 9. sin−1 0 10. sin−1
(
sin π

3

)

11. sin−1
(
sin 4π

3

)
12. sin−1

(
sin

(
− 5π

6

))
13. cos−1

(
cos π

7

)
14. cos−1

(
cos

(
− π

10

))

15. cos−1
(
cos 6π

5

)
16. tan−1

(
tan 4π

3

)
17. tan−1

(
tan

(
− 5π

6

))
18. cot−1

(
cot 4π

3

)

19. csc−1
(
csc

(
−π

9

))
20. sec−1

(
sec 6π

5

)
21. cos

(
sin−1

(
5

13

))
22. cos

(
sin−1

(
− 4

5

))

23. sin−1 3
5
+ sin−1 4

5
24. sin−1 5

13
+ cos−1 5

13
25. tan−1 3

5
+ cot−1 3

5

For Exercises 26-33, prove the given identity.

26. cos (sin−1 x) =
p

1− x2 27. sin (cos−1 x) =
p

1− x2

28. sin−1 x + cos−1 x = π
2

29. sec−1 x + csc−1 x = π
2

30. sin−1(−x) = −sin−1 x 31. cos−1(−x) + cos−1 x = π

32. cot−1 x = tan−1 1
x

for x > 0 33. tan−1 x + tan−1 1
x

= π
2

for x > 0

34. In Example 5.22 we showed that the formula tan−1 a + tan−1 b = tan−1

(
a+b

1−ab

)
does not

always hold. Does the formula tan (tan−1 a + tan−1 b) =
a+b

1−ab
, which was part of that

example, always hold? Explain your answer.

35. Show that tan−1 1
3
+ tan−1 1

5
= tan−1 4

7
.

36. Show that tan−1 1
4
+ tan−1 2

9
= tan−1 1

2
.

37. Figure 5.3.13 shows three equal squares lined up against each other. For the angles α, β,

and γ in the picture, show that α=β+γ. (Hint: Consider the tangents of the angles.)

αβγ

Figure 5.3.13 Exercise 37

38. Sketch the graph of y= sin−1 2x.

39. Write a computer program to solve a triangle in the case where you are given three sides.

Your program should read in the three sides as input parameters and print the three angles

in degrees as output if a solution exists. Note that since most computer languages use

radians for their inverse trigonometric functions, you will likely have to do the conversion

from radians to degrees yourself in the program.



6 Additional Topics

6.1 Solving Trigonometric Equations

An equation involving trigonometric functions is called a trigonometric equation. For

example, an equation like

tan A = 0.75 ,

which we encountered in Chapter 1, is a trigonometric equation. In Chapter 1 we

were concerned only with finding a single solution (say, between 0◦ and 90◦). In this

section we will be concerned with finding the most general solution to such equations.

To see what that means, take the above equation tan A = 0.75. Using the
�
�

�
�tan−1

calculator button in degree mode, we get A = 36.87◦. However, we know that the

tangent function has period π rad = 180◦, i.e. it repeats every 180◦. Thus, there are

many other possible answers for the value of A, namely 36.87◦ +180◦, 36.87◦ −180◦,

36.87◦+360◦, 36.87◦−360◦, 36.87◦+540◦, etc. We can write this in a more compact form:

A = 36.87◦ + 180◦k for k = 0, ±1, ±2, ...

This is the most general solution to the equation. Often we will simply leave out the

part that says “for k = 0, ±1, ±2, ...”, since it will be understood that k varies over all

integers. The general solution in radians would be:

A = 0.6435 + πk for k = 0, ±1, ±2, ...

Example 6.1

Solve the equation 2 sin θ + 1 = 0.

Solution: Isolating sin θ gives sin θ = − 1
2
. Using the

�
�

�
�sin−1 calculator button in degree mode

gives us θ =−30◦, which is in QIV. Recall that the reflection of this angle around the y-axis into

QIII also has the same sine. That is, sin 210◦ =− 1
2
. Thus, since the sine function has period 2π

rad = 360◦, and since −30◦ does not differ from 210◦ by an integer multiple of 360◦, the general

solution is:

θ = −30◦ + 360◦k and 210◦ + 360◦k for k = 0, ±1, ±2, ...

In radians, the solution is:

θ = −
π

6
+ 2πk and

7π

6
+2πk for k = 0, ±1, ±2, ...

For the rest of this section we will write our solutions in radians.

129
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Example 6.2

Solve the equation 2cos2 θ − 1 = 0.

Solution: Isolating cos2 θ gives us

cos2 θ =
1

2
⇒ cos θ = ±

1
p

2
⇒ θ =

π

4
,

3π

4
,

5π

4
,

7π

4
,

and since the period of cosine is 2π, we would add 2πk to each of those angles to get the general

solution. But notice that the above angles differ by multiples of π
2
. So since every multiple of

2π is also a multiple of π
2
, we can combine those four separate answers into one:

θ =
π

4
+

π

2
k for k = 0, ±1, ±2, ...

Example 6.3

Solve the equation 2 sec θ = 1.

Solution: Isolating sec θ gives us

sec θ =
1

2
⇒ cos θ =

1

sec θ
= 2 ,

which is impossible. Thus, there is no solution .

Example 6.4

Solve the equation cos θ = tan θ.

Solution: The idea here is to use identities to put everything in terms of a single trigonomet-

ric function:

cos θ = tan θ

cos θ =
sin θ

cos θ

cos2 θ = sin θ

1 − sin2 θ = sin θ

0 = sin2 θ + sin θ − 1

The last equation looks more complicated than the original equation, but notice that it is

actually a quadratic equation: making the substitution x = sin θ, we have

x2 + x − 1 = 0 ⇒ x =
−1 ±

p
1− (4)(−1)

2(1)
=

−1 ±
p

5

2
= −1.618 , 0.618

by the quadratic formula from elementary algebra. But −1.618 < −1, so it is impossible that

sinθ = x =−1.618. Thus, we must have sin θ = x = 0.618. Hence, there are two possible solutions:

θ = 0.666 rad in QI and its reflection π−θ = 2.475 rad around the y-axis in QII. Adding multiples

of 2π to these gives us the general solution:

θ = 0.666 + 2πk and 2.475 + 2πk for k = 0, ±1, ±2, ...
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Example 6.5

Solve the equation sin θ = tan θ.

Solution: Trying the same method as in the previous example, we get

sin θ = tan θ

sin θ =
sin θ

cos θ

sin θ cos θ = sin θ

sin θ cos θ − sin θ = 0

sin θ (cos θ − 1) = 0

⇒ sin θ = 0 or cos θ = 1

⇒ θ = 0 , π or θ = 0

⇒ θ = 0 , π ,

plus multiples of 2π. So since the above angles are multiples of π, and every multiple of 2π is

a multiple of π, we can combine the two answers into one for the general solution:

θ = πk for k = 0, ±1, ±2, ...

Example 6.6

Solve the equation cos 3θ = 1
2
.

Solution: The idea here is to solve for 3θ first, using the most general solution, and then

divide that solution by 3. So since cos−1 1
2
= π

3
, there are two possible solutions for 3θ: 3θ = π

3
in

QI and its reflection −3θ =−π
3

around the x-axis in QIV. Adding multiples of 2π to these gives

us:

3θ = ±
π

3
+ 2πk for k = 0, ±1, ±2, ...

So dividing everything by 3 we get the general solution for θ:

θ = ±
π

9
+

2π

3
k for k = 0, ±1, ±2, ...

Example 6.7

Solve the equation sin 2θ = sin θ.

Solution: Here we use the double-angle formula for sine:

sin 2θ = sin θ

2 sinθ cos θ = sin θ

sin θ (2 cos θ − 1) = 0

⇒ sin θ = 0 or cos θ =
1

2

⇒ θ = 0 , π or θ = ±
π

3

⇒ θ = πk and ±
π

3
+ 2πk for k = 0, ±1, ±2, ...
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Example 6.8

2

3

p
13

φ

Figure 6.1.1

Solve the equation 2 sin θ − 3 cos θ = 1.

Solution: We will use the technique which we discussed in Chapter 5 for find-

ing the amplitude of a combination of sine and cosine functions. Take the co-

efficients 2 and 3 of sin θ and −cos θ, respectively, in the above equation and

make them the legs of a right triangle, as in Figure 6.1.1. Let φ be the angle

shown in the right triangle. The leg with length 3 > 0 means that the angle φ

is above the x-axis, and the leg with length 2 > 0 means that φ is to the right

of the y-axis. Hence, φ must be in QI. The hypotenuse has length
p

13 by the

Pythagorean Theorem, and hence cos φ = 2p
13

and sin θ = 3p
13

. We can use this to transform

the equation to solve as follows:

2 sin θ − 3 cos θ = 1
p

13
(

2p
13

sin θ − 3p
13

cos θ
)
= 1

p
13(cos φ sin θ − sin φ cos θ) = 1

p
13 sin (θ−φ) = 1 (by the sine subtraction formula)

sin (θ−φ) = 1p
13

⇒ θ−φ = 0.281 or θ−φ = π−0.281= 2.861

⇒ θ = φ + 0.281 or θ = φ + 2.861

Now, since cos φ= 2p
13

and φ is in QI, the most general solution for φ is φ= 0.983+2πk for k = 0,

±1, ±2, ... . So since we needed to add multiples of 2π to the solutions 0.281 and 2.861 anyway,

the most general solution for θ is:

θ = 0.983 + 0.281 + 2πk and 0.983 + 2.861 + 2πk

⇒ θ = 1.264 + 2πk and 3.844 + 2πk for k = 0, ±1, ±2, ...

Note: In Example 6.8 if the equation had been 2 sin θ + 3 cos θ = 1 then we still

would have used a right triangle with legs of lengths 2 and 3, but we would have used

the sine addition formula instead of the subtraction formula.

�



�
	Exercises

For Exercises 1-12, solve the given equation (in radians).

1. tan θ + 1 = 0 2. 2 cos θ + 1 = 0 3. sin 5θ + 1 = 0

4. 2 cos2 θ − sin2 θ = 1 5. 2 sin2 θ − cos 2θ = 0 6. 2 cos2 θ + 3 sin θ = 0

7. cos2 θ + 2 sin θ = −1 8. tan θ + cot θ = 2 9. sin θ = cos θ

10. 2 sin θ − 3 cos θ = 0 11. cos2 3θ − 5 cos 3θ + 4 = 0 12. 3 sin θ − 4 cos θ = 1
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6.2 Numerical Methods in Trigonometry

We were able to solve the trigonometric equations in the previous section fairly easily,

which in general is not the case. For example, consider the equation

cos x = x . (6.1)

There is a solution, as shown in Figure 6.2.1 below. The graphs of y = cos x and y = x

intersect somewhere between x = 0 and x = 1, which means that there is an x in the

interval [0,1] such that cos x = x.

-4

-3

-2

-1

 0

 1

 2

 3

 4

-3 -2 -1  0  1  2  3

y

x

cos(x)
x

Figure 6.2.1 y= cos x and y= x

Unfortunately there is no trigonometric identity or simple method which will help

us here. Instead, we have to resort to numerical methods, which provide ways of

getting successively better approximations to the actual solution(s) to within any de-

sired degree of accuracy. There is a large field of mathematics devoted to this subject

called numerical analysis. Many of the methods require calculus, but luckily there is

a method which we can use that requires just basic algebra. It is called the secant

method, and it finds roots of a given function f (x), i.e. values of x such that f (x) = 0.

A derivation of the secant method is beyond the scope of this book,1 but we can state

the algorithm it uses to solve f (x)= 0:

1For an explanation of why the secant method works, see pp. 338-344 in A. RALSTON AND P. RABI-

NOWITZ, A First Course in Numerical Analysis, 2nd ed., New York: McGraw-Hill Book Co., 1978.
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1. Pick initial points x0 and x1 such that x0 < x1 and f (x0) f (x1) < 0 (i.e. the solution is

somewhere between x0 and x1).

2. For n ≥ 2, define the number xn by

xn = xn−1 −
(xn−1 − xn−2) f (xn−1)

f (xn−1) − f (xn−2)
(6.2)

as long as |xn−1 − xn−2 | > ǫerror, where ǫerror > 0 is the maximum amount of error

desired (usually a very small number).

3. The numbers x0, x1, x2, x3, ... will approach the solution x as we go through more

iterations, getting as close as desired.

We will now show how to use this algorithm to solve the equation cos x = x. The

solution to that equation is the root of the function f (x) = cos x− x. And we saw that

the solution is somewhere in the interval [0,1]. So pick x0 = 0 and x1 = 1. Then f (0)= 1

and f (1) = −0.4597, so that f (x0) f (x1) < 0 (we are using radians, of course). Then by

definition,

x2 = x1 −
(x1 − x0) f (x1)

f (x1) − f (x0)

= 1 −
(1 − 0) f (1)

f (1) − f (0)

= 1 −
(1 − 0)(−0.4597)

−0.4597 − 1

= 0.6851 ,

x3 = x2 −
(x2 − x1) f (x2)

f (x2) − f (x1)

= 0.6851 −
(0.6851 − 1) f (0.6851)

f (0.6851) − f (1)

= 0.6851 −
(0.6851 − 1)(0.0893)

0.0893 − (−0.4597)

= 0.7363 ,

and so on. Using a calculator is not very efficient and will lead to rounding errors. A

better way to implement the algorithm is with a computer. Listing 6.1 below shows

the code (secant.java) for solving cos x = x with the secant method, using the Java

programming language:
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Listing 6.1 Program listing for secant.java

1 import java.math.*;

2 public class secant {

3 public static void main (String[] args) {

4 double x0 = Double.parseDouble(args[0]);

5 double x1 = Double.parseDouble(args[1]);

6 double x = 0;

7 double error = 1.0E-50;

8 for (int i=2; i <= 10; i++) {

9 if (Double.compare(Math.abs(x0 - x1),error) > 0) {

10 x = x1 - (x1 - x0)*f(x1)/(f(x1) - f(x0));

11 x0 = x1;

12 x1 = x;

13 System.out.println("x" + i + " = " + x);

14 } else {

15 break;

16 }

17 }

18 MathContext mc = new MathContext(50);

19 BigDecimal answer = new BigDecimal(x,mc);

20 System.out.println("x = " + answer);

21 }

22 //Define the function f(x)

23 public static double f (double x) {

24 return Math.cos(x) - x;

25 }

26 }

Lines 4-5 read in x0 and x1 as input parameters to the program.

Line 6 initializes the variable that will eventually hold the solution.

Line 7 sets the maximum error ǫerror to be 1.0 × 10−50. That is, our final answer will

be within that (tiny!) amount of the real solution.

Line 8 starts a loop of 9 iterations of the algorithm, i.e. it will create the successive

approximations x2, x3, ..., x10 to the real solution, though in Line 9 we check to see if

the two previous approximations differ by less than the maximum error. If they do,

we stop (since this means we have an acceptable solution), otherwise we continue.

Line 10 is the main step in the algorithm, creating xn from xn−1 and xn−2.

Lines 11-12 set the new values of xn−2 and xn−1, respectively.

Lines 18-20 set the number of decimal places to show in the final answer to 50 (the

default is 16) and then print the answer.

Lines 23-24 give the definition of the function f (x)= cos x− x.
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Below is the result of compiling and running the program using x0 = 0 and x1 = 1:

javac secant.java

java secant 0 1

x2 = 0.6850733573260451

x3 = 0.736298997613654

x4 = 0.7391193619116293

x5 = 0.7390851121274639

x6 = 0.7390851332150012

x7 = 0.7390851332151607

x8 = 0.7390851332151607

x = 0.73908513321516067229310920083662495017051696777344

Notice that the program only got up to x8, not x10. The reason is that the difference

between x8 and x7 was small enough (less than ǫerror = 1.0 × 10−50) to stop at x8 and

call that our solution. The last line shows that solution to 50 decimal places.

Does that number look familiar? It should, since it is the answer to Exercise 11

in Section 4.1. That is, when taking repeated cosines starting with any number (in

radians), you eventually start getting the above number repeatedly after enough iter-

ations. This turns out not to be a coincidence. Figure 6.2.2 gives an idea of why.
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Figure 6.2.2 Attractive fixed point for cos x

Since x = 0.73908513321516... is the solution of cos x = x, you would get cos (cos x) =
cos x = x, so cos (cos (cos x)) = cos x = x, and so on. This number x is called an attrac-
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tive fixed point of the function cos x. No matter where you start, you end up getting

“drawn” to it. Figure 6.2.2 shows what happens when starting at x = 0: taking the

cosine of 0 takes you to 1, and then successive cosines (indicated by the intersections

of the vertical lines with the cosine curve) eventually “spiral” in a rectangular fashion

to the fixed point (i.e. the solution), which is the intersection of y= cos x and y= x.

Recall in Example 5.10 in Section 5.2 that we claimed that the maximum and min-

imum of the function y = cos 6x+ sin 4x were ±1.90596111871578, respectively. We

can show this by using the open-source program Octave.2 Octave uses a successive

quadratic programming method to find the minimum of a function f (x). Finding the

maximum of f (x) is the same as finding the minimum of − f (x) then multiplying by

−1 (why?). Below we show the commands to run at the Octave command prompt

(octave:n>) to find the minimum of f (x) = cos 6x+ sin 4x. The command sqp(3,’f’)

says to use x = 3 as a first approximation of the number x where f (x) is a minimum.

octave:1> format long

octave:2> function y = f(x)

> y = cos(6*x) + sin(4*x)

> endfunction

octave:3> sqp(3,’f’)

y = -1.90596111871578

ans = 2.65792064609274

The output says that the minimum occurs when x = 2.65792064609274 and that the

minimum is −1.90596111871578. To find the maximum of f (x), we find the minimum

of − f (x) and then take its negative. The command sqp(2,’f’) says to use x = 2 as a

first approximation of the number x where f (x) is a maximum.

octave:4> function y = f(x)

> y = -cos(6*x) - sin(4*x)

> endfunction

octave:5> sqp(2,’f’)

y = -1.90596111871578

ans = 2.05446832062993

The output says that the maximum occurs when x = 2.05446832062993 and that the

maximum is −(−1.90596111871578)= 1.90596111871578.

Recall from Section 2.4 that Heron’s formula is adequate for “typical” triangles,

but will often have a problem when used in a calculator with, say, a triangle with two

sides whose sum is barely larger than the third side. However, you can get around this

problem by using computer software capable of handling numbers with a high degree

of precision. Most modern computer programming languages have this capability.

2Freely available at http://www.gnu.org/software/octave

http://www.gnu.org/software/octave
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For example, in the Python programming language3 (chosen here for simplicity) the

decimal module can be used to set any level of precision.4 Below we show how to get

accuracy up to 50 decimal places using Heron’s formula for the triangle in Example

2.16 from Section 2.4, by using the python interactive command shell:

[1]: from decimal import *
[2]: getcontext().prec = 50

[3]: a = Decimal("1000000")

[4]: b = Decimal("999999.9999979")

[5]: c = Decimal("0.0000029")

[6]: s = (a+b+c)/2

[7]: K = s*(s-a)*(s-b)*(s-c)

[8]: print Decimal(K).sqrt()

0.99999999999894999999999894874999999889618749999829

(Note: The bracketed line numbers are just command prompts, not part of the code.)

Notice in this case that we do get the correct answer; the high level of precision elim-

inates the rounding errors shown by many calculators when using Heron’s formula.

Another software option is Sage5, a powerful and free open-source mathematics

package based on Python. It can be run on your own computer, but it can also be

run through a web interface: go to http://sagenb.org to create a free account, then

once you register and sign in, click the New Worksheet link to start entering com-

mands. For example, to find the solution to cos x = x in the interval [0,1], enter these

commands in the worksheet textfield:

x = var(’x’)

find_root(cos(x) == x, 0,1)

Click the evaluate link to display the answer: 0.7390851332151559

�



�
	Exercises

1. One obvious solution to the equation 2 sin x = x is x = 0. Write a program to find the other

solution(s), accurate to at least within 1.0× 10−20. You can use any programming language,

though you may find it easier to just modify the code in Listing 6.1 (only one line needs to

be changed!). It may help to use Gnuplot to get an idea of where the graphs of y = 2 sin x

and y= x intersect.

2. Repeat Exercise 1 for the equation sin x = x2.

3. Use Octave or some other program to find the maximum and minimum of y= cos 5x−sin 3x.

3Available for free at http://www.python.org
4Other languages have similar capability, e.g. the BigDecimal class in Java.
5Visit the homepage at http://www.sagemath.org for more details.

http://sagenb.org
http://www.python.org
http://www.sagemath.org
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6.3 Complex Numbers

There is no real number x such that x2 = −1. However, it turns out to be useful6 to

invent such a number, called the imaginary unit and denoted by the letter i. Thus,

i2 =−1, and hence i =
p
−1. If a and b are real numbers, then a number of the form a+bi

is called a complex number, and if b 6= 0 then it is called an imaginary number

(and pure imaginary if a = 0 and b 6= 0). The real number a is called the imaginary

part of the complex number a+bi, and bi is called its imaginary part.

What does it mean to add a to bi in the definition a+ bi of a complex number, i.e.

adding a real number and an imaginary number? You can think of it as a way of

extending the set of real numbers. If b = 0 then a+ bi = a+0i = a (since 0i is defined

as 0), so that every real number is a complex number. The imaginary part bi in a+bi

can be thought of as a way of taking the one-dimensional set of all real numbers and

extending it to a two-dimensional set: there is a natural correspondence between a

complex number a+bi and a point (a,b) in the (two-dimensional) xy-coordinate plane.

Before exploring that correspondence further, we will first state some fundamental

properties of and operations on complex numbers:

Let a+bi and c+di be complex numbers. Then:

1. a+bi = c+di if and only if a = c and b = d (i.e. the real parts are equal and the

imaginary parts are equal)

2. (a+bi) + (c+di) = (a+ c) + (b+d)i (i.e. add the real parts together and add the

imaginary parts together)

3. (a+bi) − (c+di) = (a− c) + (b−d)i

4. (a+bi) (c+di) = (ac−bd) + (ad+bc)i

5. (a+bi) (a−bi) = a2 + b2

6.
a+bi

c+di
=

(ac+bd) + (bc−ad)i

c2 +d2

The first three items above are just definitions of equality, addition, and subtraction

of complex numbers. The last three items can be derived by treating the multiplication

and division of complex numbers as you would normally treat factors of real numbers:

(a+bi) (c+di) = a (c+di) + bi (c+di)

= ac + adi + bci + bdi2 = ac + adi + bci + bd(−1)

= (ac−bd) + (ad+bc)i

6Especially in electrical engineering, physics, and various fields of mathematics.
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The fifth item is a special case of the multiplication formula:

(a+bi) (a−bi) = ((a)(a)− (b)(−b)) + ((a)(−b)+ (b)(a))i

= (a2 +b2) + (−ab+ba)i = (a2 +b2) + 0i

= a2 + b2

The sixth item comes from using the previous items:

a+bi

c+di
=

a+bi

c+di
·

c−di

c−di

=
(ac−b(−d)) + (a(−d)+bc)i

c2 +d2

=
(ac+bd) + (bc−ad)i

c2 +d2

The conjugate a+bi of a complex number a+bi is defined as a+bi = a−bi. Notice

that (a+ bi) + (a+bi) = 2a is a real number, (a+ bi) − (a+bi) = 2bi is an imaginary

number if b 6= 0, and (a+bi)(a+bi) = a2+b2 is a real number. So for a complex number

z = a+ bi, z z = a2 + b2 and thus we can define the modulus of z to be
p

z z =
p

a2 +b2,

which we denote by |z|.

Example 6.9

Let z1 =−2+3i and z2 = 3+4i. Find z1 + z2, z1 − z2, z1 z2, z1/z2, |z1 |, and |z2 |.
Solution: Using our rules and definitions, we have:

z1 + z2 = (−2+3i) + (3+4i)

= 1+7i

z1 − z2 = (−2+3i) − (3+4i)

= −5− i

z1 z2 = (−2+3i) (3+4i)

= ((−2)(3)− (3)(4)) + ((−2)(4)+ (3)(3))i

= −18+ i

z1

z2
=

−2+3i

3+4i

=
(−2)(3)+ (3)(4) + ((3)(3)− (−2)(4))i

32 +42

=
6

25
+

17

25
i

|z1 | =
√

(−2)2 +32

=
p

13

|z2 | =
√

32 +42

= 5
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We know that any point (x, y) in the xy-coordinate plane that is a distance r > 0 from

the origin has coordinates x = r cos θ and y = r sin θ, where θ is the angle in standard

position as in Figure 6.3.1(a).

x

y

0

θ

r

(x, y)= (r cos θ, r sin θ)

(a) Point (x, y)

x

y

0

θ

r

z = x+ yi = r cos θ + (r sin θ)i

(b) Complex number z = x+ yi

Figure 6.3.1

Let z = x+ yi be a complex number. We can represent z as a point in the complex

plane, where the horizontal x-axis represents the real part of z, and the vertical y-

axis represents the pure imaginary part of z, as in Figure 6.3.1(b). The distance r

from z to the origin is, by the Pythagorean Theorem, r =
√

x2 + y2, which is just the

modulus of z. And we see from Figure 6.3.1(b) that x = r cos θ and y = r sin θ, where

θ is the angle formed by the positive x-axis and the line segment from the origin to

z. We call this angle θ the argument of z. Thus, we get the trigonometric form

(sometimes called the polar form) of the complex number z:

For any complex number z = x+ yi, we can write

z = r (cos θ + i sin θ) , where (6.3)

r = |z| =
√

x2 + y2 and

θ = the argument of z .

The representation z = r (cos θ + i sin θ) is often abbreviated as:

z = rcis θ (6.4)

In the special case z = 0 = 0+0i, the argument θ is undefined since r = |z| = 0. Also,

note that the argument θ can be replaced by θ + 360◦k or θ + πk, depending on whether

you are using degrees or radians, respectively, for k = 0, ±1, ±2, ... . Note also that for

z = x+ yi with r = |z|, θ must satisfy

tan θ = y

x
, cos θ = x

r
, sin θ = y

r
.
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Example 6.10

x

y

0

r
1

2

z =−2− i

θ

Figure 6.3.2

Represent the complex number −2− i in trigonometric form.

Solution: Let z = −2− i = x+ yi, so that x = −2 and y = −1. Then θ is

in QIII, as we see in Figure 6.3.2. So since tan θ = y
x
= −1

−2
= 1

2
, we have

θ = 206.6◦. Also,

r =
√

x2 + y2 =
√

(−2)2 + (−1)2 =
p

5 .

Thus, −2− i =
p

5 (cos 206.6◦ + i sin 206.6◦) , or
p

5 cis 206.6◦.

For complex numbers in trigonometric form, we have the following formulas for

multiplication and division:

Let z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2) be complex numbers. Then

z1 z2 = r1 r2 (cos (θ1 +θ2) + i sin (θ1 +θ2)) , and (6.5)
z1

z2

=
r1

r2

(cos (θ1 −θ2) + i sin (θ1 −θ2)) if z2 6= 0. (6.6)

The proofs of these formulas are straightforward:

z1 z2 = r1 (cos θ1 + i sin θ1) · r2 (cos θ2 + i sin θ2)

= r1 r2 [(cos θ1 cos θ2 − sin θ1 sin θ2) + i (sin θ1 cos θ2 + cos θ1 sin θ2)]

= r1 r2 (cos (θ1 +θ2) + i sin (θ1 +θ2))

by the addition formulas for sine and cosine. And

z1

z2

=
r1 (cos θ1 + i sin θ1)

r2 (cos θ2 + i sin θ2)

=
r1

r2

·
cos θ1 + i sin θ1

cos θ2 + i sin θ2

·
cos θ2 − i sin θ2

cos θ2 − i sin θ2

=
r1

r2

·
(cos θ1 cos θ2 + sin θ1 sin θ2) + i (sin θ1 cos θ2 − cos θ1 sin θ2)

cos2 θ2 + sin2 θ2

=
r1

r2

(cos (θ1 −θ2) + i sin (θ1 −θ2))

by the subtraction formulas for sine and cosine, and since cos2 θ2 + sin2 θ2 = 1. QED

Note that formulas (6.5) and (6.6) say that when multiplying complex numbers the

moduli are multiplied and the arguments are added, while when dividing complex

numbers the moduli are divided and the arguments are subtracted. This makes work-

ing with complex numbers in trigonometric form fairly simple.
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Example 6.11

Let z1 = 6(cos 70◦ + i sin 70◦) and z1 = 2(cos 31◦ + i sin 31◦). Find z1 z2 and z1

z2
.

Solution: By formulas (6.5) and (6.6) we have

z1 z2 = (6)(2)(cos (70◦+31◦) + i sin (70◦+31◦)) ⇒ z1 z2 = 12(cos 101◦ + i sin 101◦) , and

z1

z2
=

6

2
(cos (70◦−31◦) + i sin (70◦−31◦)) ⇒

z1

z2
= 3(cos 39◦ + i sin 39◦) .

For the special case when z1 = z2 = z = r (cos θ + i sin θ) in formula (6.5), we have

[r (cos θ + i sin θ)]
2 = r · r (cos (θ+θ) + i sin (θ+θ))

= r2 (cos 2θ + i sin 2θ) ,

and so

[r (cos θ + i sin θ)]
3 = [r (cos θ + i sin θ)]

2 · r (cos θ + i sin θ)

= r2 (cos 2θ + i sin 2θ) · r (cos θ + i sin θ)

= r3 (cos (2θ+θ) + i sin (2θ+θ))

= r3 (cos 3θ + i sin 3θ) ,

and continuing like this (i.e. by mathematical induction), we get:

Theorem 6.1. De Moivre’s Theorem:7 For any integer n ≥ 1,

[r (cos θ + i sin θ)]
n = rn (cos nθ + i sin nθ) . (6.7)

We define z0 = 1 and z−n = 1/zn for all integers n ≥ 1. So by De Moivre’s Theorem and

formula (6.5), for any z = r (cos θ + i sin θ) and integer n ≥ 1 we get

z−n =
1

zn

=
1(cos 0◦ + i sin 0◦)

rn (cos nθ + i sin nθ)

=
1

rn
(cos (0◦−nθ) + i sin (0◦−nθ))

= r−n (cos (−nθ) + i sin (−nθ)) ,

and so De Moivre’s Theorem in fact holds for all integers.8

7Named after the French statistician and mathematician Abraham de Moivre (1667-1754).
8There is a way of defining zn when n is a real (or complex) number, so that De Moivre’s Theorem holds

for any real number n. See pp. 59-60 in R.V. CHURCHILL, Complex Variables and Applications, 2nd ed.,

New York: McGraw-Hill Book Co., 1960.
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Example 6.12

Find (1+ i)10.

Solution: Since 1+ i =
p

2 (cos 45◦ + i sin 45◦) (why?), by De Moivre’s Theorem we have

(1+ i)10 = (
p

2)10 (cos 450◦ + i sin 450◦) = 210/2 (0 + i (1)) = 25 · i = 32i .

We can use De Moivre’s Theorem to find the nth roots of a complex number. That is,

given any complex number z and positive integer n, find all complex numbers w such

that wn = z. Let z = r (cos θ + i sin θ). Since the cosine and sine functions repeat every

360◦, we know that z = r (cos (θ+360◦k) + i sin (θ+360◦k)) for k = 0, ±1, ±2, .... Now let

w = r0 (cos θ0 + i sin θ0) be an nth root of z. Then

wn = z ⇒ [r0 (cos θ0 + i sin θ0)]
n = r (cos (θ+360◦k) + i sin (θ+360◦k))

⇒ rn
0 (cos nθ0 + i sin nθ0) = r (cos (θ+360◦k) + i sin (θ+360◦k))

⇒ rn
0 = r and nθ0 = θ+360◦k

⇒ r0 = r1/n and θ0 =
θ+360◦k

n
.

Since the cosine and sine of θ+360◦k
n

will repeat for k ≥ n, we get the following formula

for the nth roots of z:

For any nonzero complex number z = r (cos θ + i sin θ) and positive integer n, the n

distinct nth roots of z are

r1/n

[
cos

(
θ+360◦k

n

)
+ i sin

(
θ+360◦k

n

)]
(6.8)

for k = 0, 1, 2, ..., n−1.

Note: An nth root of z is usually written as z1/n or n
p

z. The number r1/n in the above

formula is the usual real nth root of the real number r = |z|.

Example 6.13

Find the three cube roots of i.

Solution: Since i = 1(cos 90◦ + i sin 90◦), the three cube roots of i are:

3
p

1

[
cos

(
90◦+360◦(0)

3

)
+ i sin

(
90◦+360◦(0)

3

)]
= cos 30◦ + i sin 30◦ =

p
3

2
+

1

2
i ,

3
p

1

[
cos

(
90◦+360◦(1)

3

)
+ i sin

(
90◦+360◦(1)

3

)]
= cos 150◦ + i sin 150◦ = −

p
3

2
+

1

2
i ,

3
p

1

[
cos

(
90◦+360◦(2)

3

)
+ i sin

(
90◦+360◦(2)

3

)]
= cos 270◦ + i sin 270◦ = −i
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|z| = 1

120◦

120◦ 120◦

Figure 6.3.3

Notice from Example 6.13 that the three cube roots of

i are equally spaced points along the unit circle |z| = 1

in the complex plane, as shown in Figure 6.3.3. We see

that consecutive cube roots are 120◦ apart. In general,

the n nth roots of a complex number z will be equally

spaced points along the circle of radius |z|1/n in the com-

plex plane, with consecutive roots separated by 360◦

n
.

In higher mathematics the Fundamental Theorem of

Algebra states that every polynomial of degree n with

complex coefficients has n complex roots (some of which

may repeat). In particular, every real number a has n nth roots (being the roots of

zn −a). For example, the square roots of 1 are ±1, and the square roots of −1 are ± i.

�



�
	Exercises

For Exercises 1-16, calculate the given expression.

1. (2+3i) + (−3−2i) 2. (2+3i) − (−3−2i) 3. (2+3i) · (−3−2i) 4. (2+3i)/(−3−2i)

5. (2+3i) + (−3−2i) 6. (2+3i) − (−3−2i) 7. (1+ i)/(1− i) 8. |−3+2i |

9. i3 10. i4 11. i5 12. i6 13. i7 14. i8 15. i9 16. i2009

For Exercises 17-24, prove the given identity for all complex numbers.

17. (z) = z 18. z1 + z2 = z1 + z2 19. z1 − z2 = z1 − z2 20. z1 z2 = z1 z2

21.

(
z1

z2

)
=

z1

z2

22. |z| = |z| 23. |z1 z2 | = |z1 | |z2 | 24.

∣∣∣∣
z1

z2

∣∣∣∣ =
|z1 |
|z2 |

For Exercises 25-30, put the given number in trigonometric form.

25. 2+3i 26. −3−2i 27. 1− i 28. −i 29. 1 30. −1

31. Verify that De Moivre’s Theorem holds for the power n = 0.

For Exercises 32-35, calculate the given number.

32. 3(cos 14◦ + i sin 14◦) · 2(cos 121◦ + i sin 121◦)

33. [3(cos 14◦ + i sin 14◦)]4 34. [3(cos 14◦ + i sin 14◦)]−4 35.
3(cos 14◦ + i sin 14◦)

2(cos 121◦ + i sin 121◦)

36. Find the three cube roots of −i. 37. Find the three cube roots of 1+ i.

38. Find the three cube roots of 1. 39. Find the three cube roots of −1.

40. Find the five fifth roots of 1. 41. Find the five fifth roots of −1.

42. Find the two square roots of −2+2
p

3 i.

43. Prove that if z is an nth root of a real number a, then so is z. (Hint: Use Exercise 20.)
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6.4 Polar Coordinates

x

y

0 1 2 3

←
1→

←
1→

Figure 6.4.1

Suppose that from the point (1,0) in

the xy-coordinate plane we draw a spi-

ral around the origin, such that the dis-

tance between any two points separated

by 360◦ along the spiral is always 1, as

in Figure 6.4.1. We can not express this

spiral as y = f (x) for some function f in

Cartesian coordinates, since its graph vi-

olates the vertical rule.

However, this spiral would be simple

to describe using the polar coordinate

system. Recall that any point P away

from the origin (denoted by the letter O)

in the xy−coordinate plane is a distance

r > 0 from the origin, and the ray
−−→
OP

makes an angle θ with the positive x-

axis, as in Figure 6.4.2. We call the pair

(r,θ) the polar coordinates of P, and the positive x-axis is called the polar axis of

this coordinate system. Note that (r,θ) = (r,θ+360◦k) for k = 0, ±1, ±2, ..., so (unlike

for Cartesian coordinates) the polar coordinates of a point are not unique.

x

y

O

θ

r

P(r,θ)

Figure 6.4.2 Polar coordinates (r,θ)

x

y

O

θ

−r

P(−r,θ)

Figure 6.4.3 Negative r: (−r,θ)

In polar coordinates we adopt the convention that r can be negative, by defining

(−r,θ) = (r,θ+ 180◦) for any angle θ. That is, the ray
−−→
OP is drawn in the opposite

direction from the angle θ, as in Figure 6.4.3. When r = 0, the point (r,θ) = (0,θ) is the

origin O, regardless of the value of θ.

You may be familiar with graphing paper, for plotting points or functions given in

Cartesian coordinates (sometimes also called rectangular coordinates). Such paper

consists of a rectangular grid. Similar graphing paper exists for plotting points and

functions in polar coordinates, similar to Figure 6.4.4.
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Figure 6.4.4 Polar coordinate graph

The angle θ can be given in either degrees or radians, whichever is more convenient.

Radians are often preferred when graphing functions in polar coordinates. The rea-

son is that, unlike degrees, radians can be considered “unitless” (as we mentioned in

Chapter 4). This is desirable when a function given in polar coordinates is expressed

as r as a function of θ (similar to how, in Cartesian coordinates (x, y), functions are

usually expressed as y as a function of x). For example, if a function in polar coordi-

nates is written as r = 2θ, then r would have the same units as θ. But r should be a

unitless quantity, hence using radians for θ makes more sense in this case.
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Example 6.14

Express the spiral from Figure 6.4.1 in polar coordinates.

Solution: We will use radians for θ. The goal is to find some equation involving r and θ that

describes the spiral. We see that

θ = 0 ⇒ r = 1

θ = 2π ⇒ r = 2

θ = 4π ⇒ r = 3

...

θ = 2πk ⇒ r = 1+k

for k = 0,1,2, . . .. In fact, that last relation holds for any nonnegative real number k (why?). So

for any θ ≥ 0,

θ = 2πk ⇒ k =
θ

2π
⇒ r = 1+k = 1+

θ

2π
.

Hence, the spiral can be written as r = 1+
θ

2π
for θ ≥ 0. The graph is shown in Figure 6.4.5,

along with the Gnuplot commands to create the graph.

 4

 3

 2

 1

 0

 1

 2

 3

 4

 4  3  2  1  0  1  2  3  4

y

x

Figure 6.4.5 r = 1+ θ
2π

set polar

set size square

set samples 2000

unset key

set zeroaxis

set xlabel "x"

set ylabel "y"

plot [0:6*pi] 1 + t/(2*pi)

Note that when using the set polar command, Gnuplot will assume that the function being

plotted is r as a function of θ (represented by the variable t in Gnuplot).
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x

y

O

θ

y

x

r

(r,θ)(x, y)

Figure 6.4.6

Figure 6.4.6 shows how to convert between polar coordinates

and Cartesian coordinates. For a point with polar coordinates

(r,θ) and Cartesian coordinates (x, y):

Polar to Cartesian:

x = r cos θ y = r sin θ (6.9)

Cartesian to Polar:

r = ±
√

x2 + y2 tan θ =
y

x
if x 6= 0 (6.10)

Note that in formula (6.10), if x = 0 then θ = π/2 or θ = 3π/2. Also, if x 6= 0 and

y 6= 0 then the two possible solutions for θ in the equation tan θ = y

x
are in opposite

quadrants (for 0 ≤ θ < 2π). If the angle θ is in the same quadrant as the point (x, y),

then r =
√

x2 + y2 (i.e. r is positive); otherwise r =−
√

x2 + y2 (i.e. r is negative).

Example 6.15

Convert the following points from polar coordinates to Cartesian coordinates:

(a) (2,30◦); (b) (3,3π/4); (c) (−1,5π/3)

Solution: (a) Using formula (6.9) with r = 2 and θ = 30◦, we get:

(x, y) = (r cos θ, r sin θ) = (2 cos 30◦,2 sin 30◦) =
(
2 ·

p
3

2
,2 · 1

2

)
⇒ (x, y) =

(p
3,1

)

(b) Using formula (6.9) with r = 3 and θ = 3π/4, we get:

(x, y) = (r cos θ, r sin θ) =
(
3 cos 3π

4
,3 sin 3π

4

)
=

(
3 · −1p

2
,3 · 1p

2

)
⇒ (x, y) =

(
−3p

2
, 3p

2

)

(c) Using formula (6.9) with r =−1 and θ = 5π/3, we get:

(x, y) = (r cos θ, r sin θ) =
(
−1 cos 5π

3
,−1 sin 5π

3

)
=

(
−1 · 1

2
,−1 · −

p
3

2

)
⇒ (x, y) =

(
− 1

2
,
p

3
2

)

Example 6.16

Convert the following points from Cartesian coordinates to polar coordinates:

(a) (3,4); (b) (−5,−5)

Solution: (a) Using formula (6.10) with x = 3 and y= 4, we get:

tan θ =
y

x
=

4

3
⇒ θ = 53.13◦ or θ = 233.13◦

Since θ = 53.13◦ is in the same quadrant (QI) as the point (x, y)= (3,4), we can take

r =
√

x2 + y2 =
p

32 +42 = 5. Thus, (r,θ)= (5,53.13◦) .

Note that if we had used θ = 233.13◦, then we would have (r,θ)= (−5,233.13◦).
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(b) Using formula (6.10) with x =−5 and y=−5, we get:

tan θ =
y

x
=

−5

−5
= 1 ⇒ θ = 45◦ or θ = 225◦

Since θ = 225◦ is in the same quadrant (QIII) as the point (x, y)= (−5,−5), we can take

r =
√

x2 + y2 =
√

(−5)2 + (−5)2 = 5
p

2. Thus, (r,θ)= (5
p

2,225◦) .

Note that if we had used θ = 45◦, then we would have (r,θ)= (−5
p

2,45◦).

Example 6.17

Write the equation x2 + y2 = 9 in polar coordinates.

Solution: This is just the equation of a circle of radius 3 centered at the origin. Since r =
±

√
x2 + y2 =±

p
9, in polar coordinates the equation can be written as simply r = 3 .

Example 6.18

Write the equation x2 + (y−4)2 = 16 in polar coordinates.

Solution: This is the equation of a circle of radius 4 centered at the point (0,4). Expanding

the equation, we get:

x2 + (y−4)2 = 16

x2 + y2 − 8y + 16 = 16

x2 + y2 = 8y

r2 = 8 rsin θ

r = 8 sin θ

Why could we cancel r from both sides in the last step? Because we know that the point (0,0)

is on the circle, so canceling r does not eliminate r = 0 as a potential solution of the equation

(since θ = 0◦ would make r = 8 sin θ = 8 sin 0◦ = 0). Thus, the equation is r = 8 sin θ .

Example 6.19

Write the equation y= x in polar coordinates.

Solution: This is the equation of a line through the origin. So when x = 0, we know that y= 0.

When x 6= 0, we get:

y = x

y

x
= 1

tan θ = 1

θ = 45◦

Since there is no restriction on r, we could have r = 0 and θ = 45◦, which would take care of the

case x = 0 (since then (x, y) = (0,0), which is the same as (r,θ) = (0,45◦)). Thus, the equation is

θ = 45◦ .
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Example 6.20

Prove that the distance d between two points (r1,θ1) and (r2,θ2) in polar coordinates is

d =
√

r2
1
+ r2

2
− 2r1r2 cos (θ1 −θ2) . (6.11)

Solution: The idea here is to use the distance formula in Cartesian coordinates, then convert

that to polar coordinates. So write

x1 = r1 cos θ1 y1 = r1 sin θ1

x2 = r2 cos θ2 y2 = r2 sin θ2 .

Then (x1, y1) and (x2, y2) are the Cartesian equivalents of (r1,θ1) and (r2,θ2), respectively. Thus,

by the Cartesian coordinate distance formula,

d2 = (x1 − x2)2 + (y1 − y2)2

= (r1 cos θ1 − r2 cos θ2)2 + (r1 sin θ1 − r2 sin θ2)2

= r2
1 cos2 θ1 − 2r1r2 cos θ1 cos θ2 + r2

2 cos2 θ2 + r2
1 sin2 θ1 − 2r1r2 sin θ1 sin θ2 + r2

2 sin2 θ2

= r2
1(cos2 θ1 + sin2 θ1) + r2

2(cos2 θ2 + sin2 θ2) − 2r1r2(cos θ1 cos θ2 + sin θ1 sin θ2)

d2 = r2
1 + r2

2 − 2r1r2 cos (θ1 −θ2) ,

so the result follows by taking square roots of both sides.

In Example 6.17 we saw that the equation x2+ y2 = 9 in Cartesian coordinates could

be expressed as r = 3 in polar coordinates. This equation describes a circle centered at

the origin, so the circle is symmetric about the origin. In general, polar coordinates

are useful in situations when there is symmetry about the origin (though there are

other situations), which arise in many physical applications.

�
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	Exercises

For Exercises 1-5, convert the given point from polar coordinates to Cartesian coordinates.

1. (6,210◦) 2. (−4,3π) 3. (2,11π/6) 4. (6,90◦) 5. (−1,405◦)

For Exercises 6-10, convert the given point from Cartesian coordinates to polar coordinates.

6. (3,1) 7. (−1,−3) 8. (0,2) 9. (4,−2) 10. (−2,0)

For Exercises 11-18, write the given equation in polar coordinates.

11. (x−3)2 + y2 = 9 12. y=−x 13. x2 − y2 = 1 14. 3x2 +4y2 −6x = 9

15. Graph the function r = 1+2 cos θ in polar coordinates.



Appendix A

Answers and Hints to Selected Exercises

Chapter 1

Section 1.1 (p. 5)

1. 115◦ 3. A = 52◦, B = 104◦ 5. 45◦

7. A = 9◦, B = 81◦ 8. 0.011◦ and 89.989◦

9. 25 miles 10. 111.8 ft

15. Hint: Are the opposite sides of the

four-sided figure inside the circle parallel?

Section 1.2 (p. 12)

1. sin A = 5/13, cos A = 12/13, tan A = 5/12,

csc A = 13/5, sec A = 13/12, cot A = 12/5;

sin B = 12/13, cos B = 5/13, tan B = 12/5,

csc B = 13/12, sec B = 13/5, cot B = 5/12

3. sin A = 7/25, cos A = 24/25, tan A = 7/24,

csc A = 25/7, sec A = 25/24, cot A = 24/7;

sin B = 24/25, cos B = 7/25, tan B = 24/7,

csc B = 25/24, sec B = 25/7, cot B = 7/24

5. sin A = 9/41, cos A = 40/41, tan A = 9/40,

csc A = 41/9, sec A = 41/40, cot A = 40/9;

sin B = 40/41, cos B = 9/41, tan B = 40/9,

csc B = 41/40, sec B = 41/9, cot B = 9/40

7. sin A = 1/
p

10, cos A = 3/
p

10, tan A = 1/3,

csc A =
p

10, sec A =
p

10/3, cot A = 3;

sin B = 3/
p

10, cos B = 1/
p

10, tan B = 3,

csc B =
p

10/3, sec B =
p

10, cot B = 1/3

9. sin A = 5/6, cos A =
p

11/6, tan A = 5/
p

11,

csc A = 6/5, sec A = 6/
p

11, cot A =
p

11/5;

sin B =
p

11/6, cos B = 5/6, tan B =
p

11/5,

csc B = 6/
p

11, sec B = 6/5, cot B = 5/
p

11

11. cos A =
p

7/4, tan A = 3/
p

7, csc A = 4/3,

sec A = 4/
p

7, cot A =
p

7/3

13. sin A =
p

6/
p

10, tan A =
p

6/2,

csc A =
p

10/
p

6, sec A =
p

10/2, cot A = 2/
p

6

15. sin A = 5/
p

106, cos A = 9/
p

106,

csc A =
p

106/5, sec A =
p

106/9, cot A = 9/5

17. sin A =
p

40/7, cos A = 3/7,

tan A =
p

40/3, csc A = 7/
p

40, cot A = 3/
p

40

19. cos 3◦ 21. sin 44◦ 23. csc 13◦

25. sin 77◦ 27. tan 80◦ 30. Hint: Draw

a right triangle with an acute angle A.

33. Hint: Draw two right triangles whose

hypotenuses are the same length.

37. (a)
p

13/4 (b) 4
p

3/
p

13 (c) 3/
p

13

Section 1.3 (p. 20)

1. 102.7 ft 3. 241.1 ft 4. 274 ft

7. 1062 mi 9. 0.476 in 11. 1.955

in 13. 0.4866 in 14. Partial answer:

DE = a cot θ cos2 θ 15. c = 13, A = 22.6◦,

B = 67.4◦ 17. a = 0.28, c = 2.02, B = 82◦

19. b = 6.15, c = 6.84, B = 64◦

21. a = 6.15, c = 6.84, A = 64◦ 23. a =
p

2,

b =
p

2, B = 45◦ 25. (a) 0.944 cm

(b) 2.112 cm 27. (a)
p

3 a (b) 35.26◦

29. 1379.5 ft = 0.2613 mi

Section 1.4 (p. 31)

1. QII 3. QIV 5. negative y-axis

7. QIII 9. QIV 11. QI, QIII 13. QI,

QIV 15. QI, QII 17. 43◦ 19. 54◦

21. 85◦ 23. sin θ =
p

3/2 and tan θ =−
p

3;

sin θ =−
p

3/2 and tan θ =
p

3

25. sin θ =
p

21/5 and tan θ =
p

21/2;

152



Appendix A: Answers and Hints to Selected Exercises 153

sin θ =−
p

21/5 and tan θ =−
p

21/2

27. cos θ =
p

3/2 and tan θ = 1/
p

3;

cos θ =−
p

3/2 and tan θ =−1/
p

3

29. cos θ =±1 and tan θ = 0

31. cos θ = 0 and tan θ is undefined

33. sin θ = 1/
p

5 and cos θ =−2/
p

5;

sin θ =−1/
p

5 and cos θ = 2/
p

5

35. sin θ = 5/13 and cos θ = 12/13;

sin θ = −5/13 and cos θ = −12/13 37. No

39. No

Section 1.5 (p. 37)

1. (a) 328◦ (b) 148◦ (c) 212◦ 3. (a) 248◦

(b) 68◦ (c) 292◦ 7. 25◦, 155◦ 9. 65◦,

295◦ 11. 38◦, 218◦ 13. 169◦, 191◦

15. D =
(

ab2

a2+b2 , a2b
a2+b2

)

Chapter 2

Section 2.1 (p. 43)

1. b = 7.4, c = 15.1, C = 120◦ 3. a = 9.7,

b = 10.7, C = 95◦ 5. b = 65.1, B = 136.5◦,

C = 18.5◦ 7. No solution 9. b = 24.9,

B = 59.9◦, C = 70.1◦; b = 9.9, B = 20.1◦,

C = 109.9◦ 11. 422 mi/hr 15. 5.66 cm

and 12.86 cm 16. Hint: Think geometri-

cally.

Section 2.2 (p. 49)

1. a = 10.6, B = 40.9◦, C = 79.1 3. A =
47.9◦, b = 8.2, C = 72.1◦ 5. No solution

7. 4.13 and 8.91 cm 9. 50.5◦, 59◦, 70.5◦

11. 7 cm 15. Hints: One of the angles

in the formulas is a right angle; also, use

the definition of cosine.

Section 2.3 (p. 53)

1. A = 79.1◦, B = 40.9◦, c = 10.6 3. A =
47.9◦, b = 8.2, C = 72.1◦ 5. No 6. Yes

11. Hint: Think of Exercise 10.

Section 2.4 (p. 58)

1. 22.55 3. 9.21 5. 3
4

p
15≈ 2.905

7. 12.21 9. Hints: The diagonals break

the quadrilateral into four triangles; also,

consider formulas (2.23)-(2.25).

Section 2.5 (p. 64)

1. R = 2.63, r = 0.69 3. R = 3.51, r = 1.36

5. R = 24.18, r = 1.12 12. (c) Twice as

large (d) Hint: Bisect each angle.

Chapter 3

Section 3.1 (p. 70)

1. θ = 270◦ 3. Hint: See Example

3.7. 19. tan θ = ± sin θ/
√

1−sin2 θ =
±
p

1−cos2 θ/cos θ

Section 3.2 (p. 76)

3. sin (A + B) = 1020
1189

, cos (A + B) = − 611
1189

,

tan (A+B)=−1020
611

4. (
p

6+
p

2)/4

5. 2−
p

3 15. Hint: For a 6= 0 and b 6= 0,

draw a right triangle with legs of lengths

a and b.

Section 3.3 (p. 81)

9. Hint: Is sin A + cos A always positive?

11. 1/2

Section 3.4 (p. 86)

13. Hint: One way to do this is with the

Law of Tangents. Another way is with the

Law of Sines.
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Chapter 4

Section 4.1 (p. 89)

1. π/45 3. 13π/18 5. −3π/5 7. 36◦

9. 174◦

Section 4.2 (p. 94)

1. 9.6 cm 3. 11π in 5. 54.94 in

7. 12.86 ft 8. 34.18 9. 38.26

11. 3.392 and 9.174 12. 3.105828541

Section 4.3 (p. 98)

1. 1.512 cm2 3. 24.5 m2 5. 269.1 cm2

7. 5 cm2 9. π/2 cm2 11. 0.017 cm2

13. 21.46 15. 48.17 17. 0.522 m2

19. Sector area is quadrupled, arc length

is doubled.

Section 4.4 (p. 102)

1. ν= 6 m/sec, ω= 1.5 rad/sec

3. ν= 6.6 m/sec, ω= 0.94 rad/sec

5. ν= 3.75 m/sec, ω= 1.875 rad/sec

7. 3.375 rad 9. 32 rpm and 21.33 rpm

11. 40.84 in/sec

Chapter 5

Section 5.1 (p. 108)

13. Partial answer: sec θ =OQ

Section 5.2 (p. 118)

1. amplitude = 3, period = 2, phase shift =

0 3. amplitude = 1, period = 2π/5, phase

shift = −3/5 5. amplitude = 1, period

= 2π/5, phase shift = −π/5 7. amplitude

= 1, period =π, phase shift = 3π/2

9. amplitude undefined, period = π/2,

phase shift = 3π/2 11. amplitude unde-

fined, period =π, phase shift = 1/2

13. max. at x =±
p
π/2, ±

p
5π/2, ±

p
9π/2, ...

min. at x =±
p

3π/2, ±
p

7π/2, ±
p

11π/2, ...

15. amplitude = 0.5, period = π 17. out

of phase 18. in phase 19. amplitude

=
p

34, period = 2 21. amplitude = 2
p

2,

period = 2π 23. 2π 25. 6 27. ampli-

tude envelope: y=±x2 29. No

Section 5.3 (p. 128)

1. π/4 3. 0 5. π 7. π/2 9. 0

11. −π/3 13. π/7 15. 4π/5 17. π/6

19. −π/9 21. 12/13 23. π/2 25. π/2

Chapter 6

Section 6.1 (p. 132)

1. 3π
4
+πk 3. 3π

10
+ 2πk

5
5. ± π

6
+πk

7. −0.821+2πk, 3.963+2πk 9. π
4
+πk

11. 2πk
3

Section 6.2 (p. 138)

1. x = 1.89549426703398093962

Section 6.3 (p. 145)

1. −1+ i 3. −13i 5. −1− i 7. i

9. −i 11. i 13. −i 15. i

17. Let z = a+ bi. Then z = a− bi, so (z) =
a−bi = a+bi = z. 23. Hint: Use Exercise

20. 25.
p

13cis 56.3◦ 27.
p

2cis 315◦

29. cis 0◦ 33. 81cis 56◦ 35. 1.5cis 253◦

37.
6
p

2cis 15◦, 6
p

2cis 135◦, 6
p

2cis 255◦

39. 1
2
+

p
3

2
i, −1, 1

2
−

p
3

2
i 41. cis 36◦,

cis 108◦, cis 180◦, cis 252◦, cis 324◦

Section 6.4 (p. 151)

1. (−3
p

3,−3) 3. (
p

3,−1)

5. (−1/
p

2,−1/
p

2) 7. (
p

10,251.6◦)

9. (2
p

5,333.4◦) 11. r = 6 cos θ

13. r2 cos 2θ = 1 14. r = 3/(2−cos θ)
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Graphing with Gnuplot

Gnuplot is a free, open-source software package for producing a variety of graphs.

Versions are available for many operating systems. Below is a very brief tutorial on

how to use Gnuplot to graph trigonometric functions.

INSTALLATION

1. Go to http://www.gnuplot.info/download.html and follow the links to download

the latest version for your operating system. For Windows, you should get the Zip

file with a name such as gp425win32.zip, which is version 4.2.5. All the examples

we will discuss require at least version 4.2.0.

2. Install the downloaded file. For example, in Windows you would unzip the Zip file

you downloaded in Step 1 into some folder (use the “Use folder names” option if

extracting with WinZip).

3. (Optional) Read the documentation at http://gnuplot.info/docs/gnuplot.html.

RUNNING GNUPLOT

1. In Windows, run wgnuplot.exe from the folder (or bin folder) where you installed

Gnuplot. In Linux, just type gnuplot in a terminal window.

2. You should now get a Gnuplot terminal with a gnuplot> command prompt. In Win-

dows this will appear in a new window, as shown in the picture on the next page.

In Linux it will appear in the terminal window where the gnuplot command was

run. For Windows, if the font is unreadable you can change it by right-clicking on

the text part of the Gnuplot window and selecting the “Choose Font..” option. For

example, the font “Courier”, style “Regular”, size “12” is usually a good choice (that

choice can be saved for future sessions by right-clicking in the Gnuplot window

again and selecting the option to update wgnuplot.ini).

3. At the gnuplot> command prompt you can now run graphing commands, which

we will now describe.

155
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GRAPHING FUNCTIONS

The usual way to create graphs in Gnuplot is with the plot command:

plot <range> <comma-separated list of functions>

For a function y= f (x), <range> is the range of x values (and optionally the range of y

values) over which to plot. To specify an x range, use an expression of the form [a : b],

for some numbers a < b. This will cause the graph to be plotted for a ≤ x ≤ b.

To specify an x range and a y range, use an expression of the form [a : b][c : d], for

some numbers a < b and c < d. This will cause the graph to be plotted for a ≤ x ≤ b and

c ≤ y≤ d.

Function definitions use the x variable in combination with mathematical operators,

listed below:
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Symbol Operation Example Result

+ Addition 2+3 5

− Subtraction 3−2 1

* Multiplication 2*3 6

/ Division 4/2 2

** Power 2**3 23 = 8

exp(x) ex exp(2) e2

log(x) ln x log(2) ln2

sin(x) sin x sin(pi/2) 1

cos(x) cos x cos(pi) −1

tan(x) tan x tan(pi/4) 1

Note that we use the special keyword "pi" to denote the value of π.

Example B.1. To graph the function y = sin x from x = 0 to x = 2π, type this at the

gnuplot> prompt:

plot [0:2*pi] sin(x)

The result is shown below:

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6
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Notice that the x-axis is labeled with integers. To get the x-axis labels with fractions

of π, you need to modify the terminal setting. In Windows, you would do this:

set terminal windows enhanced
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In Linux you would do this:

set terminal wxt enhanced

You can then (provided the Symbol font is installed, which it usually is) set the x-axis

to have multiples of π/2 from 0 to 2π as labels with this command:

set xtics (’0’ 0,’{/Symbol p}/2’ pi/2,’{/Symbol p}’ pi,’3{/Symbol p}/2’ 3*pi/2,

’2{/Symbol p}’ 2*pi)

In the above example, to also plot the function y = cos 2x+ sin 3x on the same graph,

put a comma after the first function then append the new function:

plot [0:2*pi] sin(x), cos(2*x) + sin(3*x)

By default, the x-axis is not shown in the graph. To display it, use this command

before the plot command:

set zeroaxis

Also, to label the axes, use these commands:

set xlabel "x"

set ylabel "y"

The default sample size for plots is 100 units, which can result in jagged edges if the

curve is complicated. To get a smoother curve, increase the sample size (to, say, 500)

like this:

set samples 500

Putting all this together, we get the following graph:
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PRINTING AND SAVING

In Windows, to print a graph from Gnuplot right-click on the titlebar of the graph’s

window, select “Options” and then the “Print..” option. To save a graph, say, as a PNG

file, go to the File menu on the main Gnuplot menubar, select “Output Device ...”, and

enter png in the Terminal type? textfield, hit OK. Then, in the File menu again, select

the “Output ...” option and enter a filename (say, graph.png) in the Output filename?

textfield, hit OK. Now run your plot command again and you should see a file called

graph.png in the current directory (usually the directory where wgnuplot.exe is lo-

cated, though you can change that setting using the “Change Directory ...” option in

the File menu).

In Linux, to save the graph as a file called graph.png, you would issue the following

commands:

set terminal png

set output ’graph.png’

and then run your plot command. There are many terminal types (which determine

the output format). Run the command set terminal to see all the possible types. In

Linux, the postscript terminal type is popular, since the print quality is high and

there are many PostScript viewers available.

To quit Gnuplot, type quit at the gnuplot> command prompt.
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Copyright ©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and

useful document "free" in the sense of freedom: to assure everyone the effective free-

dom to copy and redistribute it, with or without modifying it, either commercially or

noncommercially. Secondarily, this License preserves for the author and publisher a

way to get credit for their work, while not being considered responsible for modifica-

tions made by others.

This License is a kind of "copyleft", which means that derivative works of the doc-

ument must themselves be free in the same sense. It complements the GNU General

Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,

because free software needs free documentation: a free program should come with

manuals providing the same freedoms that the software does. But this License is not

limited to software manuals; it can be used for any textual work, regardless of subject

matter or whether it is published as a printed book. We recommend this License

principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains

a notice placed by the copyright holder saying it can be distributed under the terms

of this License. Such a notice grants a world-wide, royalty-free license, unlimited

in duration, to use that work under the conditions stated herein. The "Document",

below, refers to any such manual or work. Any member of the public is a licensee, and

is addressed as "you". You accept the license if you copy, modify or distribute the work

in a way requiring permission under copyright law.
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A "Modified Version" of the Document means any work containing the Document

or a portion of it, either copied verbatim, or with modifications and/or translated into

another language.

A "Secondary Section" is a named appendix or a front-matter section of the Doc-

ument that deals exclusively with the relationship of the publishers or authors of the

Document to the Document’s overall subject (or to related matters) and contains noth-

ing that could fall directly within that overall subject. (Thus, if the Document is in

part a textbook of mathematics, a Secondary Section may not explain any mathemat-

ics.) The relationship could be a matter of historical connection with the subject or

with related matters, or of legal, commercial, philosophical, ethical or political posi-

tion regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are desig-

nated, as being those of Invariant Sections, in the notice that says that the Document

is released under this License. If a section does not fit the above definition of Sec-

ondary then it is not allowed to be designated as Invariant. The Document may con-

tain zero Invariant Sections. If the Document does not identify any Invariant Sections

then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover

Texts or Back-Cover Texts, in the notice that says that the Document is released under

this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may

be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, repre-

sented in a format whose specification is available to the general public, that is suit-

able for revising the document straightforwardly with generic text editors or (for im-

ages composed of pixels) generic paint programs or (for drawings) some widely avail-

able drawing editor, and that is suitable for input to text formatters or for automatic

translation to a variety of formats suitable for input to text formatters. A copy made in

an otherwise Transparent file format whose markup, or absence of markup, has been

arranged to thwart or discourage subsequent modification by readers is not Transpar-

ent. An image format is not Transparent if used for any substantial amount of text.

A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without

markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly

available DTD, and standard-conforming simple HTML, PostScript or PDF designed

for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited

only by proprietary word processors, SGML or XML for which the DTD and/or process-

ing tools are not generally available, and the machine-generated HTML, PostScript

or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following

pages as are needed to hold, legibly, the material this License requires to appear in the

title page. For works in formats which do not have any title page as such, "Title Page"
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means the text near the most prominent appearance of the work’s title, preceding the

beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title ei-

ther is precisely XYZ or contains XYZ in parentheses following text that translates

XYZ in another language. (Here XYZ stands for a specific section name mentioned be-

low, such as "Acknowledgments", "Dedications", "Endorsements", or "History".)

To "Preserve the Title" of such a section when you modify the Document means that

it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states

that this License applies to the Document. These Warranty Disclaimers are consid-

ered to be included by reference in this License, but only as regards disclaiming war-

ranties: any other implication that these Warranty Disclaimers may have is void and

has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or

noncommercially, provided that this License, the copyright notices, and the license

notice saying this License applies to the Document are reproduced in all copies, and

that you add no other conditions whatsoever to those of this License. You may not

use technical measures to obstruct or control the reading or further copying of the

copies you make or distribute. However, you may accept compensation in exchange

for copies. If you distribute a large enough number of copies you must also follow the

conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may

publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed cov-

ers) of the Document, numbering more than 100, and the Document’s license notice

requires Cover Texts, you must enclose the copies in covers that carry, clearly and

legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover

Texts on the back cover. Both covers must also clearly and legibly identify you as the

publisher of these copies. The front cover must present the full title with all words

of the title equally prominent and visible. You may add other material on the covers

in addition. Copying with changes limited to the covers, as long as they preserve the

title of the Document and satisfy these conditions, can be treated as verbatim copying

in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put

the first ones listed (as many as fit reasonably) on the actual cover, and continue the

rest onto adjacent pages.
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If you publish or distribute Opaque copies of the Document numbering more than

100, you must either include a machine-readable Transparent copy along with each

Opaque copy, or state in or with each Opaque copy a computer-network location from

which the general network-using public has access to download using public-standard

network protocols a complete Transparent copy of the Document, free of added mate-

rial. If you use the latter option, you must take reasonably prudent steps, when you

begin distribution of Opaque copies in quantity, to ensure that this Transparent copy

will remain thus accessible at the stated location until at least one year after the last

time you distribute an Opaque copy (directly or through your agents or retailers) of

that edition to the public.

It is requested, but not required, that you contact the authors of the Document well

before redistributing any large number of copies, to give them a chance to provide you

with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the condi-

tions of sections 2 and 3 above, provided that you release the Modified Version under

precisely this License, with the Modified Version filling the role of the Document, thus

licensing distribution and modification of the Modified Version to whoever possesses

a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

be listed in the History section of the Document). You may use the same title as a

previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for

authorship of the modifications in the Modified Version, together with at least five

of the principal authors of the Document (all of its principal authors, if it has fewer

than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the

publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form

shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required

Cover Texts given in the Document’s license notice.
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H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version

as given on the Title Page. If there is no section Entitled "History" in the Docu-

ment, create one stating the title, year, authors, and publisher of the Document as

given on its Title Page, then add an item describing the Modified Version as stated

in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to

a Transparent copy of the Document, and likewise the network locations given in

the Document for previous versions it was based on. These may be placed in the

"History" section. You may omit a network location for a work that was published

at least four years before the Document itself, or if the original publisher of the

version it refers to gives permission.

K. For any section Entitled "Acknowledgments" or "Dedications", Preserve the Title

of the section, and preserve in the section all the substance and tone of each of the

contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and

in their titles. Section numbers or the equivalent are not considered part of the

section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included

in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in

title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qual-

ify as Secondary Sections and contain no material copied from the Document, you

may at your option designate some or all of these sections as invariant. To do this,

add their titles to the list of Invariant Sections in the Modified Version’s license notice.

These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but

endorsements of your Modified Version by various parties–for example, statements of

peer review or that the text has been approved by an organization as the authoritative

definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up

to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified

Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be

added by (or through arrangements made by) any one entity. If the Document already
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includes a cover text for the same cover, previously added by you or by arrangement

made by the same entity you are acting on behalf of, you may not add another; but

you may replace the old one, on explicit permission from the previous publisher that

added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-

mission to use their names for publicity for or to assert or imply endorsement of any

Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,

under the terms defined in section 4 above for modified versions, provided that you

include in the combination all of the Invariant Sections of all of the original docu-

ments, unmodified, and list them all as Invariant Sections of your combined work in

its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple iden-

tical Invariant Sections may be replaced with a single copy. If there are multiple

Invariant Sections with the same name but different contents, make the title of each

such section unique by adding at the end of it, in parentheses, the name of the original

author or publisher of that section if known, or else a unique number. Make the same

adjustment to the section titles in the list of Invariant Sections in the license notice

of the combined work.

In the combination, you must combine any sections Entitled "History" in the vari-

ous original documents, forming one section Entitled "History"; likewise combine any

sections Entitled "Acknowledgments", and any sections Entitled "Dedications". You

must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents re-

leased under this License, and replace the individual copies of this License in the

various documents with a single copy that is included in the collection, provided that

you follow the rules of this License for verbatim copying of each of the documents in

all other respects.

You may extract a single document from such a collection, and distribute it individ-

ually under this License, provided you insert a copy of this License into the extracted

document, and follow this License in all other respects regarding verbatim copying of

that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and indepen-

dent documents or works, in or on a volume of a storage or distribution medium, is
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called an "aggregate" if the copyright resulting from the compilation is not used to

limit the legal rights of the compilation’s users beyond what the individual works per-

mit. When the Document is included in an aggregate, this License does not apply to

the other works in the aggregate which are not themselves derivative works of the

Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Doc-

ument, then if the Document is less than one half of the entire aggregate, the Doc-

ument’s Cover Texts may be placed on covers that bracket the Document within the

aggregate, or the electronic equivalent of covers if the Document is in electronic form.

Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations

of the Document under the terms of section 4. Replacing Invariant Sections with

translations requires special permission from their copyright holders, but you may

include translations of some or all Invariant Sections in addition to the original ver-

sions of these Invariant Sections. You may include a translation of this License, and

all the license notices in the Document, and any Warranty Disclaimers, provided that

you also include the original English version of this License and the original versions

of those notices and disclaimers. In case of a disagreement between the translation

and the original version of this License or a notice or disclaimer, the original version

will prevail.

If a section in the Document is Entitled "Acknowledgments", "Dedications", or "His-

tory", the requirement (section 4) to Preserve its Title (section 1) will typically require

changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as ex-

pressly provided for under this License. Any other attempt to copy, modify, sublicense

or distribute the Document is void, and will automatically terminate your rights un-

der this License. However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such parties remain in

full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free

Documentation License from time to time. Such new versions will be similar in spirit

to the present version, but may differ in detail to address new problems or concerns.

See http://www.gnu.org/copyleft/.
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Each version of the License is given a distinguishing version number. If the Doc-

ument specifies that a particular numbered version of this License "or any later ver-

sion" applies to it, you have the option of following the terms and conditions either of

that specified version or of any later version that has been published (not as a draft)

by the Free Software Foundation. If the Document does not specify a version number

of this License, you may choose any version ever published (not as a draft) by the Free

Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in

the document and put the following copyright and license notices just after the title

page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute and/or

modify this document under the terms of the GNU Free Documentation License,

Version 1.2 or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A

copy of the license is included in the section entitled "GNU Free Documentation

License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace

the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover

Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of

the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend

releasing these examples in parallel under your choice of free software license, such

as the GNU General Public License, to permit their use in free software.



History

This section contains the revision history of the book. For persons making modifica-

tions to the book, please record the pertinent information here, following the format

in the first item below.

1. VERSION: 1.0

Date: 2009-07-01

Author(s): Michael Corral

Title: Trigonometry

Modification(s): Initial version

2. VERSION: 1.1

Date: 2010-03-12

Author(s): Michael Corral

Title: Trigonometry

Modification(s): Made the following changes:

a) Added a section on polar coordinates

b) Changed the format of the page headers

c) Changed the format of the examples
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